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Abstract: Tracking winter wheat–summer maize distribution is crucial for the management of
agricultural water resources in the water-scarce North China Plain (NCP). However, the spatio-
temporal change in planting structure that has occurred during the last 20 years remains unclear.
Therefore, winter wheat–summer maize distribution between 2001 and 2020 was determined via the
maximum likelihood algorithm of supervised classification and a threshold method using the MODIS
NDVI product MOD13Q1 and Landsat 5/7 images. The results reveal that dividing distributions into
six sample categories—winter wheat–summer maize, winter wheat–rice, spring maize, cotton, other
double-cropping systems, and fruit trees—proved to be an efficient way to discriminate winter wheat–
summer maize distribution, with R2 and RMSE values ranging from 0.738 to 0.901 and from 179.05 to
215.72 km2, respectively. From 2001 to 2020, the planting area continually expanded, experiencing a
significant growth of 3.32× 104 km2 (23.44%). Specifically, the planting area decreased by 2982.13 km2

(10.06%) in the northern part of the NCP, including the Beijing–Tianjin–Hebei region, while it increased
by 3.62× 104 km2 (32.30%) in the middle and southern parts, encompassing Shandong, Henan, Anhui,
and Jiangsu provinces. The stable growing region was primarily concentrated in the middle of the
Hebei Plain, along the Yellow River irrigation areas and humid zones of the southwest, accounting for
75–85% of the total NCP planting area. Our results can provide references for adjusting agricultural
planting structures, formulating food security strategies, and optimizing the management of water
resources in the NCP.

Keywords: MODIS data; Landsat images; winter wheat–summer maize; supervised classification;
North China Plain

1. Introduction

The North China Plain (NCP) is a major food-producing area in China [1–4], contribut-
ing to the production of about 75% and 35% of China’s wheat and maize, respectively [5–7].
The winter wheat and summer maize rotation system is the predominant farming pattern
in this area [8]. This dominant cultivation system requires 700–1000 mm yr−1 water, greatly
exceeding the annual average precipitation of 500–600 mm [9], 70% to 80% of which falls
during the summer maize growing season, from June to September [10,11]. Precipitation
throughout the growing phase of winter wheat is significantly lower than the actual wa-
ter demand [12], and approximately 70% of the water demand depends on groundwater
irrigation [13]. However, continuous groundwater pumping for agricultural production
has resulted in a significant reduction in the groundwater table, and this is considered to
be the main cause of groundwater over-exploitation in the North China Plain during the
course of the last four decades [6,14]. Accurate mapping of winter wheat–summer maize
cultivation area in the NCP since 2001 proved fundamental for assessing changes in crop
water consumption, thus providing the scientific basis for formulating policies such as
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the optimal management of water resources, the sustainable utilization of groundwater
resources, and national food security [5,6].

Data on the planting area of winter wheat and summer maize were mainly obtained
through two methods: investigation statistics and remote sensing monitoring [15,16].
However, the former method has major problems, such as large errors, time and labor
consumption, and the absence of spatial distribution information [17]. Remote sensing
has numerous benefits, including the provision of efficient, objective, and consistent data.
It is also cheap or even free, which makes it an effective tool for identifying crops at
different spatio-temporal scales [5,6,18,19]. However, the extensive and prolonged remote
sensing mapping of winter wheat and summer maize in the NCP is still difficult due to the
largely dispersed patterns of smallholder farming. The temporal resolution of the Landsat
TM/ETM+ satellite is 16 days, and its spatial resolution is 30 m. Despite its high spatial
resolution, image quality is often compromised by frequent cloud and aerosol pollution,
resulting in fewer valid images [20,21]. Due to its constraints of low temporal resolution
and inadequate data quality, Landsat is suitable for field-scale applications, and it is limited
to the application of tracking prolonged continuous changes in the NCP crop distribution.
MODIS data offer several advantages, including a short revisit period, wide coverage,
and the ability to determine phenological characteristics [22–24]. As a result, MODIS has
become a major source of remote sensing data for monitoring planting areas in large regions
worldwide [25,26].

The normalized difference vegetation index (NDVI) is an extensively utilized index
to acquire crop information and is widely used in crop classification and growth eval-
uation [27,28]. MODIS NDVI products, such as 8-day 0.0025◦ MOD09Q1 and 16-day
0.0025◦ MOD13Q1, are commonly utilized. Despite the former having a higher tempo-
ral resolution, the latter notably enhances classification accuracy due to its superior data
quality [5]. Regarding classification methods, supervised classification using MODIS data
is the most commonly employed and effective approach for crop classification [28–30].
The categorization results are influenced by two primary factors: the sample category and
the remote-sensing product. Previous studies have shown apparent differences in sample
categories, which may result in significant uncertainties [5]. In the NCP, sample categories
for classification varied from as few as four (including winter wheat–summer maize, winter
wheat–cotton, spring maize, and cotton) [31] to as many as seven (encompassing win-
ter wheat–summer maize, spring maize, cotton, forest, fruit, vegetables, and rice) [32].
Other categories were adopted to capture the complexity of crop and land cover types in
the region [33,34]. Combining MODIS and Landsat data can enhance crop identification
accuracy [6,27,35]. VI (vegetation index) products with a 250 m spatial resolution can
more accurately identify winter wheat–summer maize than those with a 500 m spatial
resolution [5].

