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Abstract: When endeavoring to study the complex growth conditions of soybean plants under
natural conditions, a problem arises due to the similar appearances of both soybean plants and
weeds. To address this issue, a soybean plant recognition model based on a laser ranging sensor is
proposed. To demonstrate the applicability of the soybean plant recognition model, experiments are
conducted using ultrasonic sensors and laser ranging sensors to analyze the diameter, height, and
spacing conditions in the model. A test environment is built, and during the pre-test, the laser range
sensor detects objects with diameters of 3 mm and 5 mm with two and three measurement points,
respectively, at a speed of 0.2 m/s. At a speed of 0.3 m/s, there is one measurement point for objects
with 3 mm diameter and two measurement points for objects with 5 mm diameter. At 0.4 m/s, there
are also one and two measurement points for objects with diameters of 3 mm and 5 mm, respectively.
These results demonstrate that the laser range sensor can more accurately recognize the diameter
conditions of soybean plants and weeds and can distinguish between the diameters of soybean plants
and weeds. Subsequently, the recognition rate of the model is evaluated by observing whether the
weeding mechanism can synchronize seedling avoidance after the soybean plant passes through the
sensor. The recognition rates of the optimized model at speeds of 0.2 m/s, 0.3 m/s, and 0.4 m/s are
100%, 98.75%, and 93.75%, respectively. Upon comprehensive analysis, the soybean plant recognition
model is determined to achieve a recognition rate of 98.75% at a speed of 0.3 m/s, which is considered
a moderate speed, and demonstrates more stable recognition of plant diameters. The test further
verifies the reliability and effectiveness of the method for distinguishing between soybean plants and
weeds. The research results can serve as a reference for recognizing soybean plants based on the use
of laser ranging sensors.

Keywords: soybean; laser ranging sensor; soybean plant recognition model; recognition rate

1. Introduction

In recent years, with the development of agricultural science and technology, the
improvement of soybean production has become one of the world’s top agricultural de-
velopment priorities. However, the growth environment of soybeans is complex, and
the growth of weeds has an impact on soybeans, as they compete with soybean plants
in the early growth phase for light, water, and nutrients. If left unchecked, weeds will
seriously jeopardize soybean quality and yield [1]. Mechanical weed control is a common
alternative to chemical weed control [2,3]. Mechanical weed control aims to maximize weed
control and effectively minimize seedling injury, so accurate detection of target objects and
improved weed control mechanisms or weed control modes are critical [4,5].

Historically, distinguishing between soybeans and weeds was primarily a process in-
volving manual identification, which was inefficient, involved a heavy workload, and repre-
sented a severe waste of human resources. Various methods have been used for weed iden-
tification in past decades, from RTK (Real Time Kinematic) and GPS to spectroscopy [6–8].
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The principle of these methods lies in detecting the target crop using these methods. If the
target crop is identified as a soybean plant, it is preserved. If it is not a soybean plant, it
is treated as a weed and subjected to weed control operations. In contrast, deep learning
technology-based detection methods and LiDAR recognition are increasingly being used in
agriculture [9–11].

With machine vision, a camera captures and processes an image using various
techniques [12]. This enables the system to learn the features and patterns of the image,
which can help with identifying soybeans and weeds. The method involves comparing and
classifying features such as the color, shape, and texture of the image [13]. Hu Lian et al. [14]
presented a crop recognition and localization technique that utilizes machine vision. They
used Otsu image segmentation and morphological operations to identify crops by analyzing
their row–column pixel accumulation curves, curve standard deviation, and sine wave curve
fitting. The study found that the method achieved a 100% correct recognition rate for lettuce
seedlings and 95.8% for cotton seedlings. However, the method may still encounter errors
in locating plant leaves and roots when the weed density is high. Zhang Jingyu et al. [15]
collected and produced a dataset of 8000 images to establish a corn seedling and weed
detection model based on deep learning technology. Then, they selected the YOLOv4 de-
tection network and, after 20,000 iterations of learning, obtained the seedling and weed
recognition model. This model’s highest accuracy, recall, F1 value, and mAP are 96.07%,
96.59%, 96.27%, and 95.17%, respectively, and the model performs well. However, the
preliminary preparation work is cumbersome, and there is a high demand for optimal
lighting conditions. Liu Yachao et al. [16] wrote a specific image recognition algorithm for
the real-time acquisition of complex growth environments in the field, based on OpenCV
image processing software, and completed the identification of plants and weeds by writing
an image-processing program using the C programming language. However, in plant
recognition, the recognition rate is higher in the case of good light intensity, and the recog-
nition rate is only 65.5% in the case of low light intensity, during which, plants cannot
be distinguished well from weeds. Although deep learning has the advantages of high
accuracy and adaptivity for recognizing plants and weeds, image recognition is sensitive to
environmental conditions such as light and shadows. The accuracy of recognition is often
affected by the complexity of the image background, the similarity of the crop and weed
morphology, and environmental factors [17]. Deep learning requires a large amount of data
and computational resources as well as complex training and testing [18]. LiDAR obtains
the shape and contour information of the target object by scanning to realize the recognition
of weeds [19]. David Reiser et al. [20] mounted LiDAR on the front of a small four-wheeled
robot that collected time-stamped data as it traveled across the field and fused it with data
from a total station to generate a 3D point cloud. This 3D point cloud is used to detect the
position of individual plants with high accuracy and can detect all plants (100% detection
rate) with an accuracy of 2.7–3.0 cm at a plant spacing of 13 cm. However, this approach
cannot be performed in real-time, as the data needs to be collected first, and it is difficult
to generalize the application because of its high cost. LiDAR identification can be used in
all-weather conditions and demonstrates high accuracy, but it has higher requirements for
processing data and field environment parameters.

