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Abstract: Timely and accurate acquisition of crop planting areas and spatial distribution are deemed
essential for grasping food configurations and guiding agricultural production. Despite the increasing
research on crop mapping and changes with the development of remote sensing technology, most
studies have focused on large-scale regions, with limited research being conducted in fragmented
and ecologically vulnerable valley areas. To this end, this study utilized Landsat ETM+/OLI images
as the data source to extract additional features, including vegetation index, terrain, and texture.
We employed the Random Forest Recursive Feature Elimination (RF_RFE) algorithm for feature
selection and evaluated the effectiveness of three machine learning algorithms—Support Vector
Machine (SVM), Random Forest (RF), and Rotation Forest (ROF)—for crop extraction. Then, based
on the optimal classifiers, the main crops in the Huangshui basin for the years of 2002, 2014, and 2022
were extracted. Finally, the transfer matrix, the gravity center model, and the Standard Deviation
Ellipse (SDE) model were used to analyze the spatio—temporal changes of crops over the past
20 years in the Huangshui basin. The results showed that the spectral, vegetation index, and terrain
features played a crucial role in crop extraction. Comparing the performance of the classifiers, the
ROF algorithm displayed superior effectiveness in crop identification. The overall accuracy of crop
extraction was above 86.97%, and the kappa coefficient was above 0.824. Notably, between 2002
and 2022, significant shifts in crop distribution within the Huangshui basin were observed. The
highland barley experienced a net increase in planting area at a rate of 8.34 km2/year, while the spring
wheat and oilseed rape demonstrated net decreases at rates of 16.02 km2/year and 14.28 km2/year,
respectively. Furthermore, the study revealed that highland barley exhibited the most substantial
movement, primarily expanding towards the southeast direction.

Keywords: crop mapping; machine learning; object-oriented; feature selection; Huangshui basin

1. Introduction

Food security has been a long-standing, complex, and highly concerning issue in
China [1]. In the context of global climate change, the need for dynamic, wide-scale, fast,
and timely spatial information on crops is becoming increasingly urgent [2,3]. Accurate in-
formation on the spatio—temporal changes of crops is crucial for government departments
when formulating food policies, promoting agricultural development, and ensuring food
and ecological security [4,5].

The traditional methods used in China to collect information on crops primarily in-
volve analyzing statistical data based on administrative divisions such as districts, counties,
cities, and provinces. While this approach helps one to grasp the overall situation of crop
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areas for different administrative levels, it lacks spatial details and suffers from temporal
delays [6]. The use of remote sensing to monitor crops and support their management has
received increasing attention in recent years with the launch of sensor satellites carrying
different resolutions [7]. Compared with traditional statistical methods, crop distribution
extraction using remote sensing means is more accurate, effective, and less costly.

At present, crop identification using multispectral data from the MODIS, Landsat,
SPOT, Sentinel, and other sources has shown promising results [6,8–10]. However, accurate
crop-type mapping remains challenging due to spectral similarity, crop diversity, and intra-
class variability caused by environmental conditions [11]. To develop accurate crop spatial
distribution maps, researchers have utilized spectral, vegetation index, texture, and other
features for crop identification. However, including all the features in the classification
process can weaken classifier performance, leading to the issues of information redundancy.
In recent years, feature selection methods have been applied to crop classification with
varying degrees of success. The Random Forest Recursive Feature Elimination (RF_RFE),
which can quantify the relative importance of each variable, is commonly used for high-
dimensional feature selection [12,13].

The crop classification methods with more applications and more mature technologies
are mainly pixel-based and object-oriented classification [14]. Pixel-based crop classification
struggles to maintain the integrity of objects [15], often resulting in the “salt-and-pepper”
phenomenon during the classification process. This phenomenon may result in the misclas-
sification of certain areas or objects within the image, ultimately reducing the accuracy and
reliability of crop classification. Object-based classification is developed to fully exploit the
information contained in high-resolution imagery. This method can utilize spatial, textural,
and contextual features of image-objects [16]. Some researchers have demonstrated the
advantages and potential of object-based classification even in medium-resolution remote
sensing imagery [17]. Furthermore, many scholars have successfully applied this technique
to crop classification, yielding satisfactory results [18–20].