As a typical double-cropping system in northern Jiangsu, the phenological period
of winter wheat–rice is close to that of winter wheat–summer maize, but the former was
generally not determined in previous studies, which may affect the classification accuracy
of winter wheat–summer maize to some extent. Simultaneously, owing to the bimodal
signal of NDVI curves created by the mixed planting system in the NCP, the classification
of winter wheat–summer maize is substantially disrupted. However, previous studies
typically did not differentiate between these two categories. In addition, earlier studies
primarily focused on monitoring winter wheat and summer maize distribution within a
single year [3,31,36–38] or analyzing variations in specific regions of the NCP [2,6,33]. The
stability of the research methods or models used in these studies remains uncertain, and
they often fail to provide dynamic spatio-temporal information on winter wheat–summer
maize. In light of this, this study aims to achieve the following objectives: (1) develop
an effective method for mapping the distribution of winter wheat–summer maize in the
NCP using the maximum likelihood algorithm; (2) evaluate the spatio-temporal change in
winter wheat–summer maize distribution for the years 2001, 2010, and 2020.
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2. Materials and Methods
2.1. Study Area

The North China Plain (NCP), situated between latitudes 32◦08′ N and 40◦24′ N
and longitudes 112◦50′ E and 122◦40′ E [5], is geographically positioned in the eastern
region of China (Figure 1a). It has an approximate land area of 4.0 × 105 km2, includ-
ing significant portions or all of Beijing, Tianjin, Henan, Hebei, Shandong, Anhui, and
Jiangsu provinces [39]. It features a characteristic temperate monsoon climate, character-
ized by an average annual temperature of 14–15 ◦C and an annual precipitation range of
500–1000 mm [40]. As per the drought index [41], the NCP can be categorized into three
distinct climatic regions: semi-arid, dry sub-humid, and humid, which are suitable for the
growth of wheat, rice, maize, cotton, peanut, soybean, and others. The rotation of winter
wheat and summer maize is the most common agricultural strategy in the area. Winter
wheat is planted in October and harvested in June, while summer maize is planted in
mid-to-late June and harvested in September. Table 1 displays the specifics of the main
crop calendar.
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images of Julu County and (d) Huaiyin District.

Table 1. Phenological calendar for the main crops in the research area.

Month Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Winter
wheat green up heading harvest

Summer
maize sowing heading harvest

Rice sowing heading harvest

Spring
maize sowing heading harvest

Cotton sowing heading harvest

Soybean sowing flowering harvest

Fruit
trees budding leaf

falling
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2.2. Dataset

Table 2 shows the sources of the data used in this study. These include MODIS NDVI
files (570 images), GlobeLand30 land cover maps, Landsat images, field survey sites, and
statistical data. The MOD13Q1 datasets (Terra Vegetation Indices 16-Day L3 Global 250 m
SIN Grid V006) corresponding to the strip numbers H26V06, H26V07, H27V06, and H27V07
for 2001, 2010, and 2020 were acquired from NASA’s official website [42].

Table 2. A summary of this study’s data.

Data Name Temporal
Resolution

Spatial
Resolution Time Acquisition Source

MOD13Q1 16-day 250 m 2001, 2010, 2020 https://www.earthdata.nasa.gov/
accessed on 8 June 2021

Landsat 5/7 images 16-day 30 m 2001, 2010, 2020 https://eartheplorer.usgs.gov/ accessed
on 14 September 2021

GlobeLand30 annual 30 m 2000, 2010, 2020 www.globallandcover.com accessed on 5
May 2021

Statistic data annual county 2001, 2010, 2020 http://www.stats.gov.cn/sj/ accessed on
12 April 2022

Field survey sites one time in situ 10 September 2020–8
October 2020 Field survey

The Landsat 5TM Collection 2 (C2) Level 1 (L1) and Landsat 7ETM+ Collection 2 (C2)
Level 1 (L1) images from 2001, 2010, and 2020 were collected, as shown in Table 3. The
path number for Julu County is 123 or 124, with a row number of 34. For Huaiyin District,
the path number is 120, and the row number is 37. Landsat NDVI data were computed
using surface reflectance bands 3 (red) and 4 (near-infrared) according to the following
formula [43]:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρNIR and ρRED represent the surface reflection values of the near-infrared band
(841–876 nm) and the red band (620–670 nm), respectively.

Table 3. General information about Landsat 5/7 images.

Region Sensor Date Cloud Cover/%

Region of 123-034 Landsat-5TM 16 April 2001 0
Landsat-5TM 2 April 2010 0

Region of 124-034

Landsat-5TM 23 September 2001 6
Landsat-5TM 2 October 2010 12

Landsat-7ETM+ 28 April 2020 0
Landsat-7ETM+ 19 September 2020 0

Region of 120-037

Landsat-5TM 4 April 2001 1
Landsat-5TM 27 September 2001 1
Landsat-5TM 29 April 2010 2
Landsat-5TM 6 October 2010 11

