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Abstract: The exacerbation of climatic changes helped to increase the risk of plant diseases in the
world. The novelty of this study lies in the manufacture of therapeutic nutrients using nanotechnology
with strong effectiveness against plant disease. Based on this concept, we mycosynthesized bimetallic
ZnO-CuO nanoparticles (NPs), alternatives to reduce the spread of Vicia faba Fusarium wilt disease,
which is one of the world’s most imperative cultivated crops. The article’s uniqueness comes
in the utilization of ZnO-CuO nanoparticles to carry out two crucial tasks: therapeutic nutrients
and managing Fusarium disease. To evaluate the resistance of infected plants, disease index (DI),
photosynthetic pigments, osmolytes, oxidative stress and yield parameters were assessed. NPs of
ZnO, CuO, and ZnO-CuO were mycosynthesized using a biomass filtrate of Aspergillus fumigatus
OQ519856. DI reached 87.5%, due to Fusarium infection, and, as a result, a severe decrease in
growth characters, photosynthetic pigments, total soluble carbohydrates, and proteins as well as
yield parameters was observed. Infected plants produced more of the studied metabolites and
antioxidants. On the other hand, the treatment with CuO-ZnO NPs led to a great decline in the
DI by 22.5% and increased the protection by 74.28%. A clear improvement in growth characters,
photosynthetic pigments and a high content of carbohydrates and proteins was also observed in
both healthy and infected plants as a result of CuO-ZnO NPs treatment. Remarkably, CuO-ZnO NPs
significantly increased the yield parameters, i.e., pods/plant and pod weight, by 146.1% and 228.8%,
respectively. It could be suggested that foliar application of NPs of ZnO, CuO, and ZnO-CuO could
be commercially used as antifusarial agents and strong elicitors of induced systemic resistance.

Keywords: bimetallic ZnO-CuO NPs; Vicia faba; fusarium wilt disease; green synthesis

1. Introduction

Faba bean is one of the essential nutritious popular food crops in the world and plays
a main role in the Egyptian cuisine. However, it faces several biotic constrains including
viral, bacterial, fungal infections, as well as various pests and insects [1]. Many fungal
infections that impact faba bean production as well as other crops in various locations
are classified as root system diseases [2,3]. Fusarium is one of these disorders which has
a definite effect on the plant’s autoimmunity and consequently causes a decrease in crop
productivity and quantity during the growing season. [4]. Given the difficulty and harm of
completely controlling Fusarium wilt disease chemically, the most appropriate alternative
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was to adopt a highly efficient natural approach to combat wilt disease, which is also less
expensive and eco-friendly. Furthermore, climatic change has lately intensified, resulting
in the rapid spread of plant diseases [4,5].

In fact, the induction of systemic resistance in the plant makes the plant able to recover
from the damage of pathogens. Systemic resistance or immunity can be induced in plants
by biotic or abiotic inducers [6]. NPs improve structural and metabolic parameters and
greatly increase yield by generating systemic resistance. [7,8]. By encouraging growth
metrics and metabolic properties, ZnO-NPs have been suggested as a synthetic fungicide
substitute for eliminating Fusarium wilt disease by inducing systemic resistance [9]. The
possibility of nanoparticles to induce SAR as a practical approach of controlling numerous
plant diseases is only now being realized [10]. In order to treat fungal infections, the
use of nanobiotechnology to resist infections and boost plant physiological immunity has
produced significant and effective results. This is because it might boost plant systemic
immunity, disease resistance, and yield [11–14]. In this regard, biosynthesis of nanomateri-
als using fungal extracts, a plentiful source of natural compounds such as carbohydrates,
phenols, flavonoids, tannins and alkaloids, is a promising approach that can operate as a
safe reducing and stabilizing agent [15].