In addition, Li Sensen et al. [21] replaced the visual recognition method with a me-
chanical sensing approach for distinguishing corn and weeds which uses a flexible shaft
as the signal input for the mechanical sensing because the flexible shaft does not deform
when it collides with weeds, as the weeds are too soft, while it does deform when it collides
with corn stalks. When the deformation of the flexible shaft reaches a certain angle, the
object detected is regarded as a corn plant, which is, in turn, transformed into a recognition
signal. Although this approach is less costly, it has more limitations in practical application;
it requires higher requirements for the appearance characteristics of plants and weeds,
and at the same time, does not take into account the various morphologies of plants and
weeds in different growth periods or variations in leaf distribution, and is not well suited
to complex field environments [22]. Chen Xueshen et al. [23] proposed a tactile perception
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method based on the physiological height and mechanical differences between rice and
weeds during the weeding period, through mechanical analysis, established a mechanical
model of the contact role of the perception beam and the rice plant, combined with the
bending strength of the rice plant, and designed a perception beam for the positioning of
the rice plant. However, the positioning of the plant in this way is easily affected by the
traveling speed of the machine and the planting spacing and density.

To solve the above problems, this study proposes a method based on a sensor that
can measure distance and can thus determine the measured object’s diameter, height, and
agronomic planting spacing requirements to establish the corresponding recognition model.
Ultrasonic sensors are more adaptable to the environment [24]. Laser-ranging sensors are
characterized by high accuracy, high speed, and high stability, can avoid the influence of
light, shadow, and other environmental factors, are low cost, and are more effective in
use [25]. When the mechanical weeding device encounters soybeans, it can successfully
perform seedling avoidance action. For the different morphological characteristics of
soybean plants and weeds, ultrasonic and laser ranging sensors were used for testing
according to the soybean plant identification model.

2. Materials and Methods
2.1. Test Materials and Data Collection Principles
2.1.1. Test Materials

The soybean recognition model test is carried out on a test platform, shown in Figure 1a,
and consists of a conveyor belt, a fixed frame, a sensing device, and a weeding mechanism.
Figure 2 shows a schematic diagram of the conveyor belt, which is 3670 mm long and
660 mm wide, and the weeding mechanism is fixed in the position of the fixed frame in
Figure 1b. The adjustment range of the conveyor belt running speed is between 0.1 m/s
and 2 m/s, with an adjustment scale of 0.05 m/s. When the sensor detects a target, it passes
the distance data to the PLC (Programmable Logic Controller), which determines whether
or not the target is a soybean plant by using the soybean recognition model. According
to the running speed of the conveyor belt and the horizontal distance between the sensor
and the weeding mechanism, the PLC sends commands to the servo motor, controlling the
weeding mechanism to synchronize the seedling avoidance action.
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Figure 1. Schematic diagram of test platform structure: (a) composition diagram of test platform;
(b) fixed frame positioning diagram.
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The test material consisted of ultrasonic sensors (UT 12-370-A-IL4, manufactured by
SensoPart, Shanghai, China.), laser ranging sensors (BL-200NMZ, manufactured by BOJKE,
Shenzhen, China), a PLC, and a laptop.

The sensing device consists of two laser ranging sensors, one positioned above and the
other below, as shown in Figure 3. The lower laser ranging sensor is located 70 mm above
the soil surface, with a distance of 100 mm between the upper and lower photometer laser
beams. This installation aims to accurately determine the position of the soybean plant,
ensuring synchronization between the weeding mechanism and seedling avoidance actions.
The BL-200NMZ model laser ranging sensors can be set within a range of 120 mm–280 mm,
and the soybean planting row spacing is 300 mm, so the two sensors can be placed to the
side of the soybean plant at a distance of about 200 mm to prevent contact of the soybean
leaf with the sensor, thus avoiding interference. The laser ranging sensor emits a visible
laser beam with a diameter of 0.5 mm, and the sensor feeds back out of range when no
object is detected; when an object is detected within the range, the sensor feeds back the
specific data distance.

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 2. Conveyor belt. 

The test material consisted of ultrasonic sensors (UT 12-370-A-IL4, manufactured by 
SensoPart, Shanghai, China.), laser ranging sensors (BL-200NMZ, manufactured by 
BOJKE, Shenzhen, China), a PLC, and a laptop. 

