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Abstract: Frequent monitoring of crop moisture levels can significantly improve crop production
efficiency and optimise water resource utilisation. The aim of the present study was to generate
moisture status maps using thermal infrared imagery, centring on the development of a predictive
model for the cotton leaf water potential. The model was constructed using particle swarm optimisa-
tion (PSO) in conjunction with the least squares support vector machine (LS-SVM). Traditional SVM
models suffer from high computational complexity, long training times, and inequality constraints
in predicting leaf water potential. To address such issues, the PSO algorithm was introduced to
improve the performance of the LS-SVM model. The PSO-optimised LS-SVM model exhibited notable
improvements in performance when evaluated on two distinct test datasets (Alaer and Tumushuke).
The research results indicate that the predictive accuracy of the PSO-LS-SVM model significantly
improved, as evidenced by an increase of 0.05 and 0.04 in the R2 values, both of which reached
0.95. This improvement is reflected in the corresponding RMSE values, which were reduced to 0.100
and 0.103. Furthermore, a model was established based on data from three cotton growth stages,
achieving high predictive accuracy even with fewer training samples. By using the PSO-LS-SVM
model to predict leaf water potential information, the predicted data were mapped onto drone images,
enabling the transformation of the leaf water potential from a point to an area. The present findings
contribute to a more comprehensive understanding of the cotton leaf water potential by visually
representing the spatial distribution of crop water status on a large scale. The results hold substantial
significance for the improvement of crop irrigation management.

Keywords: leaf water potential; Crop Water Stress Index; least squares support vector machine;
unmanned aerial vehicle; particle swarm optimisation algorithm

1. Introduction

Thermal infrared crop sensing technology holds the potential for monitoring and
mapping the crop moisture status [1–3]. Due to the growing affordability of thermal sensors
and imaging devices, researchers have been exploring diverse platforms to acquire canopy
temperature data at both the canopy and field scales, with the goal of generating maps
that depict changes in moisture status. Cohen et al. [4] and Alchanatis et al. [5] employed
thermal cameras mounted on elevated cranes to assess the cotton canopy moisture status
under different irrigation regimes. The results indicated an inverse relationship between the
empirical and theoretical Crop Water Stress Index (CWSI) and leaf water potential (LWP).
To create LWP maps based on the CWSI, a reliable relationship between the two metrics
needs to be established for different crops and growth stages. As mentioned earlier, prior
research has shown correlations between these metrics across various crops. However, most
studies have presented results for individual dates [6–8]. Certain investigations examining
the correlation between the CWSI and LWP in cotton have utilised data collected from
multiple dates throughout a season, consistently revealing a relatively stable relationship
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between the two variables [9,10]. While exploring irrigation scheduling in pumpkin seeds,
Kirnak et al. [11] identified noteworthy correlations among an increasing CWSI, decreasing
leaf water potential, and various parameters such as the LWP values, seed yield, and leaf
area index (LAI) as well as the oil and protein content. The aim of the present study was
to analyse cotton across different growth seasons and geographical regions to determine
whether a robust relationship exists between the cotton LWP and CWSI based on high-
resolution ground-based thermal infrared imagery.

Using thermal infrared images collected by unmanned aerial vehicles (UAVs),
Cohen et al. [12] calculated the CWSI for predicting the LWP. The results demonstrated
the effectiveness of the CWSI in predicting the cotton crop moisture status, revealing the
potential for real-time irrigation scheduling. Utilizing terahertz radiation spectroscopy,
Browne et al. [13] predicted the leaf water potential and relative water content, highlight-
ing the significance of terahertz radiation in assessing the leaf moisture status within
the range of leaf dehydration, which is crucial for controlling gas exchange and leaf
survival. Cohen et al. [4] predicted the leaf water potential through an empirical formula
based on the crop canopy temperature and CWSI. By integrating the CWSI, tempera-
ture, and wind speed, a multivariate regression model was established that exhibited
enhanced prediction accuracy for the leaf water potential. Ultimately, statistical analy-
sis revealed a relatively stable relationship between the crop moisture status indicator,
CWSI, and leaf water potential, with a correlation coefficient slightly higher than that
between the canopy temperature and leaf water potential.

In the present study, a novel method for estimating the leaf water potential is proposed.
A cotton leaf water potential prediction model is established based on multi-source data
using the least squares support vector machine (LS-SVM) model. To achieve improved data
transfer and processing efficiency in this model, Kernel function types and regularisation
parameters are defined. To enhance the performance of the LS-SVM model, the particle
swarm optimisation (PSO) algorithm is introduced so as to allow for the searching of
optimal parameters, as well as the optimisation of the particle update scale and velocity
for increased prediction accuracy and generalisation capability. Furthermore, a prediction
model based on the PSO-LS-SVM model is established. Finally, spatiotemporal distribution
maps of the leaf water potential were generated based on the leaf water potential prediction
model. With limited ground-based biophysical measurements, the crop moisture status is
displayed using high-resolution imagery.