Zinc oxide nanoparticles play an important role in the process of sugar oxidation in
plants [7]. Nano CuO applications increased plant health, growth, and production, and
have the potential to have a significant impact on the management of plant diseases in
ornamentals [16,17]. Attention turned to feeding the plant with compounds that contain
copper, as scientific reports have proven the antimicrobial efficiency of copper, as it stim-
ulates the activation of laccases, which is one of the enzymatic analogues of polyphenol
oxidase that breaks down and oxidizes phenolic substances. It has been reported that
in vitro application of copper on potato plants infected with brown mold bacteria inhibited
the bacterial growth. It is worth noting that plants treated with copper showed a signifi-
cant improvement in morphological characteristics and physiological immune responses.
This article’s novelty stems from the use of bimetallic ZnO-CuO nanoparticles to perform
two critical tasks: therapeutic nutrition delivery and Fusarium wilt management with high
efficacy. The main goal of this research is to recover the plant’s fighting in contradiction
of Fusarium wilt disease in faba beans plant caused by Fusarium oxysporum using nano-
biotechnology represented by bimetallic ZnO-CuO NPs as a nano-fertilizer against the
fungal plant pathogen.

2. Materials and Methods
2.1. Biosynthesis of NPs

NPs were myco-synthesized using a filtrate of A. fumigatus OQ519856 and the complete
characterization of NPs of ZnO, CuO, and ZnO-CuO (such as UV-Vis., HR-TEM, DLS, and
SEM analysis) was recorded in our previous study [18]. Moreover, the concentration used of
ZnO-CuO NPs (125 µg/mL) ZnO NPs (1000 µg/mL) and CuO NPs (500 µg/mL) depends
on the MIC against fusarium, as mentioned in previous published article [18].

2.2. Source of the Fusarium Pathogen

The pathogen was obtained from the Regional Center for Mycology and Biotechnology
(RCMB) at Al-Azhar University. The pathogen was cultured on PDA media for 5 days
before being stored at 4 ◦C, and the pathogenic fungus inoculum was ready.

2.3. In Vivo Experiment
2.3.1. In Vivo Study

The present study employed seeds of Vicia faba L, namely the CV Giza 3 variety.
The seeds were immersed in the nano solutions (125 µg/mL) for a duration of 2 h,

with a ratio of 2 mL of solution per gram of seeds. These treatments were employed in the
experimental procedure. A single seed/pot, measuring 30 cm in diameter, was planted in
the Research Garden located at the Faculty of Science, Al-Azhar University in Cairo, Egypt.
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The pot included a mixture of sand and clay in a weight-to-weight ratio of 1:3, with a total
mass of 4 kg. The distribution of the pots was carried out, ensuring that each treatment
had 8 repetitions.

The experimental treatments were organized as follows: T1 represented the healthy
control group, T2 represented the group of infected plants that were left untreated, T3
represented the group of healthy plants that were treated with zinc oxide nanoparticles
(ZnO NPs), T4 represented the group of infected plants that were treated with ZnO NPs, T5
represented the group of healthy plants that were treated with copper oxide nanoparticles
(CuO NPs), T6 represented the group of infected plants that were treated with CuO NPs, T7
represented the group of healthy plants that were treated with a combination of ZnO-CuO
NPs, and T8 represented the group of infected plants that were treated with ZnO-CuO NPs.

The pathogenic fungus was artificially infected by injecting 10 mL of Fusarium oxyspo-
rum 107 spores/ mL) into the soil. After germination and the appearance of the cotyledons
of the plants, the plants’ (healthy and infected) treatments with nanosolutions was started.
Three doses (20 mL per plant, once per week) of nanosolutions at a concentration of
(125 g/mL) were applied to the plants’ leaves using a one-handed pressure irrigator. As-
sessment of plant resistance, recording disease symptoms, as well as taking plant samples
for biochemical tests were conducted 60 days after germination.

A duration of 60 days after germination, symptoms were recorded, and disease severity
and protection were determined according to Attia et al. [19].