With the support of abundant satellite imagery resources, numerous classification
techniques have been developed to extract the spatial distribution of crop planting. These
techniques can be broadly categorized into the following: automatic extraction, based on
phenological information; traditional supervised and unsupervised classification meth-
ods; and the emerging machine learning methods in recent years [11]. Extracting crop
planting structures based on phenological information does not require the acquisition
of supervised information, and is simple to operate and suitable for automatic extraction
of crop planting structures in a wide area [21]. However, in this method, it is difficult
to distinguish the planting structure of crops with similar phenological information [22].
Conventional supervised and unsupervised classification methods have gradually become
inadequate for extracting crops in complex regions. In recent years, with further research
advancements, machine learning classification algorithms such as the K-nearest Neigh-
bors (KNN), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF)
have been developed [23]. Among these commonly used machine learning algorithms,
the SVM and RF have been widely applied in crop-type mapping due to their efficient,
accurate, and robust identification capabilities [24–26]. The SVM is considered to be one
of the most classical machine learning algorithms, and its essence is a maximum interval
classification method [27]. The RF is an integrated-learning method based on decision trees
that is becoming increasingly common in remote sensing applications due to its flexible
nonparametric nature and ability to limit overfitting [28,29].

However, different classifiers exhibit varying sensitivities to different data sources
and spectral characteristics of crops, and there is currently no universal classifier. The
Rotation Forest (ROF) algorithm, initially proposed by Rodriguez et al. [30] in 2006, is
an enhancement of the RF algorithm. The algorithm’s core is rotating the feature axes of
initial data using the Principal Component Analysis (PCA). This rotation provides diverse
training samples to the base classifier, enhancing its variability and leading to improved
classification accuracy [31,32]. Researchers have applied the ROF algorithm to vegetation
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classification and achieved better results than with the RF algorithm [33]. The potential of
this algorithm in crop mapping still requires further development and exploration.

Currently, crop research is primarily focused on large-scale regions such as global or
national levels, while research on specific areas with complex terrain is relatively limited.
Furthermore, the research has mainly concentrated on major crops such as rice, wheat, and
rapeseed, with less attention given to region-specific crops like highland barley. Therefore,
there is a need for more in-depth research in these specific regions to optimize crop-mapping
approaches. Such research will contribute to a better understanding and addressing of the
challenges in crop cultivation and management in specific regions [34].

Specialized small-scale agriculture mapping encounters challenges related to data
sources and mapping methods, further compounded by the distinct geographic environ-
ment of specific regions. Despite the emergence of promising mapping techniques, the
adaptability of crop classification and mapping methods in such regions remains an area
warranting extensive exploration. Additionally, there is a relative shortage of research on
the extraction and monitoring of specific crops over multiple time periods in particular
regions. Conducting multi-temporal crop extraction and spatial evolution analyses can
provide valuable insights for agricultural decision-makers, aiding their understanding of
food production, crop diversity, and supply–demand dynamics.

In view of these considerations, our study centers on the Huangshui basin, employ-
ing the Landsat ETM+/OLI imagery available during the study period as our founda-
tional dataset. We preprocess the imagery using data fusion and vegetation-enhancement
techniques to elevate its spatial resolution, meeting the requisites for crop mapping in
small-scale regions. To capitalize on relevant geographic environmental features, auxiliary
factors such as terrain and texture are integrated into the feature selection process for
crop classification. The primary objectives encompass the following: (1) assessing the
significance of various features in crop classification through feature selection algorithms;
and (2) evaluating the suitability of object-oriented machine learning algorithms for crop
extraction in intricate terrain settings. Moreover, the study strives to achieve the following:
(3) accomplish crop mapping for the Huangshui basin in the years 2002, 2014, and 2022; and
(4) investigate spatio—temporal variations in crop planting structures within the region
over the past two decades.