2. Materials and Methods
2.1. Site Description and Experimental Design

The experiments were conducted in Tumushuke and Alaer (Figure 1), Xinjiang, China
during the years 2022 and 2023. The Tumushuke test site is located at the coordinates
79◦05′66′′ E, 39◦91′45′′ N with an altitude of 1046.25 m. The annual average precipitation is
38.3 mm, the average annual evaporation is 2030.8 mm, and the annual sunshine hours
amount to 2923.7 h. The average annual temperature is 11.6 °C, and the frost-free period
spans 225 days. The Alaer test site is located at the coordinates 80◦90′36′′ E, 40◦59′66′′ N
with an altitude of 1014.12 m. It receives approximately 2996.2 h of sunshine annually,
annual average precipitation of 40.1 mm, and annual evaporation of 1976.6 mm. Both
locations are characterised by intense solar radiation, significant day-night temperature
fluctuations, and sandy loam soil, making them conducive for the cultivation of a variety
of crops, with a particular suitability for cotton.

Data for the year 2022 were collected from Tumushuke twice a week, while data for
2023 were collected from both Tumushuke and Alaer twice a month from the flowering
period to the end of the open boll period. Dry sowing and wet seedling transplantation tech-
niques were employed in both locations, with planting taking place in early April. Cotton
was planted in a configuration of 1 row, 6 rows, and 3 pipes with a film width of 2.05 m, us-
ing the mechanical cotton planting mode with row spacing of 66 + 10 + 66 + 10 cm. The first
irrigation was conducted in early June. In the Tumushuke test area, two plots (T1 and T2)
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were established, while one plot was established in the Alaer test area. Each plot covered
an area of 50 m by 30 m, with a sampling point positioned every 5 m along the perimeter.
To aid precise drone positioning, coloured cardboard sheets were placed at each sampling
point to serve as visual markers for the drone.

(a)

(b)

Figure 1. (a) Tumushuke test area. (b) Alaer test area.

2.2. Unmanned Aerial Vehicle Thermal Infrared Image Acquisition

An unmanned aerial vehicle system (Mavic 2 Enterprise Advanced, manufactured
by DJI) was utilised to simultaneously capture high-resolution visible light and thermal
infrared images. The visible light camera has a resolution of 48 million pixels and an equiv-
alent focal length of 24 mm. The thermal infrared camera operates within a wavelength
range of 8–14 µm, with a sensor resolution of 640 × 512 pixels and a lens focal length of
9 mm. The temperature measurement accuracy is ±2 °C. The flights were conducted at an
altitude of 50 m with a spatial resolution of 0.9 cm. The DJI Thermal Analysis Tool was
employed to extract the cotton canopy temperatures at the sampling points.
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2.3. Ground Data Collection
2.3.1. Meteorological Data

In the experimental areas, standard meteorological stations were installed to automati-
cally record various meteorological parameters throughout the crop’s growth period. These
stations collected data at hourly intervals, including the temperature, wind speed, rainfall,
solar radiation, atmospheric humidity, and atmospheric pressure.

2.3.2. Soil Moisture Content

The soil moisture content was measured using a soil moisture meter (TDR350, manu-
factured by Spectrum Technologies) with the probe length set at 20 cm. Drip-irrigated cotton
exhibits distinct characteristics compared with conventional furrow-irrigated cotton pri-
marily because its root system tends to be relatively shallow, with a primary concentration
at a depth of approximately 20 cm. The data collected for the present study encompassed
various parameters, including the soil volumetric moisture content, soil temperature, soil
electrical conductivity (EC), and GPS coordinates among other relevant factors.

2.3.3. Leaf Water Potential

Leaf water potential measurements were conducted concurrently with the unmanned
aerial vehicle capture of thermal infrared images of the crop canopy. These measurements
and image capture occurred at 2:00 p.m. local time. Fifteen healthy and well-developed
mature leaves from the experimental plots were selected for measurement. Prior to mea-
surement, aluminium foil bags were used to encase the leaves for approximately 30 min,
allowing for the equilibration of water conductance between the leaves and adjacent
branches [14]. The leaf water potential was determined using a plant water potential
pressure chamber (QT-WP080A, manufactured by Qudaotech).