2.3.2. Metabolic Indicators for Resistance

The lengths of the shoots were measured at random from above the soil surface to
the end of the plant’s growing tip and recorded in cm. Root lengths were measured from
the soil surface to the end of the root tip and recorded in cm. Chlorophyll and carotenoids
were measured using the technique of Abdelaziz et al. [20]. A solution consisting of 50 mL
of acetone with an 80% concentration was employed to extract photosynthetic pigments
from a sample of fresh leaves weighing 0.5 g. The filtrate was subsequently quantified by
spectrophotometric analysis at wavelengths of 665 nm, 649 nm, and 470 nm. The estimation
of the soluble protein was conducted by Lowry et al. [21]. A volume of 1 mL of the extract
was mixed with 5 mL of an alkaline reagent consisting of 50 mL of a 2% Na2CO3 solution
prepared in 0.1 N NaOH and 1 mL of a 0.5% CuSO4 solution prepared in 1% potassium
sodium tartrate. Additionally, 0.5 mL of Folin’s reagent, diluted by a ratio of 1:3 v/v, was
added to the mixture. After a duration of 30 min, an observable alteration in color was
detected at a wavelength of 750 nanometers.

The quantification of soluble carbohydrates in the shoot was determined using the
methodology outlined in the study conducted by Umbreit et al. [22]. The dried shoots
from each treatment, weighing 0.5 g, were collected and mixed with 2.5 mL of a 2% phenol
solution and 5 mL of a 30% trichloroacetic acid (TCA) solution. The resulting mixture
was subsequently filtered using filter paper. Subsequently, a volume of 2 mL of anthrone
reagent, prepared by dissolving 2 g of anthrone in 1 L of 95% sulfuric acid (H2SO4), was
introduced. The color that was observed and measured had a wavelength of 620 nm, with
a blue-green color.

The content of free proline was established by the method of Bates et al. [23]. The
protocol mentioned in Dai et al. [24] was used to assess the total phenolics. The method
of Hu, Richter [25] was used to determine the amount of malondialdehyde (MDA) in
fresh faba bean leaves. Fresh faba bean leaves were tested for hydrogen peroxide H2O2
content [26]. The approved technique of Srivastava, [27] was used to determine peroxidase
activity. The activity of polyphenol oxidase was measured by the method of Matta [28].

2.3.3. Statistical Analyses

The data were subjected to one-way variance analysis (ANOVA). The LSD test by
CoStat was used to reveal statistically significant differences between treatments at p 0.05.
The resulting data are shown as mean standard errors (n = 3).
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3. Results and Discussion
3.1. V. faba Protection

The results in Table 1 and Figure 1 showed that the fungus infects the roots of the
plant, causing wilting, yellowing, and eventually death. F. oxysporum was highly virulence
and caused 87.5% DI. The results showed that both ZnO NPs and CuO NPs alone efficiently
reduced the severity of the Fusarium wilt disease, with average DIs (50% and 37.5%) and
protections (42.8% and 57.1%), respectively. However, the combined treatment of ZnO-
CuO NPs was even more effective, with a DI (22.5%) and protection of 22.5% and 74.28%,
respectively. This suggests that the combination of these two NPs could be a promising
approach for controlling V. faba Fusarium wilt disease.

Table 1. Effect NPs of ZnO, CuO, and ZnO-CuO on disease index of F. oxysporum wilt disease of V. faba.

Treatment
Disease Symptoms Classes DI (%)

Protection (%)
0 1 2 3 4

Control Infected 0 0 0 5 5 87.5 0

Infected + ZnO NPs 3 0 3 2 2 50 42.8

Infected + CuO NPs 4 1 2 2 1 37.5 57.1

Infected + ZnO-CuO NPs 5 2 2 1 0 22.5 74.28
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Figure 1. Symptoms of wilt disease: (A) untreated infected, (B) untreated healthy, (C) infected treated
with ZnO NPs, (D) infected treated with CuO NPs and (E) infected treated with ZnO-CuO NPs.

ZnO NPs have been reported to possess strong direct fungicidal effects against nu-
merous plant pathogenic fungi, including F oxysporum, through their high surface-area-to-
volume ratio that enables them to penetrate the fungal cell wall and disrupt its metabolic
processes, leading to the inhibition of fungal growth.