2. Materials and Methods
2.1. Study Region

The Huangshui basin, situated approximately between 36◦04′ N to 37◦43′ N and
100◦68′ E to 103◦26′ E, lies on the border between the Qinghai province and the Gansu
province (Figure 1), in China. It exhibits a diverse topography characterized by substan-
tial elevation changes, steep slopes, and an intricate network of rivers crisscrossing the
landscape [35]. The topography of the basin is higher in the northwest and lower in the
southeast, with an altitude of 1542–4800 m. Due to the influence of the climatic and to-
pographic factors associated with the Qinghai–Tibet Plateau, the area features an uneven
precipitation distribution and variations in the local temperature. The average annual
temperature within the basin is about 6.4 ◦C. Precipitation is mainly concentrated in the
summer, with an average annual precipitation of about 306 mm. It has an arid and semi-
arid continental climate [36]. The Huangshui basin is a crucial river-valley agricultural
region in the Qinghai province, with 317,000 hm2 of arable land, accounting for 52.3% of
the total arable land area in the province. The effective irrigation area is about 120,000 hm2,
accounting for 48% of the effective irrigation area in the province [37]. The planting types
of crops in the basin are relatively stable, mainly including highland barley, spring wheat,
and oilseed rape, etc. Due to the temperature conditions, the agricultural production in the
Huangshui basin follows an annual single-cropping system, concentrated in the river-valley
area [38].
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Figure 1. The study area (including digital elevation information, county-level administrative
districts, and rivers in the basin).

2.2. Data Source and Preprocessing

This study mainly extracted three main crop types—highland barley, spring wheat,
and oilseed rape—in the Huangshui basin based on the cropland data. The land-use data
were obtained from the China Land Cover Dataset (CLCD) generated by Yang et al. [39]
using the RF algorithm based on Landsat data.

The multispectral data were obtained from the Google Earth Engine (GEE) platform
after processing steps including cloud removal, mosaic, and clip. The Landsat 7 ETM +
data in July 2002 and the Landsat 8 OLI data in July 2014 and 2022 were selected. The
multispectral data consist of red, green, blue, near-infrared (NIR), and two short-wave
infrared (SWIR) bands, with a spatial resolution of 30 m. Additionally, the data include a
panchromatic band with a higher resolution of 15 m.

To enhance the spatial resolution of the data, we applied the Gram-Schmidt Pan
Sharpening (GS) fusion algorithm within the ENVI 5.6 software to merge the Landsat’s
high-resolution panchromatic channel image with its low-resolution multispectral channel
image. This fusion process enhanced the overall spatial resolution to 15 m. Furthermore, we
conducted vegetation-enhancement processing on the images using the Vegetation Enhance
plugin, which is an ENVI extension tool. This processing was designed to emphasize the
distinctions among various crop types, as illustrated in Figure 2. In addition to the original
spectral bands, the Normalized Vegetation Index (NDVI), texture features, and terrain
features were incorporated for crop classification.
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Figure 2. Comparison of local images before image processing: (a) Landsat 8 true-color composite
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(c) true-color display after vegetation enhancement based on (b).

The Digital Elevation Model (DEM) data, obtained from the United States’ National
Aeronautics and Space Administration (NASA), had a spatial resolution of 12.5 m. Based
on the DEM data, slope and aspect data were derived and resampled to a resolution of
15 m.

The statistics on crop planting areas were sourced from the National Tibetan Plateau
Data Center website (https://data.tpdc.ac.cn accessed on 1 May 2023) and the Qinghai
Statistical Yearbook, serving as auxiliary validation for crop classification.

The sample data referenced the distribution data of oilseed rape in China from 2017
to 2022 [40], wheat distribution data in China from 2001 to 2015 [41], and historical im-
agery from Google Earth. For the years 2002, 2014, and 2022, a total of 2639, 2511, and
2251 samples were selected, respectively.