Landsat-7ETM+ 23 April 2020 1
Landsat-7ETM+ 7 September 2020 0

The GlobeLand30 product was developed by the National Geographic Information
Center based on the “Pixel-Object-Knowledge (POK)” approach. More than 130 nations’
scientists and users utilize it for modeling surface processes, monitoring geographic condi-
tions, managing urban and rural areas, and analyzing environmental change [44]. Between
10 September and 8 October 2020, field surveys were conducted in the NCP using hand-held
GPS devices, and survey routes were strategically planned to encompass the predominant

https://www.earthdata.nasa.gov/
https://eartheplorer.usgs.gov/
www.globallandcover.com
http://www.stats.gov.cn/sj/
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cropping systems within this region (Figure 1b). Continuous planting areas obviously
larger than 250 m × 250 m were chosen as the sample sites. The sum of 1184 field survey
sites was gathered, which included 492 winter wheat–summer maize sites, 106 cotton sites,
121 spring maize sites, 253 winter wheat–rice sites, 118 other double-cropping sites (e.g.,
winter wheat–cotton, winter wheat–soybean, and winter wheat–peanut), and 94 fruit tree
sites (e.g., peach and pear). Statistical datasets pertaining to the cultivation area of winter
wheat and summer maize in 2001, 2010, and 2020 were sourced from both national and
provincial/municipal statistical yearbooks.

2.3. Methods

A proposed methodology for accurately identifying major crops in the NCP is pre-
sented, including the following procedures. (1) The MOD13Q1 datasets were preprocessed,
followed by smoothing the NDVI curves using Savitzky–Golay filtering to generate the
fundamental map for categorization. (2) Landsat TM/ETM+ images were used to identify
the distribution of winter wheat–summer maize and winter wheat–rice in Julu County
and Huaiyin District through the application of the threshold method. (3) The Landsat
classification map was integrated to enrich and eliminate the sample sites, resulting in
the acquisition of the final classification training and validation sample sites. (4) Three
schemes were developed, each consisting of distinct categories. The maximum likelihood
classification approach was adopted to identify the distributions of winter wheat and
summer maize for the years 2001, 2010, and 2020. (5) The evaluation of the accuracy of the
findings was conducted at three different levels: pixel, county, and regional.

Data Processing

The composite MOD13Q1 images, spanning a period of 16 days, were mosaicked
and reprojected to the Albers projection using the MODIS Reprojection Tool (MRT) and
converted, clipped, and synthesized using ENVI 5.3 software. Images of GlobeLand30
were mosaicked, resampled to 250 m, reprojected to the Albers projection, and clipped,
then used as the cultivated land mask to extract the crop classification. The NDVI time
series curves were reconstructed using Savitzky–Golay filtering with filter parameters set
to N Left = 5, N Right = 5, Order = 0, and Degree = 2 to remove noise from the NDVI data.

The Landsat 7 ETM+ sensor’s scan-line corrector (SLC) malfunctioned in 2003, leaving
around 22% of the pixels in each picture unscanned [45]. Therefore, strip repairs were
first performed on the four Landsat 7 images using the ENVI 5.3 Landsat gap-fill tool.
Processing of Landsat images included radiation calibration, atmospheric correction, cloud
removal processing, NDVI calculation, and NDVI time series synthesis.

2.4. Supervised Classification Based on MODIS Data
2.4.1. The Savitzky–Golay Filtering Method

In theory, the curve of NDVI is expected to exhibit continuity and smoothness, mostly
attributed to the gradual changes in the canopy cover within a certain timeframe [46].
However, due to cloud interruptions, data transmission errors, bio-directional effects,
or the presence of ice and snow cover, abrupt fluctuations invariably occur in certain
data points [47]. Maximum composite and cloud detection methods are commonly used
in the processing of NDVI temporal datasets, but the residual noise of the datasets can
hinder subsequent analyses and lead to erroneous results [48]. The crucial foundation for
extracting the phenological features of crops from a multi-temporal NDVI dataset lies in the
smoothing and reconstruction of the data sequence. This process aims to minimize noise
and reduce data gaps, thereby enhancing the dataset’s comparability both inter-annually
and regionally [2]. At present, the commonly used noise removal filtering methods include
the Savitzky–Golay (S-G) filtering method, double logic blending function filtering (D-L),
asymmetric Gaussian filtering (A-G), and Fourier harmonics (HANTS) [49]. Liu et al. [50]
conducted a comparative analysis of these four filtering methods using Environmental
Satellite NDVI data and concluded that the S-G algorithm was superior to the other three
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algorithms and could more clearly reconstruct the detailed changes in the curve and better
reflect real-life conditions.

In this paper, the S-G filtering method was used to reconstruct the MODIS NDVI time
series image. The S-G method, proposed by Savitzky and Golay, is a filtering method based
on local polynomial least square fitting in the time domain. By selecting a certain number
of adjacent values near a certain point, the least square method is used to fit an n-order
polynomial, which is then applied to determine the smoothing value of the point [51]. The
formula may be expressed as follows:

I′i =
∑n

j=−n CjNi+j

N
(2)

where I represents the original NDVI value; I′i represents the fitting NDVI value; Cj
represents the filtering coefficient of the jth NDVI value; N = 2n + 1 represents the size of
the sliding window, which is also the number of convolutions; i refers to the ith data; and n
represents half the size of the smooth window.