These results are explained indirectly by the fact that ZnO NPs are some of the impor-
tant elements that stimulate plants to synthesize growth hormones and repair hormone
imbalances [29]. The researchers used CuO NPs in laboratories to fight fusarium, and the
results showed that the use of CuO NPs inhibited fungal growth [30]. The present study
also found that the combination treatment of ZnO and CuO NPs was more effective than
either NP alone, indicating a potential synergistic effect between the two NPs (Zn and
Cu). This is consistent with previous studies that have also demonstrated that the com-
bination of metal NPs can have a synergistic effect on their antifungal properties against
phytopathogenic fungi [31].

Growth Biomarkers

It is evident from Figure 2A–C that Fusarium-infected plants exhibited great reductions
in plant height (54.8%), root length (57.8%), number of leaves (61.28%) and number of
nodules (79.3%) compared to the control plants. These data agree with the recent research
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by Elsakhawy, T. et al. [32]. Fusarium infection was reported to clog the vessels carrying
water and salts, so the plants become dwarfs and eventually die [33]. Plants that were both
healthy and diseased and were subjected to treatment with ZnO-CuO nanoparticles (NPs),
ZnO NPs, and CuO NPs exhibited noteworthy increases in many growth parameters,
including plant height, root length, number of leaves, and number of nodules when
compared to plants that did not receive any treatment. In the investigation of the impact
of ZnO nanoparticles (NPs), CuO nanoparticles (NPs), and ZnO-CuO nanoparticles (NPs)
on plants in a healthy state, it was observed that the treatment involving ZnO-CuO NPs
exhibited the most notable and statistically significant enhancements in several plant
growth parameters. Specifically, this treatment resulted in a substantial increase in plant
height (52.59%), root length (19.18%), number of leaves (50.01%), and number of nodules
(108%), as depicted in Figure 2A–C. Concerning the effect of ZnO NPs, CuO NPs and ZnO-
CuO NPs on the challenged plants with F. oxysporum, it was found that ZnO-CuO NPs were
the best treatment that showed the greatest significant increase in plant height (101%), root
length (119%), number of leaves (142%) and number of nodules (450%). Such a remarkable
enhancement in growth parameters could be attributed to the ability of the used treatments
(ZnO-CuO NPs, ZnO NPs and CuO NPs) to improve the plant’s defense as well as their
anti-Fusarium ability that prevent the fungal penetration into the plant roots. Moreover,
the treatments enhanced the formation of nitrogen fixation nodules, and the release of
secondary metabolites, thus facilitating nutrient uptake from the root environment. These
results are supported by Ragab, Turoop [34]; they reported that treatment with ZnO NPs
resulted in a significant improvement in the morphological characteristics of faba bean
plants. García-López et al. [35] stated that zinc oxide has the potential to elevate the yield
and growth of some crops. Nanoparticles can travel long distances through the plant’s
vasculature after entering the leaf apoplast [36]. It is noted that treatment with CuO NPs
resulted in an improvement in the plant’s morphological characteristics, as well as an
increase in the plant’s defensive ability [37].
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Figure 2. Effect of NPs of ZnO, CuO, and ZnO-CuO on (A) shoot length, (B) root length, (C) number
of leaves and (D) number of nodules of F. oxysporum wilt disease of faba bean plant. T1: healthy
control; T2: infected control; T3: healthy and treated with ZnO NPs; T4: infected and treated with
ZnO NPs; T5: healthy and treated with CuO NPs; T6: infected and treated with CuO NPs; T7: healthy
and treated with ZnO-CuO NPs; T8: infected and treated with ZnO-CuO NPs. (Data represent mean
± SD, n = 3, letters “a–h” refer to significance in statically analysis).
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3.2. Photosynthetic Pigments