2.4. Processing Unmanned Aerial Vehicle Imagery

The acquisition of cotton field remote sensing images via the unmanned aerial vehicle
remote sensing system necessitated image preprocessing to generate essential data that
could be used for subsequent research purposes. Firstly, the UAV remote sensing images
and corresponding GPS information were imported into Pix4DMapper (Pix4D Inc., Prilly,
Switzerland). Lens distortion correction was performed based on the infrared camera’s focal
length and lens centre point. To accurately locate the captured points in the cotton canopy,
the scale-invariant feature transform (SIFT) algorithm was utilised to align the visible
light and thermal infrared images. The SIFT features and descriptors were extracted from
both images. By matching these feature points, a correspondence relationship between
the two images was established, identifying common points between the visible light
and thermal infrared images. Subsequently, the random sample consensus (RANSAC)
algorithm was employed to estimate the transformation matrix, aligning the visible light
image with the thermal infrared image. The computation of the CWSI required pure canopy
pixels, necessitating the removal of soil pixels from the unmanned aerial vehicle’s thermal
infrared images. However, traditional methods for soil background removal are complex
and costly [15]. To overcome the described issue, the Canny edge detection algorithm in
OpenCV was utilised to extract the edges of the cotton canopy from the thermal infrared
images, resulting in raster images featuring the edge characteristics of the cotton canopy.
Subsequently, these edge raster images were transformed into cotton canopy vector layers
using ArcGIS. Finally, these vector layers were used to clip the unmanned aerial vehicle
thermal images, effectively removing soil pixels from the images.

2.5. Unmanned Aerial Vehicle Thermal Infrared Image Temperature Correction Analysis

To enhance the application of unmanned aerial vehicle thermal infrared remote sensing
technology in field cotton water stress monitoring, temperature correction of the thermal
infrared images is essential. A common approach involves establishing a linear regression
model between handheld infrared thermometers and measurements from unmanned aerial
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vehicle thermal infrared images [16]. In the present study, prior to field image acquisition,
the UAV obtained images of standard panels with 25% and 75% reflectance as well as images
of water bodies from an altitude of 50 m. Water bodies are typically considered relatively
stable temperature sources, especially under relatively constant environmental conditions.
By placing ice bags on the water body to lower its temperature, a known low-temperature
point was created. Using a handheld thermometer, the water temperatures were measured
as reference temperatures. By comparing the reference temperatures with the corresponding
pixel temperatures on the thermal infrared images, the infrared temperature images were
calibrated, resulting in the generation of more precise and accurate temperature values for
the thermal infrared images captured by the unmanned aerial vehicle.

2.6. Calculation of the Crop Water Stress Index

To better visualise the spatial and temporal distribution of cotton water stress condi-
tions and map them onto the thermal infrared images from the unmanned aerial vehicle,
a simplified method was employed for calculating the CWSI, as referenced from the work
of J. Bian et al. [17]. This method is based on the crop canopy temperature histogram of the
entire experimental area and is calculated using the following formula:

CWSI =
TC − Twet

Tdry − Twet
(1)

where the following definitions apply:
TC is the canopy temperature of the cotton, in °C.
Twet is the average temperature of the lowest 5% of the temperature histogram in °C.
Tdry is the average temperature of the highest 5% of the temperature histogram in °C.

This simplified method allows for the calculation of the CWSI, enabling the monitoring
of water stress levels in cotton and their spatial–temporal distribution.

2.7. Establishment and Parameter Optimisation of the LS-SVM Leaf Water Potential
Prediction Model

Experimental data from 2022 to 2023 were utilised in the present study, comprising
a total of 510 datasets for modelling. A random selection was made of 300 data sets
collected in 2022, which were designated as the training samples. The remaining 120 data
sets obtained in 2022 were set aside for use as validation samples. Additionally, 45 data
sets from both Alaer and Tumushuke collected in 2023 were employed as test samples.
To further validate the robustness and generalisation capability of the proposed leaf water
potential prediction model across different years, the training and test sets were redefined
based on the cotton growth stages. Specifically, 100 data sets from the flowering and full
boll stages and 115 data sets from the open boll stages of cotton in 2022 were used as the
training set, while the remaining 50 data sets from the same stages in 2022 were allocated
to the validation set. Furthermore, 15 data sets from the flowering, full boll, and open
boll stages of cotton in the work of Alaer and Tumushuke in 2023 were selected as the
test set. The goal was to investigate whether the model could adapt to varying growth
conditions across different years and provide accurate predictions when faced with new
and distinct circumstances.