2.4.2. Classification Method and Sample Selection

Among traditional supervised classification methods, the maximum likelihood classi-
fication algorithm is highly prevalent and is commonly regarded by many authors as the
standard algorithm [5,29,52]. The study conducted by Arvor et al. [53] revealed that the use
of the maximum likelihood classification approach on MOD13Q1 datasets yielded superior
crop classification outcomes when compared to the spectral angle mapper classifier and
decision tree. The core idea of this approach entails the computation of the likelihood that
a pixel belongs to each pre-defined category, followed by the assignment of the pixel to the
category with the greatest probability [54]. The field investigation sites were enhanced to
acquire a sufficient number of valid sample points, and invalid points were systematically
excluded according to certain rules. It should be noted that, from 2001 to 2020, crop types
in the NCP remained consistent. However, it was challenging to ensure that the crop type
at each field survey site in 2001 and 2010 exactly matched that in 2020. This is attributed to
annual variations in planting systems influenced by factors such as market prices, irriga-
tion sources, labor costs, and more [5]. We enhanced the classification sample dataset by
removing invalid or erroneous sample points. This process employed three approaches:

(1) Large fields that surrounded each field survey site in Google Earth were identified
as newly added samples. These fields had sizes that were more than 250 m × 250 m,
and the picture patterns at this site, such as color and texture, were the same as those
at the other site [5].

(2) In the classification results achieved through the Landsat threshold method, winter
wheat–summer maize and winter wheat–rice growing areas larger than 250 m × 250 m
were selected as new samples for MODIS supervised classification. The threshold
method is actually a decision tree method that completes the classification by setting
the NDVI threshold in the critical period of different crop phenology.

(3) The NDVI time series curves of all samples from 2001 to 2020 were extracted, and
unsuitable sample points were screened. Since different planting types have unique
NDVI timing curves, the screening rules include two sections. (1) The NDVI curve
features of each sample site should correspond to their respective planting types and
have a unique phenological calendar (Table 1). These features primarily include the
timing of inflection points and peak values, which signify specific phenological phases
and growth states. (2) Every year, each sample site’s curve should have a consistent
form. As an example, if the sample site showed a bimodal signal in 2001 and 2010
but a single-modal signal in 2020, indicating a shift in planting structure, the sample
was excluded [5]. Finally, a total of 1548 pixels were selected as the classification
samples, including 32 winter wheat–summer maize sample points (Figure 1c) and
48 winter wheat–rice sample points (Figure 1d), which were added based on the
Landsat method.
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2.4.3. Scheme Design

There are only two main crop rotation patterns in the NCP: winter wheat–summer
maize and winter wheat–rice. However, land fragmentation and farmers’ autonomous
selection of crop types—such as cotton, peanut, soybean, etc.—combined with winter
wheat–summer maize MODIS grid units can also result in NDVI curves with bimodal
signals. In order to distinguish them from these two pure double-cropping systems,
“other double-cropping systems” were developed. Given that spring maize and cotton are
representative examples of single-cropping systems, their NDVI curves exhibit distinct
variations compared to double-cropping systems. Consequently, we classified them as
two distinct categories. Since fruit tree systems such as pear and peach represent typical
patterns in the NCP [55] and exhibit a similar NDVI curve, they are considered a single
category. Therefore, the classified samples were categorized into six distinct groups: winter
wheat–summer maize, winter wheat–rice, spring maize, cotton, other double-cropping
systems, and fruit trees. Within each category, we randomly chose 70% of the samples for
training the classifier, while the remaining samples were adopted to assess the findings [56].
The information is shown in Table 4.

Table 4. The number of training samples and validation samples.

Category Training Samples
(70%)

Validation Samples
(30%) Sum

Winter wheat–summer maize 400 172 572
Winter wheat–rice 251 107 358
Spring maize 116 49 165
Cotton 111 48 159
Other double-cropping systems 104 44 148
Fruit trees 102 44 146

Three different categorization methods were devised in accordance with the categories
of the samples (Table 5). In Scheme 1, all six classified samples were comprehensively taken
into account. In contrast, Scheme 2 omitted the consideration of the mixed cropping system,
a factor typically overlooked in previous studies [31,38]. Similarly, Scheme 3 excluded the
winter wheat–rice planting system, which has not been addressed in previous research.
Consequently, the winter wheat–rice and mixed cropping systems shown in Scheme 2 and
Scheme 3 may be erroneously categorized [57].

Table 5. The categorization systems used in the study.

Scheme Sample Categories

Scheme 1 (S1) winter wheat–summer maize; winter wheat–rice;
spring maize; cotton; other double-cropping systems; fruit trees

Scheme 2 (S2) 5 categories (without the “Other double-cropping systems”)
Scheme 3 (S3) 5 categories (without the “Winter wheat–rice”)

2.4.4. Landsat Planting Area Extraction

The spatial resolution of Landsat is 30 m × 30 m, which is much smaller than the area
of the study plot. Thus, the distribution of winter wheat–summer maize and winter wheat–
rice can be accurately depicted within each image range. The actual area was calculated
and summarized using the area statistics tool of ArcMap 10.2, and the basic principle is the
number of pixels multiplied by the area of a single pixel. In April, on the collection date of
each image, the NDVI value of winter wheat was higher than that of other crops due to the
vigorous growth of winter wheat, while other one-season crops, like spring maize, cotton,
and fruit trees, had not yet been sown or had not sprouted [16]. The growing period of rice
is longer than that of summer maize, and the NDVI value of rice is significantly higher
than that of summer maize around September, making the threshold method a simple and
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effective method for the small-scale interpretation of winter wheat fields [5]. This can be
realized by the decision tree classification tool in ENVI 5.3. The decision tree recognition
model is displayed in Figure 2. The main rules of Landsat threshold classification are as
follows. (1) Winter wheat is distinguished on the basis that any NDVI value near the first
wave peak of winter wheat–summer maize and winter wheat–rice planting systems is
significantly larger than that of other planting structures. The criterion is ∀NDVIt1 ≥0.6 (∀
is a mathematical symbol meaning arbitrary), where t1 ∈ [2 April, 30 April]. (2) Based on
the first criterion, the effective differentiation of the winter wheat–rice and winter wheat–
summer maize cropping systems may be determined by assessing if any NDVI value of the
former is considerably greater than that of the latter between 7 September and 6 October.
The criterion of winter wheat–summer maize is ∀NDVIt2 ∈ [0.32, 0.47], and for winter
wheat–rice, it is ∀NDVIt2 ∈ [0.55, 0.67], where t2 ∈ [7 September, 6 October].
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2.4.5. Accuracy Evaluation