The findings depicted in Figure 3A–C indicate a significant decrease in the levels
of chlorophyll a and b in plants infected with F. oxysporum (5.34 and 5.007 mg/g. f.wt)
compared to uninfected plants (14.28 and 9.71 mg/g. f.wt), respectively. The significant
reduction in chlorophyll pigment content can be attributed to the plant’s inability to
effectively catch light and perform photosynthesis, as well as the impact of oxidative
bursts on chloroplasts caused by disease infection [38]. Plants that were both healthy and
sick and subjected to treatment with nanoparticles (NPs) of ZnO, CuO, and ZnO-CuO
exhibited notable increases in the levels of chlorophyll a and b, in comparison to plants that
did not receive any treatment. In relation to the impact of treatments on plants affected
by F. oxysporum, it was observed that the application of ZnO-CuO nanoparticles (NPs)
yielded the most favorable results. This treatment exhibited a substantial and statistically
significant increase in the levels of chlorophyll a (131.46%) and chlorophyll b (131.37%)
when compared to the effects of ZnO NPs (86.70% and 86.74%) and CuO NPs (61.98% and
61.71%), respectively. The findings depicted in Figure 2A–C indicate a notable increase
in carotenoid levels in plants that were infected. In the case of Fusarium-infected plants,
the application of zinc oxide (ZnO), copper oxide (CuO), and a combination of ZnO and
CuO nanoparticles (NPs) resulted in an observed rise in carotenoid levels as compared to
non-treated plants infected with F. oxysporum, as depicted in Figure 2A–C.
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Also, the achieved results showed that in both healthy and F. oxysporum-infected
plants, contents of carotenoids were increased in response to the treatment with ZnO-CuO
NPs, ZnO NPs and CuO NPs. Increased chlorophyll contents in infected plants treated
with ZnO NPs, CuO NPs and ZnO-CuO NPs could have resulted from supplying the plant
with zinc and copper, where ZnO NPs play an important role in cell division [39,40], and
CuO NPs in the formation of chlorophyll [41], as scientific reports have proven that up
to 70% of the copper found in plants is found in chlorophyll, which is largely associated
with chloroplasts [42,43]. It is involved in lignin formation, and protein and carbohydrate
synthesis, and may be necessary for symbiotic nitrogen fixation [44]. Copper is part of
the plastocyanin, which forms a link in the electron transport chain and is involved in
photosynthesis [45].

3.3. Osmolytes

The data depicted in Figure 4A–C demonstrate a considerable decrease in the total
soluble protein and carbohydrate content of faba bean as a result of F. oxysporum infection.
These findings are corroborated by numerous prior investigations [46]. In contrast, a study
revealed that the use of zinc oxide nanoparticles (ZnO NPs), copper oxide nanoparticles
(CuO NPs), and a combination of ZnO-CuO NPs on both healthy and diseased plants
resulted in a noteworthy augmentation in total soluble protein and carbohydrate levels,
as compared to plants that were not treated. Regarding the impact of ZnO nanoparticles
(NPs), CuO nanoparticles (NPs), and ZnO-CuO nanoparticles (NPs) on plants infected with
F. oxysporum, it was observed that ZnO NPs exhibited a significant increase in the overall
soluble protein content (55.90%). This was followed by CuO NPs (24.70%) and ZnO-CuO
NPs (18.34%), in comparison to the infected control group that remained untreated. In
relation to the impact of ZnO nanoparticles (NPs), CuO nanoparticles (NPs), and ZnO-CuO
nanoparticles (NPs) on plants exposed to F. oxysporum, it was observed that the bimetallic
ZnO-CuO NPs exhibited a significant rise in total soluble carbohydrates (99.35%). This was
followed by ZnO NPs (65.71%) and CuO NPs (30.50%), when compared to the infected
control group that was not treated. These findings are consistent with the findings reported
in reference [47]. According to a recent study [48], zinc has been identified as a constituent
of glyco-dehydrogenases, which play a crucial role in protein synthesis, as well as glycine
dipeptidases, which are essential for the process of glycolysis. Copper assumes a crucial
function in the process of chlorophyll creation and metabolism within plant cells, so it
serves as a significant contributor in promoting the synthesis of proteins and carbohydrates.