2.3. Methods
2.3.1. Multi-Scale Segmentation

Object-oriented classification is an intelligent, automated image-analysis method,
which differs significantly from traditional classification methods in that it operates at
the scale of image-objects rather than individual pixels. In the real world, objects refer
to geographic entities or phenomena, while in object-oriented classification, objects are
defined as image patches resulting from image segmentation, referred to as image-objects
or object units [18]. In this study, the multi-scale segmentation method within the eCogni-
tion 9.4 software was employed to partition the images into parcel objects. Notably, the
accuracy of crop mapping can be significantly influenced by the choice of segmentation
parameters [42]. We employed the automatic segmentation scale parameter selection ESP2
tool that identified the best segmentation scale to be 47. By referring to related articles [43]
and comparing the segmentation effect with different parameters at 0.1 step, the best seg-
mentation effect was achieved when the shape was set to 0.1 and the compactness was set
to 0.5.

2.3.2. Feature Optimization

The RF_RFE is a hybrid feature-selection approach of an embedded and a wrapper,
and the algorithm process is as follows [28,44]. To begin, the RF model was trained using
training data, and the importance of each feature was determined based on its classification
contribution. Next, the features with the lowest importance were removed based on the
ranking, and the RF model was retrained using the updated set of features. This iterative
process continued until the feature set became empty. Finally, the list of the performance

https://data.tpdc.ac.cn
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measures generated for each subset after running the model was used to filter and identify
the optimal feature subset.

2.3.3. Machine Learning Classification Methods

(1) SVM

The SVM is a powerful supervised learning algorithm, introduced by Cortes and
Vapnik [45] in 1995. The goal of SVM is to find an optimal hyperplane (a line in a two-
dimensional space or a hyperplane in a multidimensional space) that separates data points
of different classes. The SVM is capable of effectively handling nonlinear problems; this is
achieved through the use of kernel techniques [46]. The Kernel techniques allow data to
be mapped from the original space to a higher dimensional space where the data can be
linearly separated. The choice of kernel function significantly impacts the accuracy of the
SVM model, with commonly used kernel functions including the linear kernel, polynomial
kernel, and Radial Basis Function (RBF) kernel, among others.

In practical scenarios, data may not be linearly separable, leading to the introduction
of a soft margin. A soft margin allows for some data points to not strictly meet the margin
requirements, but introduces a penalty parameter (usually denoted as C) to balance the
margin size and the penalty for misclassification. The choice of C influences the model’s
generalization ability.

When the SVM algorithm was applied to classify data in this study, the following
choices were made: the RBF was selected as the kernel function; the kernel function
parameter Gamma was set to 1; the penalty factor C was set to 10; and other parameters
were set to default.

(2) RF

The RF is an ensemble learning method proposed by Breiman [29] in 2001. It combines
multiple decision tree models for classification. These decision trees are constructed by
randomly sampling different subsets (with replacement) from the training data and by
selecting features randomly. Each decision tree serves as a basic classifier and splits data
based on their features to minimize errors. Each tree produces a prediction, and the final
prediction is determined by a majority vote [47].

The RF algorithm introduces the concept of randomness, making each decision tree
unique. The randomness involves the random selection of samples from the training
data and random feature selection from the feature set. This helps reduce overfitting and
enhances the model’s generalization ability. The key parameters in RF include the number
of decision trees, the randomness in feature selection, tree depth, and more. Typically, the
best parameter configuration is chosen through cross-validation.

When the RF algorithm was applied to classify data in this study, the number of base
classifiers was set to 140. The number of features to be considered for finding the best
segmentation was set to four. The minimum number of samples needed at the leaf nodes
was set to two, and other parameters were set to default values.