The model employed eight factors as input variables: cotton canopy temperature,
soil volumetric moisture content, soil temperature, atmospheric temperature, atmospheric
humidity, light intensity, photosynthetically active radiation, and atmospheric pressure.
The leaf water potential served as the output variable. To ensure the model’s robustness,
data normalisation was applied by employing the min-max normalisation method, which
is suitable for various data distributions and contributes to enhancing the convergence
speed and performance of the model, and both the LS-SVM and PSO-LS-SVM crop leaf
water potential prediction models were established.
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The LS-SVM is a machine learning method employed for tasks like pattern classifi-
cation and regression [18,19]. It trains support vector machine models by applying the
least squares method to minimise the loss function. However, the LS-SVM model demands
meticulous tuning of the hyperparameters to achieve optimal performance and the selection
of appropriate kernel functions tailored to specific problem types. When dealing with large
datasets, the computational complexity of the LS-SVM may become a challenge. Moreover,
when sample sizes are limited, the LS-SVM can be prone to overfitting, necessitating the
use of regularisation techniques to enhance its generalisation performance.

The PSO-LS-SVM approach presents several advantages in terms of hyperparameter
optimisation, kernel function selection, and generalisation performance. PSO automates
the search in the hyperparameter space, which aids in discovering improved parameter
configurations and reduces the need for manual tuning. Additionally, PSO can provide
more effective strategies for selecting kernel functions while adapting to various data
characteristics. When compared with other machine learning algorithms and prediction
models such as extra trees, SVM, and XGBoost [20–22], the PSO-LS-SVM algorithm exhib-
ited superior predictive performance, particularly on smaller datasets [23]. This is due
to the stronger generalisation ability of support vector machines, which cope better with
small sample problems. In parallel, PSO’s global optimisation capability avoids the issue of
artificial neural networks getting trapped in local optima during parameter optimisation.
Cotton’s water status can be categorised into five stages based on the magnitude of the leaf
water potential values [24], as shown in Table 1.

Table 1. Water status classification of cotton leaf water potential.

Class LWP Range (MPa) Water Status Description

1 LWP > [−1.45] Over-irrigated plants (Oir)
2 −1.45 ≥ LWP > −1.75 Well-watered plants (WW)
3 −1.75 ≥ LWP > −2.05 Low water stress (LWS)
4 −2.05 ≥ LWP > −2.35 Medium water stress (MWS)
5 −2.35 ≥ LWP Severe water stress (SWS)

In the present study, both the LS-SVM and PSO-LS-SVM models were implemented
with a radial basis kernel function. For the PSO-LS-SVM model, the following parameters
were selected: a population size of M = 30, an inertia weight of w = 0.9, learning factors
c1 = c2 = 2, a swarm size set to 30, regularisation parameter γ = 300, kernel parameter
σ2 = 0.2, and a maximum iteration count for PSO of 50.

3. Results
3.1. Impact of the Soil Background on the Cotton Canopy Temperature

Figure 2a shows the original thermal infrared image captured by the drone, while
Figure 2b displays the thermal infrared image after lens distortion correction. The Structural
Similarity Index (SSIM) between the uncorrected thermal infrared image and the visible
light image was 0.2092, whereas the SSIM between the corrected thermal infrared image
and visible light image increased to 0.3598. This significantly increased SSIM value indicates
that during the correction process, the details and structure of the thermal infrared image
were improved, making it closer to the features of the visible light image and thereby
improving the overall quality and usability of the image. The cotton canopy mask obtained
using the Canny edge detection algorithm is depicted in Figure 2f. After removing the soil
background from the thermal infrared image of the cotton canopy, a distinct temperature
histogram different from the previous one was obtained. Before soil background removal,
the temperature histogram displayed a relatively wide temperature range (20–60 °C),
as shown in Figure 2g. The wide temperature range likely included temperature data from
both the cotton plants and the adjacent soil, posing a challenge in accurately distinguishing
the actual temperature distribution of the plants. However, following the removal of the
soil background, the temperature histogram’s range significantly decreased to 20–38 °C,
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as depicted in Figure 2h. Such a noticeable difference indicates the successful elimination
of temperature interference from the soil background.
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Figure 2. (a) Original thermal infrared image. (b) Thermal infrared image after lens distortion
correction. (c) Visible light image used for canopy extraction. (d) Thermal infrared-visible light
aligned image for canopy extraction. (e) Temperature distribution map of the thermal infrared image.
(f) Canopy mask of cotton after soil background removal using the Canny edge detection algorithm.
(g) Temperature distribution histogram of the original thermal infrared image. (h) Temperature
distribution histogram of the canopy after soil background removal.