The sensing device consists of two laser ranging sensors, one positioned above and 
the other below, as shown in Figure 3. The lower laser ranging sensor is located 70 mm 
above the soil surface, with a distance of 100 mm between the upper and lower photome-
ter laser beams. This installation aims to accurately determine the position of the soybean 
plant, ensuring synchronization between the weeding mechanism and seedling avoidance 
actions. The BL-200NMZ model laser ranging sensors can be set within a range of 120 
mm–280 mm, and the soybean planting row spacing is 300 mm, so the two sensors can be 
placed to the side of the soybean plant at a distance of about 200 mm to prevent contact of 
the soybean leaf with the sensor, thus avoiding interference. The laser ranging sensor 
emits a visible laser beam with a diameter of 0.5 mm, and the sensor feeds back out of 
range when no object is detected; when an object is detected within the range, the sensor 
feeds back the specific data distance. 

 
Figure 3. Two Laser-ranging sensors detect the height localization of soybean plants. 

SIMATIC S7-200SMART (manufactured by SIEMENS AG, headquartered in Munich, 
Germany) is the selected PLC, the CPU model is the ST30 (manufactured by SIEMENS 
AG, Munich, Germany), and the analog input module with S7-200SMART selected is the 
EM AE04 (manufactured by SIEMENS AG, Munich, Germany), which has four analog 
input ports. The performance of the S7-200SMART is very stable, it can meet many differ-
ent work requirements, it is simple to use, easy to learn and operate, and can work well 
with other tools. 

The weeding mechanism is shown in Figure 4, which is mainly composed of a servo 
motor (TSDA-C21B, manufactured by Vacsin, Shenzhen, China), frame, spindle, guide 
slider, flange disk, connecting rod, fixed rod, comb plate, and profiled elastic combs. The 
servo controller sends pulses to make the servo motor rotate, the servo motor drives the 

Figure 3. Two Laser-ranging sensors detect the height localization of soybean plants.

SIMATIC S7-200SMART (manufactured by SIEMENS AG, headquartered in Munich,
Germany) is the selected PLC, the CPU model is the ST30 (manufactured by SIEMENS AG,
Munich, Germany), and the analog input module with S7-200SMART selected is the EM
AE04 (manufactured by SIEMENS AG, Munich, Germany), which has four analog input
ports. The performance of the S7-200SMART is very stable, it can meet many different
work requirements, it is simple to use, easy to learn and operate, and can work well with
other tools.

The weeding mechanism is shown in Figure 4, which is mainly composed of a servo
motor (TSDA-C21B, manufactured by Vacsin, Shenzhen, China), frame, spindle, guide
slider, flange disk, connecting rod, fixed rod, comb plate, and profiled elastic combs. The
servo controller sends pulses to make the servo motor rotate, the servo motor drives
the flange disk to rotate through the spindle, and the comb plate is connected with the
connecting rod and the fixed rod. When the flange disc drives the connecting rod, the two
comb plates will expand outward under the action of the fixed rod and the guide rail. Thus,
the switching back-and-forth between the weed-avoiding state and the seedling-avoiding
state is facilitated, and the seedling-avoidance and weeding operations are performed. The
elastic comb teeth penetrate the soil surface to a certain depth, and during the movement,
the comb teeth will brush the weed rhizomes out of the soil or cut and pull the weed
rhizomes to achieve the effect of weeding.
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The installation positions of the sensing device and the weeding mechanism are shown
in Figure 5. Two laser ranging sensors are placed, with the beam of the lower sensor 70 mm
above the ground and the distance between the beams of the upper and lower sensors set at
100 mm. The horizontal distance between the sensing device and the weeding mechanism
is 100 mm to allow the sensors to detect objects. By including a soybean plant recognition
model in the PLC programming, the PLC can differentiate soybean plants and send control
commands to the servo motor, enabling the weeding mechanism to perform synchronized
seedling avoidance actions. Two sensors are connected on the same square tube, which can
be adjusted up and down. The bottom of the square tube is positioned 50 mm above the
surface of the conveyor belt.
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The laser ranging sensor has a response time of 1.5 ms, with a sampling frequency
of 4ms (without averaging). The combined response time for data collection and soybean
plant recognition is approximately 5 ms. Compared to image recognition, the response
time for real-time data collection is shorter, and the operation is simpler.

The general flow chart of the soybean recognition model is shown in Figure 6. The
sensor detects the target object and passes the signal to the control system. The soybean
recognition model is programmed into the PLC control system, and the model determines
whether the target object is a soybean plant. If so, the PLC will send an action command
to the servo drive, the servo drive will send pulses to the servo motor to synchronize the
weeding mechanism with the seedling avoidance action, and will then wait for the next
target object to meet the model.
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2.1.2. Data Acquisition and Control Principle

This paper’s instruments for collecting data are ultrasonic and laser range sensors.
The sensors input the distance data into the PLC through analog current, and the program
in the PLC is set to record the distance data fed back from the sensors every 10 ms. The
schematic diagram is shown in Figure 7, and the data logs are exported once for every set
of data tested. The PLC will collect the distance data from the soybean plant recognition
model to distinguish whether the measured object is a soybean plant. If it is a soybean
plant, the PLC, according to the encoder speed wheel feedback of the current speed, the
horizontal distance between the sensing device, and the weeding mechanism, calculates
the time for the soybean plant to reach the weeding mechanism. At the same time, the PLC
sends control instructions to the servo drive so that when the soybean plant reaches the
weeding mechanism, the weeding mechanism can synchronize the seedling avoidance.
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According to the control preset requirements function, the control system should
include one digital input signal for the speed wheel encoder A-phase clock and B-phase
clock; two analog input signals, respectively, for the upper and lower two different sensors;
and no digital output signals. One of the input point variable address assignment tables is
shown in Table 1.