(3) ROF

The ROF algorithm is an extension and improvement of the RF [30]. The algorithm
enhances classification performance by rotating original features into new ones. This
rotation process is based on the PCA, which attempts to identify the main directions of
variance in the data and map the data onto these primary directions. The ROF introduces
diversity by constructing decision trees in different feature spaces. Each decision tree is
built in a feature space that has been rotated, resulting in different feature combinations
for each tree. This helps reduce model variance and improve generalization performance.
Similar to the RF, the ROF algorithm uses a voting mechanism for classification. Each
decision tree classifies samples, and the final classification result is determined by the votes
of multiple trees [48]. The key parameters in the ROF include the number of base classifiers
(decision trees) and the subset size for feature rotation partitions.
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When the ROF algorithm was applied to classify data in this study, the number of base
classifiers L was set to 290, and the number of divided feature subsets K was set to 4.

This paper, based on the Python programming language, explores the effectiveness of
the above three machine learning algorithms in crop classification.

2.3.4. Accuracy Verification

For the crop classification results, the User Accuracy (UA), Producer Accuracy (PA),
Average Accuracy (AA), Overall Accuracy (OA), and kappa coefficients were used for an
evaluation based on the confusion matrix. The crop areas extracted in this paper were also
compared with the data published in the Statistical Yearbook to judge the accuracy of the
extracted results.

2.3.5. Gravity Center Model

The gravity center, which originates from the field of physics, is the point where
gravity is uniformly applied to each part of an object [49]. The gravity center of crop spatial
distribution is the point at which the crop acreage reaches equilibrium in all directions
within a certain geographic area. The migration direction of gravity center indicates the
change in direction of crop planting, and the migration length indicates the degree of
crop change in space [50]. The formula for calculating the gravity center of crop spatial
distribution is as follows:

Xj =
∑n

i=1 Aijxi

∑n
i=1 Aij

; Y j =
∑n

i=1 Aijyi

∑n
i=1 Aij

(1)

In the equation, Xj and Yj represent the gravity centroid geographical coordinates of a
certain crop in the j-th year within the study area. xi and yi represent the gravity centroid
geographical coordinates of the crop in the ith plot. Aij represents the planting area of the
crop in the i-th region in the j-th year.

Dm =

√
(Xk+m − Xk)

2 + (Yk+m −Yk)
2 (2)

Dm represents the gravity centroid movement distance of the planting area over an
interval of m years. (Xk+m, Yk+m) and (Xk, Yk) represent the gravity centroid coordinates of
the planting area in the (k+m)-th year and the k-th year, respectively.

2.3.6. Standard Deviation Ellipse Analysis

The Standard Deviation Ellipse (SDE) model is a specific presentation of spatial
distribution characteristics through ellipses, which can reveal the spatial distribution of
geographic elements from several perspectives [51,52]. For example, the axis length of
ellipse indicates the direction of spatial-element distribution, and the shape of ellipse
indicates the dispersion degree of spatial elements. In this paper, the changes of the
concentrated distribution area, distribution range, and direction of crops in the Huangshui
basin are studied using the SDE model.

3. Results
3.1. Comparison of Machine Learning Classification Methods Based on Feature Optimization

Based on the multi-scale segmented objects, nine spectral features, NDVI, three terrain
features, and eight texture features were extracted to participate in the classification. The
21 features extracted in 2002, 2014, and 2022 were input into the RF_RFE algorithm for fea-
ture optimization, and the final number of retained features was 17, 15, and 16, respectively.
All spectral features, NDVI, and terrain features were retained, and some texture features
were filtered out. According to the importance analysis (Figure 3), it can be seen that the
NDVI, NIR band, green band, and Max_diff contributed more to the crop identification
process, while the contributions of texture features were relatively small.
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The data before and after the feature selection were input into different classifiers and
run 10 times to obtain the average accuracy, as shown in Figure 4. The crop identifica-
tion accuracy after the feature selection in 2002, 2014, and 2022 improved by 1.43–2.19%,
0.60–1.41%, and 1.99–2.18%. All three machine learning classification algorithms based on
feature selection achieved a good classification performance with a validation accuracy
above 83.92%. Among them, the ROF algorithm achieved the best classification perfor-
mance with validation accuracies of 87.62%, 90.13%, and 91.13% for 2002, 2014, and 2022
crop classification, respectively. The ROF algorithm was subsequently selected to complete
the crop classification mapping of the Huangshui basin.
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3.2. Extraction Accuracy and Spatial Distribution of Crop Planting Structure