3.2. Unmanned Aerial Vehicle Thermal Infrared Image Temperature Correction

Figure 3 depicts the temperature measurements conducted during the cotton growth
period using a handheld thermometer, in conjunction with water temperature data collected
by the drone’s thermal infrared sensor at an operational altitude of 50 m. As an example,
on 14 July 2022, the orthoimage temperature recorded by the drone was 12.4 °C, whereas
the reference temperature was 15.2 °C, leading to a discrepancy of 2.8 °C. Through linear
regression analysis of the dataset, an observation can be made that there existed a strong
correlation between the temperatures extracted by the drone’s thermal infrared sensor
and those measured by the handheld thermometer, with a coefficient of determination
(R2) of 0.96 and a root mean square error (RMSE) of 3.159 °C. The temperature correction
process involved integrating and comparing temperature data obtained from the handheld
thermometer and the drone’s thermal infrared sensor. Such an approach enabled a more
precise acquisition of temperature information within the thermal infrared images captured
by the drone. As such, the temperature correction improved the accuracy and reliability of
subsequent analyses and research conducted using these images. This correction process
can serve as a robust foundation for further analysis and research endeavours.

3.3. Relationship between the CWSI and LWP

Linear regression analysis was conducted on the data collected during the 2022 and
2023 experiments to examine the relationship between the CWSI and LWP. As depicted in
Figure 4, a strong linear relationship was observed between the CWSI and LWP (R2 = 0.69).
The model parameters (slope and intercept) exhibited significant differences in overall fit
(p < 0.01). Across the three growth stages of cotton (flowering, full boll, and open boll), the
linear relationship between the CWSI and LWP remained relatively stable. The coefficients
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of determination (R2) for these stages were 0.67, 0.61, and 0.73, respectively. The model
parameters (slope and intercept) also exhibited significant differences in overall fit (p <
0.01). These findings demonstrate the consistent linear relationship between the CWSI and
LWP throughout the various growth stages of cotton, highlighting the potential for using
the LWP as an indicator of a plant’s water status.

Figure 3. Comparison between ground-measured temperature and drone orthophoto temperature.
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Figure 4. (a) Inverse linear regression between CWSI and LWP for different times and regions (data
normalised). (b) Inverse linear regression between CWSI and LWP during cotton flowering, full boll,
and open boll stages (data normalised).

As shown in Figure 5, compared with the CWSI, the leaf water potential generally
exhibited stronger correlations with various factors. Such findings indicate a closer as-
sociation between the leaf water potential and the cotton plant’s water stress. Through
comprehensive analysis, the leaf water potential can evidently serve as a direct indicator
of plant water deficiency and plays a crucial role in assessing cotton plant water stress.
Although the CWSI and soil volumetric water content can also provide insights into cotton
plant water stress, they are more susceptible to influences from factors such as soil type,
rainfall, and atmospheric temperature, which can potentially lead to inaccuracies in assess-
ments. Therefore, when choosing water stress indicators, preference should be given to
the leaf water potential indicator. However, measuring the leaf water potential notably
requires specialised instruments and techniques, and the process can be intricate, making it
less practical for large-scale applications. Thus, in practical field monitoring, a combination
of other water stress indicators, such as the CWSI and soil volumetric water content, should
be employed to provide a comprehensive assessment, thereby enhancing the accuracy of
water stress monitoring.



Agronomy 2023, 13, 2929 9 of 16

Figure 5. Correlation coefficients of water stress indicators. Compared with CWSI, leaf water
potential (LWP) generally exhibited stronger correlations with various factors: canopy temperature
(CT), volumetric water content (VWC), soil temperature (ST), electrical conductivity (EC), atmospheric
temperature (AT), atmospheric moisture (AM), illumination intensity (II), photosynthetically active
radiation (PAR), and atmospheric pressure (AP).

3.4. CWSI Mapping

High-resolution images captured by the drone hold significant practical value in
diagnosing cotton water stress conditions and can be used to generate maps of water
stress distribution through simplified CWSI calculations. Figure 6a illustrates the adaptive
estimated CWSI map based on Twet and Tdry, demonstrating the variation in water status
across the cotton field. The map demonstrates notable shifts in crop water stress within
the experimental area. After the simplification process, the CWSI values for cotton plants
ranged between 0 and 1, which closely aligns with the actual moisture content of cotton
plants under various irrigation management practices across different plots. Figure 6b
provides a detailed depiction of the areas within the cotton field experiencing water deficits
and areas with a sufficient water supply. Figure 6c provides an enlarged view of the
magnified CWSI pixel values (0.9 cm GSD).