Table 1. Input variable address assignment table.

Input Name

I0.0 Tacho Wheel Encoder Phase A Clock
I0.1 Tacho Wheel Encoder Phase B Clock
0+ Lower sensor positive terminal
0− Lower sensor negative terminal
1+ Upper sensor positive terminal
1− Upper sensor negative terminal

2.2. Sensor Calibration and Hardware Wiring
2.2.1. Sensor Calibration

The laser range and ultrasonic sensors transmit the distance data to the S7-200SMART
PLC through the analog current output. Therefore, it is necessary to calibrate the laser
range sensor and the ultrasonic sensor before the test, record the current analog value
corresponding to each 1 cm in the actual sensor, and determine the relationship between
the analog signal and the actual distance through the algorithm and analysis.

In the calibration process, 24V DC voltage was added to the laser range sensor and
ultrasonic sensor, respectively, and the laser range sensor was calibrated from 120–280 mm
and measured every 10 mm; the ultrasonic sensor was calibrated from 30–400 mm and
measured every 10 mm. Each data set was repeated five times to remove the outliers
generated by poor operation during measurement and the average value was taken.

The fitting algorithm from MATLAB (2016 a) was used to give the appropriate function
of the laser range sensor data, as shown in Figure 8. From Figure 8, the correspondence
function between the analog signal and the distance parameter is obtained:

y = 0.0007239x + 8.005 (1)

where, y represents the analog signal and x represents the distance.
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Similarly, the ultrasonic sensor data fitting function is also given, as shown in Figure 9.
From Figure 9, the correspondence function between the analog signal and the distance
parameter is given as:

y = 0.00156x− 3.648 (2)

where, y represents the analog signal and x represents the distance.
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2.2.2. Hardware Connection

This control system has many different devices, and the voltage used is mainly 24V DC.
The list of electrical hardware devices is shown in Table 2.

Table 2. List of major electrical hardware.

Serial Number Name of Equipment Number

1 S7-200 SMART PLC 1
2 laser ranging sensor 2
3 ultrasonic sensor 1
4 servodrive 1
5 velocity wheel encoder 1

The electrical hardware power supply diagram is shown in Figure 10. The switching
power supply provides 220V AC to 24V DC to the PLC, sensors, servo drives, velocity
wheel encoder, and other hardware power supply to ensure the stable operation of the
hardware of each module in the system.
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The laser ranging sensors detect distance information through analog output lines
(+) and (−). However, if the analog voltage output time is too long, it can cause unstable
output data. Therefore, analog current output is used instead.
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Their analog output lines (+) are connected to the 0+ input port and 1+ input port of
the PLC analog input module EM AE04 to connect the two ranging sensors. The STEP 7-
MicroWIN SMART software V2.7 provided by SIMATIC S7-200 SMART is used to program
the algorithm that relates the analog quantity to the distance achieved by calibrating the
laser ranging sensors.

The PLC is connected to the self-contained RS485 communication interface via an
RS485 conversion line at one end, while the other is connected to the RS485 network port
of the servo drive. The servo drive is connected to the motor power line and motor coding
line at one end, and the other end is connected to the servomotor. The servomotor is then
fixedly attached to the weed-removal mechanism through the shaft.

2.3. Modeling for Soybean Plant Identification

Through the pre-analysis of soybean and weed morphology, as shown in Figure 11, it
is understood that the best time to weed soybean plants is the three-leaf stage. At this time,
the diameter of the soybean plant is 4–5 mm, while the weeds around the soybean plant
are generally short, and the stalk’s diameter is below 3 mm. In addition to the difference in
diameter, there is also a clear height difference. The three-leaf stage of the soybean has a
height average of about 250 mm, while the height of the average weed is 70–100 mm, some
may exceed 150 mm. Coupled with the spacing requirements of agronomic cultivation of
soybean plants, a soybean plant spacing of 100 mm satisfies the three major identification
rules: diameter, height, and spacing.
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Figure 11. Morphological characteristics of soybeans and weeds: (a) trefoil stage soybeans; (b) rank
grass; (c) the height and spacing of soybean during the trefoil stage, as well as its distribution among
surrounding weeds.