The spatial distribution of crops in the Huangshui basin in 2002, 2014, and 2022 was
extracted using the ROF algorithm. Based on the confusion matrix, the crop extraction
accuracy of the Huangshui basin was calculated (Table 1). The OA of crop extraction was
above 86.97%; the AA was above 86.51%; the kappa coefficient was above 0.824. Among
the main crops, spring wheat had the best identification performance, with a PA ranging
from 90.62% to 96.72% and a UA ranging from 87.50% to 88.94%. Next was highland barley,
with a PA ranging from 82.09% to 85.71% and a UA ranging from 84.03% to 90.16%. Finally,
the PA of oilseed rape ranged from 77.57% to 85.19% and the UA of oilseed rape ranged
from 81.77% to 89.44%.

Table 1. Accuracy of crop extraction based on the ROF algorithm in the Huangshui basin.

2002 2014 2022

HB SW OR OC HB SW OR OC HB SW OR OC

HB * 100 4 13 2 110 3 20 1 102 1 14 2
SW * 11 203 9 1 2 203 10 0 1 177 5 0
OR * 8 12 157 15 10 23 166 15 9 16 161 3
OC * 0 13 8 191 0 0 1 217 6 5 0 125

UA (%) 84.03 87.5 81.77 90.95 90.16 88.65 84.26 93.13 86.44 88.94 89.44 96.15
PA (%) 84.03 90.62 83.96 89.6 82.09 94.42 77.57 99.54 85.71 96.72 85.19 91.91
AA (%) 86.51 88.4 89.88
OA (%) 86.97 89.12 90.11
Kappa 0.824 0.853 0.866

* HB, SW, OR, and OC in the table are abbreviation for highland barley, spring wheat, oilseed rape, and other
crops, respectively.

According to the Statistical Yearbook of the Qinghai province, the total planted area
of crops in Xining City and Haidong City, which roughly overlaps with the boundary of
the Huangshui basin, was calculated. The extracted crop area data from this study were
compared with the data from the Statistical Yearbook (Table 2). The results showed that the
average differences in the planted area of highland barley, spring wheat, and oilseed rape
were 20.88 km2, 123.05 km2, and 103.28 km2, respectively. The reason for these differences
may be that the statistical data region does not align perfectly with the boundary of the
Huangshui basin. Overall, the crop extraction area obtained in this study closely matches
the statistical data, indicating its suitability for subsequent research.

Table 2. Comparison of crop extraction area based on the Statistical Yearbook in theHuangshui basin
(unit: km2).

2002 2014 2022

ROF Statistical
Yearbook ROF Statistical

Yearbook ROF Statistical
Yearbook

Highland Barley 260.19 245.69 294.00 309.77 426.92 459.30
Spring Wheat 1037.63 1169.91 811.74 630.99 717.28 773.40
Oilseed Rape 1078.72 856.09 957.31 895.20 793.07 818.20
Other crops 2297.84 1927.80 1855.86 1842.82 1465.62 1296.50