The evaluation of the spatial distribution of winter wheat and summer maize between
2001 and 2020 was conducted at multiple scales, including pixel, county, and regional
levels. The confusion matrix approach was employed to illustrate the correlation between
the classification outcomes and sampling points [58,59]. Among these, the concept of
“overall accuracy” is determined by the division of the aggregate count of pixels correctly
categorized by the entire number of pixels included in the matrix [60]. On the other
hand, “user’s accuracy” denotes the likelihood that pixels identified on the map accurately
reflect the corresponding category on the actual ground. The “producer’s accuracy” shows
the chance that a reference pixel is accurately classified [61]. The kappa coefficient is a
commonly used metric for assessing accuracy, since it quantifies the degree of consistency
remaining after removing unintentional consistency [60,61]. A kappa value over 0.8 signifies
a substantial degree of concordance or accuracy between the classification map and the
reference data. A coefficient ranging from 0.4 to 0.8 shows a moderate level of agreement,
while a coefficient below 0.4 suggests a low level of agreement [54]. At the county scale,
a direct comparison was made between the extracted data and the statistical data. At the
regional level, Landsat-extracted areas in Julu County and Huaiyin District were validated
against statistical areas and employed as a reference to compare with MODIS-extracted
areas. The evaluation was performed using R squared (R2, the linear regression model’s
determination coefficient) and p-values (to evaluate the significance of the regression
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model), and root mean square error (RMSE) was adopted for the evaluation. RMSE was
computed using the following formula [5,57]:

RMSE =

√
1
n∑n

i (Si −Oi)
2 (3)

where Si represents the ith extracted area of the planting system, Oi represents the ith
statistical area of the planting system, and n indicates the total number of matched statistical
and extracted data points.

3. Results
3.1. NDVI Curve Characteristics of Typical Crops

Although the MODIS NDVI product MOD3Q1 is composited through the maximum
synthesis method, there are still residual errors. The S-G filtering method has been proven
effective in improving data quality [46,50]. The pre-processed 12 Landsat images could
meet the research requirements. The NDVI time series associated with the field survey
points in 2020 were extracted, and the average NDVI values of the training sample points in
each category were utilized as their typical NDVI. Taking winter wheat–summer maize and
spring maize as representative single- and double-cropping systems, Figure 3 shows the
NDVI curves before and after filtering, illustrating the effective fitting of the original NDVI
curves at their inflection points. The curves exhibit a generally smooth pattern, aligning
with the typical growth pattern of vegetation.
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Figure 3. NDVI curves of winter wheat–summer maize and spring maize before and after filtering.

The NDVI timing curves of the main planting systems after S-G filtering were pre-
sented in Figure 4, which showed that different cropping systems exhibited distinctive
curve characteristics. The critical growth phases listed in Table 1 align with the inflection
points seen on the NDVI curves of different crops. Winter wheat–summer maize, win-
ter wheat–rice, and “other double cropping systems” exhibit two apparent NDVI peaks.
Notably, winter wheat–summer maize and winter wheat–rice share a similar timing for
these two NDVI peaks, occurring in late April and early August, respectively. Regarding
the senescence date of winter wheat–rice, this occurs in early November, roughly thirty
days later than that of winter wheat–summer maize. While the NDVI curve of the “other
double-cropping” system exhibits two peaks, the initial peak is notably lower in amplitude
compared to that of winter wheat–summer maize and winter wheat–rice distribution,
aligning with the findings of Li and Lei [5]. This is due to the bimodal structure of the
“other double-cropping systems”, which is caused by the averaging of multiple mixed
pixels. The specific reasons for this can be found in the results of Li and Lei [5]. For one
cropping system, the initiation period for spring maize spans from 23 April to 8 May, while
its senescence phase occurs between 30 September and 16 October. In comparison, cotton
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exhibits an earlier planting schedule by approximately one week and a delayed harvesting
period by roughly three weeks when compared to spring maize. Fruit trees commence bud
bursts in mid-to-late March, with leaf fall occurring in November. Their growth period is
notably longer than that of spring maize and cotton.