Here, the preprocessing model is established. From the point set, data can be distin-
guished from the different diameters of the object, but there will be stray point interference,
resulting in invalid points that are not within the range. The range of the laser range sensor
is dmin–dmax. Thus, the algorithmic processing is carried out as follows:

f (x) =


dmin ≤ d ≤ dmaxand|d0 − d| ≤ n, x = 1

d ≤ dmin, x = 0
d ≥ dmax, x = 0

(3)
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where, d represents the distance between the laser range sensor and the object to be
measured; d0 represents the distance between the next laser range sensor and the object to
be measured; dmin represents the minimum range of the laser range sensor; dmax represents
the maximum range of the laser range sensor; and n is the point set data, representing the
difference between the points of the previous point and the points of the next one.

To differentiate between the height of soybean plants and weeds, two laser ranging
sensors are needed, both upper and lower. Since soybean plants are taproot systems with
well-developed main roots and vertical stalks, the condition of height can only be satisfied
when both upper and lower photometers recognize the object.

Thus, the soybean plant recognition model is defined as follows:
The measurement schematic is shown in Figure 12 for the diameter condition:

D = vt (4)

f (c) =


dmin ≤ x1 ≤ dmax, c = 1

x1 ≤ dmin, c = 0
x1 ≥ dmax, c = 0

(5)

f (c) =


dmin ≤ x2 ≤ dmaxand|x2 − x1| ≤ n, c = 2

x2 ≤ dmin, c = 0
x2 ≥ dmax, c = 0

(6)

c = ∑n
i=1 xn, dmin ≤ xn ≤ dmaxand|xn+1 − xn| ≤ n (7)

where, D represents the diameter of the object to be measured; v represents the running
speed; t represents the time from the beginning to the end of the detection of the object to
be measured; x1 represents the distance data recorded in the current 10 ms; x2 represents
the distance data recorded in the next 10 ms; dmin represents the minimum range of the
laser ranging sensor; dmax represents the maximum range of the laser ranging sensor; n is
the point set data, representing the difference between the points of the previous point and
the points of the next one; and c represents the recorded value.
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The measurement schematic is shown in Figure 13 for the height condition:

f (xh) =


|xhs − xhx|, xh ≤ m

dmin ≤ dhs ≤ dmax
dmin ≤ dhx ≤ dmax

(8)

where, dhs represents the distance data between the upper laser ranging sensor and the
object being measured; xhs represents the position of the upper laser ranging sensor when it
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detects the object; dhx represents the distance data between the lower laser ranging sensor
and the object being measured; xhx represents the position of the lower laser ranging sensor
when it detects the object; xh represents the difference between the two sensors detecting the
position of the object in the horizontal direction; and m represents the difference between
the two horizontal positions.
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Figure 13. Height measurement and judgment schematic diagram.

The measurement schematic is shown in Figure 14 for the spacing condition:

f (xl) =
∣∣∣xlq − xlh

∣∣∣, a ≤ xl ≤ b (9)

where, xlq represents the position of the previous soybean plant; xlh represents the position
of the subsequent soybean plant; xl represents the spacing between the previous and
subsequent soybean plants; a represents the minimum threshold for the spacing between
the previous and subsequent soybean plants; and b represents the maximum threshold for
the spacing between the previous and subsequent soybean plants.
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Figure 14. Distance measurement and judgment schematic diagram.

When the PLC reads the distance data from the laser distance sensor within the range,
and at the same time, the difference between two consecutively recorded distance data
points are not more significant than n, n is generally taken as 9, and the record is 1.

If the distance data read in the next 10 ms is within the range, a value of 1 will be
added to the record, raising the value to 2. If it is not within the range, the record value
will be cleared, and the system will wait for the next instance to check if the condition can
be satisfied. The record value will be 1 again. When the record value is 0 or 1, no object
is detected on the surface, or weed(s) may be detected. The diameter condition will be
satisfied when the record value is greater than or equal to 2.

For the judgment of the height condition, the threshold m is set to 9 mm due to the
straight stem of the soybean plant. When the upper sensor detects distance data, the lower
sensor is within the threshold range and records a value greater than or equal to 2; or
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when the lower sensor records a value greater than or equal to 2, the upper sensor detects
distance data within the threshold range. Both of these cases satisfy the height condition.

According to the requirements of agricultural planting, the spacing between soybean
plants is 100 mm. After judging the first plant as a soybean plant, the spacing condition
will be added, and to avoid any errors regarding the spacing of soybean plants during
planting, the threshold value is set to 30 mm. At this time, a is 7, and b is 13.

At the same time, the height difference between soybean plants and weeds is huge,
and weeds are generally short at the three-leaf stage of soybean. To reduce the possibility of
misjudgment in cases which the diameters of soybean plants are around 3 mm, when the di-
ameter record value is 1, and the height and spacing simultaneously meet the requirements,
the subject is also determined to be a soybean plant.