(a) (b) (c)

Figure 6. (a) CWSI map obtained through unmanned aerial vehicle remote sensing using thermal
infrared imagery. (b) Example of a CWSI map depicting insufficient moisture and ample moisture
areas of cotton. (c) Example of pixel-level resolution in the CWSI map.
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3.5. Performance Evaluation of the Leaf Water Potential Prediction Results

As depicted in Figure 7, predicting the leaf water potential using the CWSI is a
frequently employed and straightforward method, but it tends to have relatively low
accuracy and is susceptible to outlier values influenced by environmental factors. In
contrast, the PSO-LS-SVM model exhibited significantly superior predictive accuracy and a
lower error rate compared with both the CWSI and LS-SVM models. It particularly excelled
in predicting the cotton leaf water potential. The PSO-LS-SVM model demonstrated
a significant improvement in predictive accuracy, highlighting its ability to efficiently
optimise model parameters and greatly enhance the performance of the traditional LS-
SVM model.

When comparing the results related to errors in Table 2, the leaf water potential
prediction model established through the PSO-LS-SVM method outperformed the model
established through the LS-SVM method. Figure 7a presents the predictive outcomes of the
training set. The model evidently exhibited a high correlation between the predicted and
observed values on the training set, with an R2 value of 0.98, signifying a favourable fit to
the training data. Additionally, the RMSE was only 0.074, further confirming the model’s
predictive accuracy. In Figure 7b, the model’s predictive performance on the validation
set is displayed. Although there was a minor decline in the R2 value when compared
with the training set, the R2 value still stood at 0.96, showcasing the strong generalisation
capacity of the model. The RMSE on the validation set was 0.091, affirming the model’s
predictive capability. Figure 7c illustrates the model’s predictive results on the Alaer test
set. This test set presents challenges due to its diverse data sources from different years and
regions. Nonetheless, the model achieved satisfactory outcomes, with an R2 of 0.95 and an
RMSE of 0.100, indicating strong predictive ability in the face of diverse data. Figure 7d
demonstrates the model’s performance on datasets from the same region but different
years. Similar to previous results, the model achieved a substantial R2 value (0.95) and a
relatively low RMSE value (0.103) on this dataset, confirming the model’s robustness across
various data contexts.

Table 2. Comparison of model errors.

Model
Training Set Validation Set Alaer Test Set Tumushuke Test Set

RMSE R2 RMSE R2 RMSE R2 RMSE R2

CWSI 0.3093 0.6901 0.2780 0.6817 0.2709 0.6784 0.2845 0.6841
LS-SVM 0.1259 0.9487 0.1472 0.9145 0.1488 0.9003 0.1479 0.9137
PSO-LS-SVM 0.0742 0.9826 0.0916 0.9668 0.1002 0.9536 0.1033 0.9552

The cotton leaf water potential soft measurement model established using the PSO-LS-
SVM approach demonstrated higher accuracy and better predictive performance compared
with the models built using the standard LS-SVM method. Furthermore, employing this
approach for the prediction of the crop leaf water potential resulted in a greater estima-
tion accuracy compared with both the statistical regression [25] and quantitative remote
sensing [26] approaches. The predictive model founded on the PSO-LS-SVM approach
effectively addresses the challenges associated with forecasting nonlinear agricultural data
characterised by large volumes and high fluctuations.

After redividing the dataset, the predictive model was retrained with the aim of
identifying the relationship between the cotton growth stages and leaf water potential
from the flowering, full boll, and open boll data of 2022. The same model architecture as
before was employed, and similar hyperparameter settings were maintained during the
training process. Through the iterative optimisation process, the model gradually adapted
to the data distribution. After the model training was concluded, it was subsequently
applied to the datasets from 2023, which included the flowering, full boll, and open boll
stages. This application aimed to evaluate the model’s predictive capacity in this new
environmental context. The primary objective of this step was to ascertain whether the
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model could demonstrate generalisability across different years of data and generate
accurate predictions for cotton leaf water potential.
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CWSI, LS-SVM, and PSO-LS-SVM. (a) Training set. (b) Validation set. (c) Alaer test set. (d) Tumushuke
test set.