Agronomy 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

two NDVI peaks, occurring in late April and early August, respectively. Regarding the 
senescence date of winter wheat–rice, this occurs in early November, roughly thirty days 
later than that of winter wheat–summer maize. While the NDVI curve of the “other dou-
ble-cropping” system exhibits two peaks, the initial peak is notably lower in amplitude 
compared to that of winter wheat–summer maize and winter wheat–rice distribution, 
aligning with the findings of Li and Lei [5]. This is due to the bimodal structure of the 
“other double-cropping systems”, which is caused by the averaging of multiple mixed 
pixels. The specific reasons for this can be found in the results of Li and Lei [5]. For one 
cropping system, the initiation period for spring maize spans from 23 April to 8 May, 
while its senescence phase occurs between 30 September and 16 October. In comparison, 
cotton exhibits an earlier planting schedule by approximately one week and a delayed 
harvesting period by roughly three weeks when compared to spring maize. Fruit trees 
commence bud bursts in mid-to-late March, with leaf fall occurring in November. Their 
growth period is notably longer than that of spring maize and cotton. 

 
Figure 4. NDVI time series curves of the major crops. 

3.2. Accuracy Evaluation of Classification Results 
At the pixel scale, the confusion matrix for winter wheat–summer maize between 

2001 and 2020 was constructed by comparing the extracted results with validation sam-
ples (Table 6). Generally speaking, these four classification accuracy evaluation indicators 
for 2020 were better than those of 2001 and 2010. Although Scheme 3 had marginally 
greater overall accuracy and kappa coefficient compared to Scheme 2 and Scheme 2 
showed a modest superiority over Scheme 1, all three schemes produced average overall 
accuracy values and kappa coefficients exceeding 87% and 0.85, respectively, for the years 
2001, 2010, and 2020. The producer’s accuracy of winter wheat–summer maize in all 
schemes was above 94%, and the user’s accuracy was above 87% in all schemes. The find-
ings of the confusion matrix indicate that all three schemes exhibited satisfactory accuracy 
in their classification results. 

Table 6. The confusion matrix of winter wheat–summer maize. 

Year Scheme Overall Accuracy (%) Kappa Coefficient Producer’s Accuracy (%) User’s Accuracy (%) 

2001 
S1 87.43 83.50 98.03 86.19 
S2 88.89 84.76 94.12 89.14 
S3 89.75 87.89 96.92 87.27 

2010 S1 93.22 83.34 93.17 94.08 

0

0.2

0.4

0.6

0.8

1

1 49 97 145 193 241 289 337

N
D

V
I

Day of year（d）
winter wheat-summer maize winter wheat-rice other double cropping systems
spring maize cotton fruit trees

Figure 4. NDVI time series curves of the major crops.

3.2. Accuracy Evaluation of Classification Results

At the pixel scale, the confusion matrix for winter wheat–summer maize between
2001 and 2020 was constructed by comparing the extracted results with validation samples
(Table 6). Generally speaking, these four classification accuracy evaluation indicators for
2020 were better than those of 2001 and 2010. Although Scheme 3 had marginally greater
overall accuracy and kappa coefficient compared to Scheme 2 and Scheme 2 showed a
modest superiority over Scheme 1, all three schemes produced average overall accuracy
values and kappa coefficients exceeding 87% and 0.85, respectively, for the years 2001, 2010,
and 2020. The producer’s accuracy of winter wheat–summer maize in all schemes was
above 94%, and the user’s accuracy was above 87% in all schemes. The findings of the
confusion matrix indicate that all three schemes exhibited satisfactory accuracy in their
classification results.

Table 6. The confusion matrix of winter wheat–summer maize.

Year Scheme Overall
Accuracy (%)

Kappa
Coefficient

Producer’s
Accuracy (%)

User’s
Accuracy (%)

2001
S1 87.43 83.50 98.03 86.19
S2 88.89 84.76 94.12 89.14
S3 89.75 87.89 96.92 87.27

2010
S1 93.22 83.34 93.17 94.08
S2 93.80 85.11 95.87 93.05
S3 94.35 86.38 95.12 92.17

2020
S1 95.93 93.24 95.26 93.32
S2 96.48 93.93 97.17 92.18
S3 97.32 94.67 94.32 94.39

At the county level, R2 values for the three schemes from 2001 to 2020 exceeded 0.7
(Figures 5–7). While the R2 values for Scheme 2 (Figures 5b, 6b and 7b) were marginally
higher than those of Schemes 3 (Figures 5c, 6c and 7c) and 1 (Figures 5a, 6a and 7a), this
resulted in a significantly greater RMSE, indicating a noticeable overestimation of the



Agronomy 2023, 13, 2712 11 of 19

winter wheat–summer maize cultivation area in Scheme 2. The MODIS-extracted data
from Scheme 1 of the six sample categories yielded the best results when compared to the
statistical data, with an RMSE of 179.05 to 215.72 km2. In all years of the three schemes, the
cultivation areas extracted from MODIS datasets were greater than the statistical data, as
confirmed by previous studies [5,21,62], mainly due to various political and policy factors.
Official statistics related to cultivated land taxes and grain production quotas underestimate
the planted areas of winter wheat–summer maize [21,63,64].
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At a regional scale, the total areas extracted from Landsat images for winter wheat–
summer maize and winter wheat–rice in Julu County and Huaiyin District between 2001
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and 2020 are shown in Table 7. Except for an 89% extraction accuracy in Julu County in
2001, all accuracy values reached more than 90%, which was generally in good agreement
with the statistical results. This accurately reflects the regional planting patterns of winter
wheat–summer maize and winter wheat–rice.

Table 7. Comparison of Landsat extraction areas and statistical areas.