In addition, considering the complexity of the field environment, if the lower laser
ranging sensor detects a leaf when the upper sensor also detects an object, as shown in
Figure 15, it is necessary to reprogram. For example, at a speed of 0.3 m/s, the lower
sensor (c = 2) will meet the diameter condition. When this occurs, a restriction c less than 4
should be added. At this point, the soybean plant recognition model will no longer mistake
soybean leaves for stems. In general, the lowest height of the leaves of a three-leaf stage
soybean plant is 90 mm, and the height of the laser ranging sensor detection is 70 mm.
Basically, the leaves will not interfere with the detection.
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3. Test Procedure and Data Analysis
3.1. Pre-Laboratory

This test was conducted in the laboratory of the Nanjing Institute of Agricultural
Mechanization, Ministry of Agriculture and Rural Affairs, where pre-processing tests were
conducted to verify the suitability of ultrasonic sensors and laser ranging sensors to detect
the diameter of objects.

The ultrasonic sensors were tested by placing the soybean plants on a conveyor belt
and allowing the belt to run at a speed of 0.3 m/s. The ultrasonic sensors were placed
perpendicular to the conveyor belt and, in terms of height, were placed in the upper-middle
and lower-middle portions of the soybean plant, respectively. When the ultrasonic sensors
detected the soybean plants passing by, the distance data were transmitted to the PLC
through an analog current. A graph of the distance data derived from the PLC is shown in
Figure 16, in which the horizontal axis of the coordinates represents the time. The vertical
axis represents the distance between the sensors and the object to be measured.

The tests found that with ultrasonic sensors at the same speed, the distance image of the
detection of the lower middle of the soybean plant and the detection of the upper middle of
the soybean plant was inconsistent. The reason is that the ultrasonic sensors detect a wide
range and are not sensitive to small differences, leading to the ultrasonic sensors detecting the
position of the soybean leaves. The exported distance data would be a line segment with no
undulation, thus, the soybean and weeds could not be distinguished well. Observed from the
image of the data with obvious undulations, the number of points of each undulation is not
the same, and there is no regularity to prove the size of its diameter.
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Figure 16. Ultrasonic sensor detection object distance data graph: (a) ultrasonic sensor detection of
the middle and upper parts of soybean plants; (b) ultrasonic sensor detection of the middle and lower
parts of soybean plants.

In conclusion, the ultrasonic sensor is easily affected by the distance between the object
to be measured, and the diameter of the object cannot be judged from the derived data.
Therefore, ultrasonic sensors do not apply to the soybean recognition model in this paper.

The laser ranging sensor was then tested by placing the soybean plant on a conveyor
belt and allowing the belt to run at a speed of 0.3 m/s. The laser range sensor was placed
perpendicular to the conveyor belt and, in terms of height, was placed in the middle and
lower portion of the soybean plant. When the laser ranging sensor detected the soybean
plant passing by, the distance data was transmitted to the PLC via an analog current. A
graph of the distance data derived from the PLC is shown in Figure 17, where the horizontal
axis of the coordinates runs the distance. The vertical axis represents the distance between
the sensor and the object under test.

Tests were perfomed to discern whether or not the laser range sensor can stably detect
objects at different speeds and to discern whether of not laser range sensors would be
affected by the distance between the objects to be measured. It was found that the sensor
could accurately identify the number of objects to be measured, but still could not judge
the diameter of the object to be measured from the image. After troubleshooting, it was
found that the MicroWIN SMART software (V2.7) analog input, which comes with filter
processing, had the acquisition frequency set to only 50 Hz. The parameters were then set
to no filter processing input and an acquisition frequency of 400 Hz. Then, objects with
diameters of 10 mm, 8 mm, 5 mm, and 3 mm were tested. As shown in Figure 18, the
distance data plots for four different objects at a running speed of 0.2 m/s are shown.

An image of the distance data after processing by the algorithm is shown in Figure 19,
and the diameters of different objects can be intuitively distinguished from the number of
points in Figure 19.
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The tests were run at 0.2 m/s, 0.3 m/s, 0.4 m/s, and 0.5 m/s, and the tests were
repeated for three groups and summarized as shown in Table 3, where the “compare” is
based on the number of points that should be required for the calculation.

Table 3. Table of the relationship between the diameter and number of points of the measured object
at different speeds.

Speed/m·s−1 Test Number 3 mm 5 mm 8 mm 10 mm

0.2

1 1 3 4 5
2 2 3 4 5
3 2 3 4 5

compare 2 3 4 5

0.3

1 1 2 3 3
2 1 2 3 3
3 2 2 3 3

compare 1 2 3 4

0.4

1 1 2 2 3
2 1 2 2 2
3 1 2 3 2

compare 1 2 2 3

0.5

1 1 2 2 2
2 1 1 3 2
3 1 1 2 2

compare 1 1 2 2

By analyzing the results of different object diameter detection tests, it was determined
that the number of points can reflect the diameter of the object to be measured, and the
speed of the running speed affects the number of points.