The quantification of proline levels in plant tissues serves as an indicator of the host
plants’ response to infection and its possible resistance to pathogens. The findings of the
current study (Figure 4A–C) demonstrated notable elevations in the levels of free proline
in plants infected with Fusarium. The utilization of nanoparticles (NPs) derived from
ZnO, CuO, and ZnO-CuO has demonstrated notable enhancements in the levels of free
proline in both uninfected and diseased plants. Regarding the impact of nanoparticles
(NPs) composed of ZnO, CuO, and ZnO-CuO on plants exposed to F. oxysporum, it was
shown that bimetallic ZnO-CuO NPs exhibited a noteworthy elevation in proline levels
(57.59%) compared to CuO NPs (25.31%) and ZnO NPs (12.65%). The present findings
indicate a clear correlation between the reduction in primary metabolite levels, specifically
soluble carbohydrates and soluble proteins, and the severe depletion of chlorophylls in
response to Fusarium infection. Nevertheless, the proline level exhibited an increase as a
result of its involvement in osmoregulation and the scavenging of reactive oxygen species
(ROS) [49].
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3.4. Oxidative Stress

The data shown in Figure 5A–C demonstrate that the presence of F. oxysporum resulted
in a substantial and statistically significant elevation in the total phenolic content of the
infected plants. A noteworthy observation was made regarding the treatment of plants
with nanoparticles (NPs) of zinc oxide (ZnO), copper oxide (CuO), and a combination of
ZnO and CuO (ZnO-CuO). This treatment resulted in a substantial increase in the overall
phenolic content of both healthy plants and those infected with F. oxysporum. In relation
to the impact of ZnO, CuO, and ZnO-CuO nanoparticles (NPs) on plants exposed to
F. oxysporum, it was shown that the bimetallic ZnO-CuO NPs exhibited a more pronounced
elevation in total phenolic content compared to both ZnO NPs and CuO NPs individually.
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levels of F. oxysporum wilt disease of faba bean plant. (Data represent mean ± SD, n = 3, letters “a–h”
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The infection caused by F. oxysporum resulted in the buildup of MDA (137.94 nmol/g
f.wt) and H2O2 (68.12) in comparison to the untreated plants, as shown in Figure 2B. The
aforementioned results are corroborated by a multitude of prior research studies [50]. The
concentration of malondialdehyde (MDA) was seen to decrease upon exposure to bimetallic
ZnO-CuO nanoparticles, as well as individual CuO nanoparticles and ZnO nanoparticles.
The respective concentrations of MDA were measured as 107.38, 112.59, and 128.84 n mol/g
f.wt. The concentration of H2O2 exhibited a decrease of 42.81%, 45.19%, and 53.79% when
compared to the untreated infected plant, as depicted in Figure 5C.

The utilization of bimetallic ZnO-CuO nanoparticles resulted in a reduction in the
generation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) by enhancing the
presence of antioxidant chemicals that effectively scavenge reactive oxygen species (ROS)
and safeguard cellular membranes. Avoidance and reduction of oxidative stress, as well as
the capture of free radicals, are considered significant indicators of resistance to stress [51].
The findings of this study are consistent with prior research that has shown a reduction in
the concentrations of MDA and H2O2 following the administration of CuO nanoparticles
and bimetallic ZnO-CuO nanoparticles [52].
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3.5. Antioxidant Enzyme Activity

The activity of peroxidase (POD) and polyphenol oxidase (PPO) was increased in
infected plants that recorded as 1.801 and 0.834, respectively, compared to untreated control
plants (1.179 and 0.545) (Figure 6A,B). Moreover, spraying with bimetallic ZnO-CuO NPs,
CuO NPs and ZnO NPs increased the activity of POD by 2.841, 2.261, and 2.026, respectively,
and PPO by 1.315, 1.047, and 0.938, respectively, over infected plants (Figure 6A,B). Under
non-infected conditions, the foliar administration of nanoparticles (NPs) containing zinc
oxide (ZnO), copper oxide (CuO), and a combination of ZnO and CuO resulted in enhanced
activities of polyphenol oxidase (PPO) and peroxidase (POD) in the treated plants, when
compared to the control group. Enhancing the activity of antioxidant enzymes is a crucial
factor in bolstering plant physiological immunity and safeguarding cellular integrity against
oxidative damage caused by infections [53].
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3.6. Yield Characters