Region Year Statistical Area
(km2)

Extracted Area
(km2) Accuracy (%)

Julu County
2001 154.00 172.66 89.19
2010 158.85 153.57 96.68
2020 187.36 203.36 92.13

Huaiyin District
2001 252.13 233.65 92.67
2010 447.75 455.4 98.32
2020 503.85 537.27 93.78

A fitting analysis was performed between the Landsat extraction areas and MODIS
results at the township level to assess MODIS extraction accuracy on a regional scale, as
depicted in Figure 8. In general, the fitting accuracy in Huaiyin District surpassed that
in Julu County. The R2 values for both of these regions exceeded 0.8, with RMSE values
ranging between 4.21 km2 and 7.05 km2, signifying a solid overall correlation between
the Landsat and MODIS extraction results. Nevertheless, the MODIS results significantly
overestimate the planting areas for winter wheat–summer maize and winter wheat–rice.
This trend aligns with the findings from the county-level assessment.
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3.3. Temporal and Spatial Changes in Winter Wheat–Summer Maize Distribution

Regarding the overall NCP, the planting area of winter wheat–summer maize between
2001 and 2020 demonstrated a significant inter-annual fluctuation (Table 8). The com-
parative analysis shown in Figure 9 reveals that the cultivation of winter wheat–summer
maize was predominantly concentrated in the middle of the Hebei Plain, along the Yellow
River irrigation areas and humid zones of the southwest NCP, accounting for 75–85% of
the total NCP planting area. The sown area of winter wheat–summer maize exhibited a
consistent rising trend, increasing from 14.17 × 104 km2 in 2001 to 17.49 × 104 km2 in 2020
(Table 8), representing a growth of 3.32 × 104 km2 (23.43%). From 2001 to 2010, this area
increased by 1.75 × 104 km2 (12.35%), equating to an average annual increase of 1800 km2.
The cultivated area of winter wheat–summer maize expanded by 1.57 × 104 km2 (9.86%)
between 2011 and 2020, demonstrating an average annual increase of 1700 km2, a rate
lower than that observed from 2001 to 2010.
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Table 8. Changes in winter wheat–summer maize sowing area at the provincial level in the NCP.

Region

Area and Percentage of Winter Wheat–Summer Maize

Year of 2001 Year of 2010 Year of 2020

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Beijing 939.31 0.66 595.20 0.37 541.15 0.31
Tianjin 1258.06 0.89 1160.43 0.73 673.58 0.39
Hebei 27,458.82 19.38 23,347.25 14.68 25,459.33 14.56
Henan 49,717.73 35.09 52,918.62 33.27 56,689.48 32.41

Shandong 35,873.6 25.32 46,152.24 29.01 54,623.88 31.23
Jiangsu 4787.73 3.38 10,972.28 6.90 9165.81 5.24
Anhui 21,663.91 15.29 23,932.40 15.04 27,753.77 15.87

North China
Plain 141,699.16 100 159,078.42 100 174,907.00 100
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From the perspective of county-level administrative units (Figure 10), major counties
with winter wheat–summer maize cultivation areas exceeding 300 km2 in the NCP are
primarily situated in the central part of Hebei province (Shijiazhuang, Hengshui, and
Xingtai cities); the northwestern part of Shandong province (Dezhou and Liaocheng cities);
Heze in the southwestern region; the Jiaolai Plain; areas in the eastern and southern parts
of Henan; and the northern part of Anhui. Remarkably, in the southern part of Henan
and the northern part of Anhui, more than 70% of counties had planting areas exceeding
6 × 104 km2 between 2001 and 2020, forming the most significant spatial clustering of
winter wheat–summer maize in the NCP.

From 2001 to 2020, there was a fluctuating upward trend in the size of winter wheat–
summer maize planting areas in Henan’s eastern and southern regions, Shandong’s north-
ern regions, the Jiaolai Plain, the northern plain of Anhui, and the northern plain of Jiangsu
(Figure 11). In contrast, the counties within the Beijing–Tianjin–Hebei region experienced
reduced fluctuations in planting areas of winter wheat–summer maize. Specifically, a
notable decline was seen between 2001 and 2010, followed by a minor resurgence in the
cultivation of winter wheat–summer maize from 2010 to 2020. This pattern aligns with the
findings reported by Wang et al. [6].
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4. Discussion

Given the phenological similarities between the winter wheat–summer maize and
winter wheat–rice planting systems, we incorporated winter wheat–rice sample points into
the classification category to alleviate the potential interference from the winter wheat–rice
cropping system. Due to the NCP’s decentralized and autonomous farming practices,
mixed cropping patterns involving winter wheat alongside crops such as cotton, peanut,
and soybean are prevalent. Therefore, other double-cropping systems were established.
When comparing the three schemes, both Scheme 2 and Scheme 3 significantly overesti-
mated the area of winter wheat–summer maize. Notably, the overestimation in Scheme 2
exceeded that in Scheme 3, signifying that the absence of other double-cropping systems
introduced a higher degree of uncertainty. Due to the bimodal signals created by mixed
crops and the winter wheat–rice grid being misclassified into the winter wheat–summer
maize category, the distribution of winter wheat–summer maize was overestimated. The
results indicate that the extracted accuracy of winter wheat–summer maize distributions
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could be significantly improved by considering the mixed-pixel “other double-cropping
systems” and “double-cropping model” of winter wheat–rice.