3.2. Experimental Process

The purpose of the test was mainly to verify the recognition rate of the soybean plant
recognition model. As shown in Figure 20, there were 30 soybean plants at the trefoil stage,
with an average height of about 250 mm and an average diameter of about 4 mm, from
which, eight plants were randomly selected for the repetitive test. The tests were conducted
in groups on a conveyor belt at speeds of 0.1 m/s, 0.2 m/s, 0.3 m/s, and 0.4 m/s. To
verify the accuracy of the soybean plant identification model, in addition to detecting the
conditions that satisfy the soybean plant identification model, the identification rates that
satisfy the height-only condition, the diameter-only condition, and the height condition
and diameter condition at the same time were further examined, and the tests in each group
were replicated 20 times.
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When the laser range sensor does not detect a soybean plant, the mimicking elastic
comb teeth of the weeding mechanism are in a closed state. As shown in Figure 21, a state
diagram of the comb plate unfolding and closing is shown.
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Figure 21. Soybean plant position concerning elastic comb status: (a) elastic comb closure diagram;
(b) elastic comb opening diagram.

Test process: as shown in Figure 22, the soybean plant moves forward with the
conveyor movement, and then the laser ranging sensor detects the plant when the PLC
distinguishes the soybean plant through the soybean recognition model. Next, the soybean
plant passes through the weeding mechanism, and the PLC synchronizes to make the
comb plate of the weeding mechanism unfold to allow the soybean plant to pass through
smoothly. Finally, the comb plate is re-closed after the soybean plant passes through the
weeding mechanism.
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Figure 22. Soybean plant position concerning elastic comb and sensor status during operation:
(a) soybean plant not passing through elastic combs and sensors; (b) soybean plants detected by
sensors; (c) elastic combs for seedling avoidance in soybean plant; (d) soybean plant passing through
elastic combs and sensors.



Agronomy 2023, 13, 2757 17 of 21

3.3. Data Results and Analysis

During the test, manual counting was performed to count the number of soybean
plants that successfully passed through the weeding mechanism after each set of tests.

As shown in Table 4, the results of the trials that only satisfied the height condition,
only satisfied the diameter condition, and satisfied both the height condition and the
diameter condition are shown. It was analyzed that when only the height condition was
met, the recognition rate performed better at different speeds. Still, it was impossible to
distinguish taller weeds from soybean plants by the height condition alone, so it was only
used as a reference. When only the diameter condition was satisfied, the conveyor belt
performed better when it operated at speeds up to 0.3 m/s. The diameter condition in
the soybean plant identification model shows that when the object diameter is around
4 mm, a speed of 0.3 m/s or lower would result in a recorded value greater than or equal
to 2, thus distinguishing soybean plants from weeds in terms of diameter. However, when
the speed reaches 0.4 m/s, the recorded value will be greater than or equal to 1, and then
the soybean plants and weeds cannot be well distinguished from each other in terms of
diameter. The difference between the test results that satisfy both the height and diameter
conditions and the test results that only satisfy the diameter conditions is small. The
spacing condition should be added to carry out the soybean plant recognition model test
to observe whether the soybean plant recognition model can better distinguish between
soybean plants and weeds.

Table 4. Statistical table of soybean plant recognition rate.

Speed/m·s−1

Height Diameter Height and Diameter

Amount Recognition
Rate Amount Recognition

Rate Amount Recognition
Rate

0.1 160 100% 160 100% 160 100%
0.2 160 100% 156 97.5% 158 98.75%
0.3 160 100% 140 87.5% 140 87.5%
0.4 148 92.5% 30 18.75% 32 20%

The experimental results of the soybean plant recognition model for detecting soybean
plants are shown in Table 5. Because the recognition rate of 0.1 m/s can reach 100% for
both height and diameter, and the actual detection of the running speed is too slow, this
speed was no longer tested. Among the models, the soybean recognition model before
optimization indicates that in the diameter condition, the recorded value of the diameter
of the lower sensor is greater than or equal to 2. Since the soybean recognition model
before optimization cannot distinguish well between soybean plants with a diameter
of about 4 mm, the diameter condition is optimized. After the research found that the
weeds around the soybean plants in the three-leaf stage are short, and that the individual
taller weeds located in between the soybean plants can be excluded by using the spacing
condition, the optimized soybean model should consider that when the diameter condition
recorded value is greater than or equal to 1, the height and spacing conditions need to meet
the requirements.

Table 5. Statistical table of recognition rate of soybean plant optimization recognition model.

Speed/m·s−1
Before Optimizing the Soybean Recognition Model After Optimizing the Soybean Recognition Model

Amount Recognition Rate Amount Recognition Rate

0.2 160 100% 160 100%
0.3 142 88.75% 158 98.75%
0.4 36 22.5% 150 93.75%
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Respectively, at running speeds of 0.2 m/s, 0.3 m/s, and 0.4 m/s, one set of distance
data is exported for each. The distance data plots for each exported set are shown in
Figure 23. Figure 24 is obtained after processing the data of the lower sensor, from which it
is seen that at a speed of 0.2 m/s, the number of points at which the lower sensor detects
the plant is greater than or equal to 2. The upper sensor detects the object, and the PLC
determines the target object to be a soybean plant employing the pre-optimization soybean
plant recognition model. At a speed of 0.3 m/s, individual plants are detected by the laser
range sensor below with a point count of 1. Currently, the optimized soybean recognition
model can determine the target object as a soybean plant. At a speed of 0.4 m/s, since
the diameter of the soybean plant is around 4 mm, the diameter condition can no longer
distinguish the soybean plant well. Hence, it is necessary to determine the target object as a
soybean plant by the optimized soybean recognition model.
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4. Discussion