Through the comparison results presented in Table 3, an observation can be made
that the model continued to exhibit relatively accurate predictive performance on the new
datasets. In Figure 8a,e,i, the PSO-LS-SVM model achieved R2 values of 0.89, 0.92, and 0.93
for the training set during the flowering, full boll, and open boll stages with RMSE values
of 0.124, 0.114, and 0.108, respectively. In Figure 8b,f,j, the PSO-LS-SVM model attained R2

values of 0.87, 0.88, and 0.90 for the validation set during the flowering, full boll, and open
boll stages with RMSE values of 0.152, 0.210, and 0.136, respectively. Figure 8c,d displays
the testing results for the flowering stage data in the work of Alaer and Tumushuke in
2023, with R2 values of 0.87 and 0.86 and RMSE values of 0.178 and 0.183, respectively.
Figure 8g,h depicts the testing results for the full boll data in the work of Alaer and
Tumushuke in 2023, with R2 values of 0.87 and 0.86 and RMSE values of 0.133 and 0.234,
respectively. Finally, Figure 8k,l exhibits the testing results for the open boll data in the
work of Alaer and Tumushuke in 2023, with R2 values of 0.86 and 0.85 and RMSE values
of 0.143 and 0.144, respectively. Such findings further substantiate the robustness and
generalisation capacity of the predictive model for the leaf water potential across diverse
geographical contexts. Nevertheless, when juxtaposed with the model’s performance
on the comprehensive growth period dataset, noticeable instances of reduced accuracy
become evident. This decline in accuracy may be attributed to the constraint of having a
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diminished number of training samples. The dataset was partitioned again, resulting in a
reduced quantity of samples available for training and potentially constraining the model’s
ability to capture the global data distribution. In situations characterised by limited data
points, it becomes imperative to exercise prudence when interpreting and evaluating the
model’s performance. In practical applications, the prospect of enhancing the model’s
performance with a reduced training dataset lies in the pursuit of additional data collection
and optimisation efforts.

Table 3. Comparison of model errors.

Model
Flowering Test (Alaer) Flowering Test (Tumushuke) Full Boll Test (Alaer) Full Boll Test (Tumushuke) Open Boll Test (Alaer) Open Boll Test (Tumushuke)

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

CWSI 0.3318 0.6361 0.3563 0.6251 0.2475 0.6534 0.3551 0.6261 0.3136 0.6913 0.3304 0.6749
LS-SVM 0.2164 0.8089 0.2133 0.8174 0.1668 0.8137 0.2914 0.8260 0.1825 0.8436 0.1885 0.8343
PSO-LS-SVM 0.1784 0.8712 0.1836 0.8643 0.1336 0.8746 0.2347 0.8672 0.1436 0.8632 0.1440 0.8559
Version November 25, 2023 submitted to Agronomy 13 of 17

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Comparison of predicted LWP values with actual values for the newly partitioned dataset.
(a) 2022 Alaer flowering period training set. (b) 2022 Alaer flowering period validation set. (c) 2023
Alaer flowering period test set. (d) 2023 Tumushuke flowering period test set. (e) 2022 Alaer full boll
period training set. (f) 2022 Alaer full boll period validation set. (g) 2023 Alaer full boll period test set.
(h) 2023 Tumushuke full boll period test set.(i) 2022 Alaer open boll period training set. (j) 2022 Alaer
open boll period validation set. (k) 2023 Alaer open boll period test set. (l) 2023 Tumushuke open
boll period test set.
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Figure 8. Comparison of predicted LWP values with actual values for the newly partitioned dataset.
(a) The 2022 Alaer flowering period training set. (b) The 2022 Alaer flowering period validation
set. (c) The 2023 Alaer flowering period test set. (d) The 2023 Tumushuke flowering period test set.
(e) The 2022 Alaer full boll period training set. (f) The 2022 Alaer full boll period validation set.
(g) The 2023 Alaer full boll period test set. (h) The 2023 Tumushuke full boll period test set. (i) The
2022 Alaer open boll period training set. (j) The 2022 Alaer open boll period validation set. (k) The
2023 Alaer open boll period test set. (l) The 2023 Tumushuke open boll period test set.

4. Discussion

Thermal infrared imagery serves as an effective means to expand ground-based
measurements for assessing the spatial distribution of the crop water status at the field
scale. Nonetheless, the precise identification of vegetation canopy pixels and the acquisition
of temperature values that accurately represent the vegetation’s thermal characteristics
without interference from the soil background present challenges. In the present study,
the Canny edge detection algorithm was deployed to mitigate the presence of ambiguous
mixed pixels. Additionally, critical thresholds for the CWSI were established by considering
the temperature distribution in the thermal infrared imagery, specifically targeting the 0.5%
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and 99.5% temperature percentiles. These thresholds were instrumental in defining Twet and
Tdry. Utilizing a single reference temperature value to characterise the entire study area
would lead to biased and non-representative CWSI results, especially in fields composed
of different crop varieties or canopy structures. Even under the same irrigation regime,
varying water use efficiency for individual crops due to factors such as soil characteristics,
terrain elevation, and uneven irrigation management can result in temperature variations.
Consequently, the accuracy of CWSI-based evaluations of the cotton water status can
be compromised.