The extracted winter wheat–summer maize areas were compared with those of previ-
ous studies. Li and Lei [5] estimated the sown area of winter wheat–summer maize in the
NCP between 2001 and 2018, and the extracted results in 2001 and 2010 were 9.39% and
11.82% higher than those in our study, respectively. This may be due to these two studies
using the Savitzky–Golay filtering and harmonic analysis methods to smooth and rebuild
the NDVI time series, respectively. In addition, our study enriched pure winter wheat–rice
sample points based on Landsat images from major rice-producing areas, which could
better distinguish the NDVI time series characteristics of winter wheat–summer maize and
reduce the probability of winter wheat–rice being misclassified as winter wheat–summer
maize to a certain extent. Wang et al. [6] estimated the winter wheat planting areas of the
NCP in 2001, 2006, and 2011, and the results for 2001 and 2011 were 26.39% and 24.69%
lower than those from our study for 2001 and 2010, respectively. In their research, the
second-order difference approach was used to isolate the peaks and valleys of EVI curves,
and the identification rules were formulated based on the key phases by combining two
Landsat regions. However, there were still abnormal fluctuations in the EVI curve after
smoothing, which may lead to the extraction of pseudo-peaks or pseudo-valleys [21], result-
ing in the excessive removal of winter wheat. Guo [65] extracted winter wheat distribution
data in the Huang-Huai-hai region based on the global optimization threshold algorithm of
total quantity control. At the provincial level, the extraction results for Shandong, Henan,
and Hebei for 2001 were 7.14%, 25.38%, and 10.35% lower than those in our study, and
the extraction results for 2010 were 11.39%, 25.43%, and 0.45% lower than those in our
study, respectively. This may be because the uncertainty of threshold values causes the
uncertainty of the winter wheat–summer maize cultivation area [66], and the mixed-pixel
problem of MODIS images was not considered.

The sown area of winter wheat–summer maize in the NCP from 2001 to 2020 demon-
strated an overall trend of increasing by 12.35% from 2001 to 2010 and 9.86% from 2011 to
2020. From 2001 to 2010, there was a significant inter-annual fluctuation at the province
level, with planting areas decreasing in Beijing, Tianjin, and Hebei. Meanwhile, the oppo-
site trend was observed for Shandong, Jiangsu, Anhui, and Henan, which was essentially
consistent with previous studies [5,6,33,65]. The increase in irrigation costs caused by
the decrease in groundwater levels in the Beijing–Tianjin–Hebei region and the increase
in labor cost associated with the transfer of labor from agriculture may be the leading
causes [6,67]. Between 2011 and 2020, the planting area of winter wheat–summer maize
increased in Hebei, Henan, Anhui, and Shandong, while it decreased in Beijing and Tianjin
and slightly reduced in Jiangsu. With the introduction of policies such as the exemption
of agricultural tax, issuance of agricultural subsidies, and the minimum purchase price of
agricultural products [68], the planting of winter wheat–summer maize in the southern
part of the Hebei Plain resumed. On the other hand, there was an expansion of winter
wheat–summer maize cultivation in irrigated regions along the Yellow River and the Jiaolai
Plain within Shandong province, which were recognized as significant cotton-producing
areas, characterized by labor-intensive cotton cultivation and management practices in
comparison to winter wheat–summer maize [69]. With rising labor costs and persistently
low cotton prices, some farmers abandoned cotton planting and switched to winter wheat–
summer maize [21]. In the southern sector of the NCP, the overall planting area of winter
wheat–summer maize significantly expanded. This expansion could be attributed to several
factors, including higher precipitation levels in the region, resulting in lower irrigation
costs than those for the Beijing–Tianjin–Hebei region. Additionally, the advanced state
of agricultural mechanization in winter wheat–summer maize planting has modernized
agricultural labor and thus contributed to lower costs [70].
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5. Conclusions

This study revealed the spatial-temporal variation in the NCP’s winter wheat–summer
maize planting structure between 2001 and 2020. The MOD13Q1 product, with a temporal
resolution of 16 days and a spatial resolution of 0.0025◦, is capable of producing accurate
identification results in this region. In terms of establishing sample categories, six sample
categories—winter wheat–summer maize, winter wheat–rice, other double-cropping sys-
tems, spring maize, cotton, and fruit trees—could significantly improve the recognition
accuracy of winter wheat–summer maize distribution, with R2 and RMSE values ranging
from 0.738 to 0.901 and from 179.05 to 215.72 km2, respectively. The absence of mixed
systems or winter wheat–rice distribution diminished the effectiveness of identifying win-
ter wheat–summer maize, among which the former had a more significant effect on the
classification results.

From 2001 to 2020, the planting area declined by 2982.13 km2 (10.06%) in the north-
ern part of the NCP, including the Beijing–Tianjin–Hebei region, while it increased by
3.62 × 104 km2 (32.30%) in the middle and southern part, encompassing Shandong, Henan,
Anhui, and Jiangsu provinces. The winter wheat–summer maize growing region was
concentrated mostly in the middle of the Hebei Plain, along the Yellow River irrigation
areas, and in humid zones of the southwest NCP. This region accounted for 75–85% of the
total NCP planting area. These results are significant for crop production, groundwater
protection, and the management of agricultural water resources in this region. Optimiza-
tion of planting structures based on agricultural water resources will be the focus of our
subsequent research.
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