Based on the observation of experimental results and analysis of data, it can be inferred
that the soybean plant recognition model shows an improved recognition rate at a running
speed of 0.2 m/s when incorporating the diameter condition, height condition, and spacing
condition. Specifically, the recognition rate for the height condition is 100% at this speed.
The optimized soybean recognition model, which includes the spacing condition in addition
to the height condition, also achieves a recognition rate of 100%. At a running speed of
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0.3 m/s, the improvement in the recognition rate of the soybean recognition model with
the addition of the spacing condition is relatively small. However, the optimized soybean
recognition model exhibits a significant increase in recognition rate and can effectively
distinguish soybean plants. When the speed reaches 0.4 m/s, the unoptimized soybean
recognition model has a lower recognition rate. Nevertheless, due to the generally shorter
stature of weeds surrounding soybean plants in the three-leaf stage, even taller weeds
between the plants can be filtered out using the spacing condition. At this speed, the
optimized soybean recognition model can successfully differentiate soybean plants.

Taking comprehensive factors into consideration, the average diameter of soybean
plants is around 4 mm. At a running speed of 0.4 m/s, according to Table 3, it can be
inferred that there is a higher probability of having only one point detected under the
diameter condition. Although the soybean plant recognition model can effectively distin-
guish soybean plants, there is still a certain probability of overlooking them. Additionally,
according to the requirements of soybean agricultural cultivation, the distance between
soybean plants should be 100 mm. If the running speed is too fast, the seedling damage
rate of the weeding mechanism will increase. Therefore, at a speed of 0.3 m/s, the soybean
recognition model can successfully differentiate soybean plants and the weeding mech-
anism can smoothly perform seedling avoidance actions. The experiments have shown
that the soybean plant recognition model based on laser ranging sensors can effectively
distinguish soybean plants, providing assistance to the mechanical weeding mechanism in
performing successful seedling avoidance actions.

Image recognition has advantages for accurately identifying plants and weeds, as
well as strong adaptability. However, image recognition is sensitive to environmental
conditions such as lighting and shadows. The accuracy of recognition is often influenced
by the complexity of the image background, the similarity between crops and weeds
in morphology, and environmental factors. Laser radar recognition offers all-weather
capability and high precision. However, it requires higher data processing and imposes
higher demands on field environments. Image recognition requires the capturing of images
of soybean plants using cameras, which are typically positioned above the plants. Laser
radar, on the other hand, requires prior data collection of the scene within a certain range
and is usually mounted on a mobile platform. In comparison, the laser ranging sensor
used in this study is located between the intra-rows of soybean plants. Due to the different
positions of image recognition devices and laser radar from the data acquisition device in
this paper, other aspects of comparison are not applicable to this study.

Considering the complexity of the field environment, if the cotyledon position of
soybeans is too low, typically, the width of the leaves exceeds the stem diameter. In this
case, the lower laser sensor detects the leaves, while the upper laser sensor detects the plant.
As a result, there will be a deviation in the positioning of the soybean plants, preventing
the weeding mechanism from synchronously completing the seedling avoidance action
accurately. Recognizing this limitation, further research and resolution will be conducted
in future experiments.

5. Conclusions

1. Constructing a soybean plant recognition model, the problem of recognizing soybean
plants and weeds was solved by the conditions of diameter, height, and soybean
planting spacing of weeds.

2. The laser ranging sensor has the characteristics of high accuracy, high speed, and
high stability. Compared with image recognition, it can avoid the influence of light,
shadow, and other environmental factors and has a lower cost, so it is more effective.
In the test process, the laser ranging sensor could be synchronized with the mechanical
weeding device to achieve real-time detection, real-time weeding, and fast response
without collecting data, and could then carry out weeding operations.

3. In the indoor test, the soybean plant recognition model programmed by PLC software
had a recognition rate of 100%, 98.75%, and 93.75% at running speeds of 0.2 m/s,
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0.3 m/s, and 0.4 m/s, respectively. Among them, the recognition rate of the soybean
plant recognition model at the speed of 0.4 m/s could reach 93.75%. Still, it could
not distinguish between soybean plants and weeds well according to the diameter
conditions. There was a certain misjudgment for weeds with greater height, and the
spacing between soybean plants was small, so it was not able to complete the role of
weed control well at this speed. At the speed of 0.2 m/s, although the recognition rate
could reach 100%, the running speed is slower, and the weeding efficiency is reduced.
Our comprehensive analysis determined that the soybean plant recognition model
performs better at the speed of 0.3 m/s, and the accuracy rate of soybean was as high
as 98.75%. The test further verified the reliability and effectiveness of the method for
distinguishing between soybean plants and weeds. The research results can provide a
reference for recognizing soybean plants based on laser ranging sensors.
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