The LWP has been widely accepted as an indicator of crop water status [27]. As such,
many crop growers and physiological researchers have employed pressure chamber meth-
ods to determine the water status of crops, particularly for vegetables and grapes [28,29].
In the context of cotton plants, a strong correlation exists between the leaf water potential
and water stress. When cotton plants undergo water stress, they encounter difficulty in
extracting an adequate amount of water from the soil. This leads to a decrease in the water
content within the leaves, consequently causing a reduction in the leaf water potential.
The decline in the leaf water potential gives rise to observable effects such as leaf wilting,
loss of pigmentation, and tissue necrosis. These physiological changes ultimately have a
detrimental impact on the growth and development of cotton plants. Therefore, the leaf
water potential is a crucial indicator for assessing the degree of water stress in cotton. When
the leaf water potential decreases to a certain level, timely irrigation is needed to maintain
normal plant growth, enhance cotton yields, and improve quality.

However, while assessing the crop water status through the LWP is a reliable method,
practical limitations emerge when attempting to apply it at the field scale, primarily due to
constraints related to resources such as labour and equipment. This leads to a restricted
spatial coverage. Machine learning algorithms can be utilised for LWP prediction, enabling
the mapping of the cotton water status to cover large areas. The LWP map in Figure 9
was created using the PSO-LS-SVM model. This map displays the spatial variation in
the LWP predicted by the model using multiple data sources. In the domain of digital
agriculture, the utilisation of thermal infrared remote sensing conducted via UAVs presents
significant promise, but it is not without its set of challenges [30,31]. After analysing the
cotton canopy images obtained through UAV thermal infrared remote sensing, significant
differences in canopy temperature were found [32–34]. Therefore, accurate prediction of
cotton’s leaf water potential is crucial for assessing water stress and enhancing cotton
quality. In recent years, the combined PSO and LS-SVM model has been widely applied for
crop growth monitoring and predicting related data [35–37]. In future research endeavours,
the exploration of supplementary feature extraction techniques for multi-source data has
the potential to enhance the performance of models. At the same time, the integration of
alternative optimisation algorithms and machine learning methods holds promise for the
development of more intricate and precise prediction models. Additionally, this method is
applicable to predicting the leaf water potential in other crops. This comprehensive data
analysis approach holds the promise of conducting comprehensive assessments of growth
and moisture conditions in various crops, contributing to the management of irrigation
processes and the evaluation of plant health in other agricultural and orchard plants. In the
future, the integration of spectral indices (such as the NDVI or NDWI) from multispectral
remote sensing data, temperature information from thermal infrared imaging data, and
texture information will enable a more comprehensive assessment of crop health and
moisture conditions.
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Figure 9. Leaf water potential map.

5. Conclusions

In the present study, a machine learning algorithm based on multi-source data was
utilised to establish a predictive model using a combination of UAV remote sensing im-
agery, meteorological, and soil data. The model was constructed based on the LS-SVM
approach and subsequently fine-tuned using the PSO algorithm to forecast cotton’s leaf
water potential and generate distribution maps. The outcomes highlight that, in compari-
son with conventional linear regression models employing the CWSI, the LS-SVM model
notably enhanced the prediction accuracy. On two test sets, the R2 values reached 0.90
and 0.91, with corresponding RMSE values of 0.148 and 0.147. After PSO optimisation, the
R2 value increased by 0.05 and 0.04, with both achieving a result of 0.95, and the RMSE
reduced to 0.100 and 0.103, respectively. Such results indicate that the model performed
well in predicting cotton’s leaf water potential and shows promise as a potential model for
such predictions.

The model was trained using data from the 2022 flowering, full boll, and open boll
stages of cotton. Evaluations were then conducted using test sets for the flowering, full boll,
and open boll stages of cotton in the cities of Alaer and Tumushuke in 2023. The results
show that the model also performed with relatively high accuracy on these new test sets.
For the flowering stage test set, the R2 values were 0.87 and 0.86, with corresponding RMSE
values of 0.178 and 0.183. In the full boll stage test set, theR2 values were 0.87 and 0.86,
with corresponding RMSE values of 0.133 and 0.234. For the open boll stage test set, the
R2 values were 0.86 and 0.85, with corresponding RMSE values of 0.143 and 0.144. Such
findings further confirm the robustness and generalisation ability of the leaf water poten-
tial prediction model, as well as its adaptability to different geographical environments.
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This development opens up new avenues for precision agriculture management, offering
valuable insights to decision makers seeking a more comprehensive understanding of plant
growth conditions.
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