Results of the present study (Table 2) revealed that F. oxysporum caused highly signif-
icant decrease in the number of pods/plant (17.91%) and weight of pods (24.95%). The
results of this study agree with a recent work [54], where they reported that infection with
Fusarium leads to a severe decrease in yield. On the other hand, application of ZnO NPs,
CuO NPs and ZnO-CuO NPs resulted in a highly significant increase in yield characters
in both healthy and infected plants. However, treatment with bimetallic ZnO-CuO NPs
caused a highly significant increase in the amount of pods/plant (966.51%) and weight
of pods g/plant (486.08%). Spraying of zinc on bean plants led to increases in all yield
components [55].
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Table 2. Effect of NPs of ZnO, CuO, and ZnO-CuO on yield characters of faba bean plant.

Treatments Number of Pods
(g/Plant)

Weight of Pods
(g/Plant)

T1 24 ± 1.6 e 9.35 ±0.17 f

T2 4.3 ± 0 f 2.3 ± 0 g

T3 36.26 ± 3.33 c 17.51 0.34 c

T4 29.86 ± 0.92 d 23.23 ± 0.70 d

T5 35.2 ± 1.6 c 14.14 ± 0.34 d

T6 27.73 ± 0.92 d 10.74 ±0.26 e

T7 60.8 ± 1.6 a 31.62 ± 0.52 a

T8 45.86 ± 2.44 b 13.48 ± 0.42 b

LSD at 5% 3.14 0.69
(Data represent mean ± SD, n = 3, letters “a–g” refer to significance in statically analysis).

4. Conclusions

The study provides promising results on the potential use of myco-synthetic bimetallic
ZnO-CuO NPs as an alternative agent to control the spread of Fusarium wilt disease and
improving the growth and yield parameters (photosynthetic pigments, proline, phenolics,
antioxidant enzymes, MDA, H2O2, and number of pods and weight of pods of Vicia faba
plants. The results showed that both ZnO NPs and CuO NPs alone efficiently reduced the
severity of the fusarium wilt disease, with average DIs (50% and 37.5%) and protections
(42.8% and 57.1%), respectively. Healthy and infected plants treated with NPs of ZnO,
CuO, and ZnO-CuO presented significant rises in the plant height, root length, number
of leaves and number of nodules, compared with non-treated plants ones. Concerning
the effect NPs of ZnO, CuO, and ZnO-CuO on the challenged plants with F. oxysporum, it
was found that ZnO-CuO NPs were the best treatment that showed the greatest significant
increase in the contents of chlorophyll a by 131.46% and chlorophyll b by 131.37%, in
comparison with ZnO NPs (86.70% and 86.74%), and CuO NPs (61.98% and 61.71%),
respectively. Concerning the effect NPs of ZnO, CuO, and ZnO-CuO on the challenged
plants with F. oxysporum, it was found that ZnO NPs show a considerable increase in total
soluble protein (55.90%), followed by CuO NPs (24.70%) and ZnO-CuO NPs (18.34%),
when being compared with untreated infected control. The content of MDA was reduced
in response to bimetallic ZnO-CuO NPs, CuO NPs and ZnO NPs to 107.38, 112.59, and
128.84, n mol/g f.wt., respectively. While the content of H2O2 declined by 42.81, 45.19 and
53.79, respectively, compared to the untreated infected plant. Moreover, spraying with
NPs of ZnO, CuO, and ZnO-CuO increased the activity of POD by 2.841, 2.261, and 2.026,
respectively, and PPO by 1.315, 1.047, and 0.938, respectively, over infected plants. The
outcomes showed that actino-synthesized ZnO-CuO NPs might increase plant biochemical
resistance while also inhibiting F. oxysporum wilt impacts on faba bean plants. However, this
study needs to be undertaken to fully understand the environmental and health impacts of
the use of nanoparticles in agriculture.
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