Total cultivated land 4674.38 4199.49 3918.91 3678.77 3402.89 3347.40

From 2002 to 2022, the main distribution of highland barley, spring wheat, oilseed
rape, and other crops in the Huangshui basin was observed in the Datong county, the
Huangzhong county, and the Huzhu county (Figure 5). During the period from 2002 to
2022, oilseed rape had the widest spatial distribution among the major crops planted in the
Huangshui basin, followed by spring wheat, and, lastly, highland barley.
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The cultivation area of highland barley in the Huangshui basin in 2002, 2014, and 2022
was 260.19 km2, 294.00 km2, and 426.92 km2, respectively, showing an overall increasing
trend, with an average growth rate of 8.34 km2/year. The cultivation area of spring
wheat in the Huangshui basin in 2002, 2014, and 2022 was 1037.63 km2, 811.74 km2, and
717.28 km2, respectively, showing an overall decreasing trend, with an average decline rate
of 16.02 km2/year. The cultivation area of oilseed rape in the Huangshui basin in 2002,
2014, and 2022 was 1078.72 km2, 957.31 km2, and 793.07 km2, respectively, showing an
overall decreasing trend, with a decelerating rate of 14.28 km2/year. In the past 20 years,
the rate of increase in the highland barley’s cultivation area has been accelerating. The rate
of decrease in the spring wheat’s cultivation area has slowed down. The rate of decrease in
the oilseed rape’s cultivation area has been increasing. The cultivation areas of other crops
and the total arable land area in the Huangshui basin have both showed a decreasing trend.

3.3. Evolution Analysis of Crop Planting Structure

The transfer matrix of crops’ areas in the Huangshui basin are shown in Table 3. From
2002 to 2014, the outflow areas of highland barley, spring wheat, and oilseed rape in the
Huangshui basin were 216.59 km2, 782.34 km2, and 769.64 km2, accounting for 83.24%,
75.40%, and 71.35% of the planting area in 2002, respectively. The inflow areas of highland
barley, spring wheat, and oilseed rape were 250.39 km2, 556.45 km2, and 648.23 km2,
accounting for 85.17%, 68.55%, and 67.71% of the planting area in 2014, respectively. During
this period, the outflow rates of highland barley, spring wheat, and oilseed rape in the
Huangshui basin were 15.47 km2/year, 55.88 km2/year, and 54.97 km2/year, respectively,
and the inflow rates were 20.87 km2/year, 46.37 km2/year, and 54.02 km2/year.
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Table 3. Statistics on the transfer area of crops in the Huangshui basin from 2002 to 2022 (unit: km2).

2002
Total

Transfers inHighland
Barley

Spring
Wheat

Oilseed
Rape Other Crops Other Land

Types

2014

Highland Barley 59.57 69.11 66.29 55.43 250.39
Spring Wheat 38.64 244.08 229.17 44.57 556.45
Oilseed Rape 62.97 212.83 291.12 81.32 648.23
Other crops 51.15 277.70 281.53 364.47 974.86

Other land types 63.83 232.24 174.93 830.26 1301.26
Total transfers out 216.59 782.34 769.64 1416.84 545.79

2014
Total

Transfers inHighland
Barley

Spring
Wheat

Oilseed
Rape Other Crops Other land

Types

2022

Highland Barley 51.51 118.58 101.16 75.68 346.94
Spring Wheat 27.98 177.14 179.64 82.40 467.17
Oilseed Rape 56.72 242.88 160.09 58.65 518.34
Other crops 66.48 160.77 232.31 347.20 806.76

Other land types 62.83 106.46 154.54 756.11 1079.95
Total transfers out 214.01 561.63 682.58 1197.00 563.93

2002
Total

Transfers inHighland
Barley

Spring
Wheat

Oilseed
Rape Other Crops Other Land

types

2022

Highland Barley 75.47 110.15 107.96 85.61 379.19
Spring Wheat 27.02 193.84 247.78 59.93 528.58
Oilseed Rape 47.35 198.50 220.16 70.14 536.15
Other crops 47.73 229.74 241.49 307.50 826.46

Other land types 90.35 345.23 276.32 1082.78 1794.67
Total transfers out 212.46 848.93 821.79 1658.68 523.19

From 2014 to 2022, the outflow areas of highland barley, spring wheat, and oilseed rape
in the Huangshui basin were 214.01 km2, 561.63 km2, and 682.58 km2, accounting for 72.79%,
69.18%, and 71.30% of the planted areas in 2014, respectively. The inflow areas of highland
barley, spring wheat, and oilseed rape were 346.94 km2, 467.17 km2, and 518.34 km2,
accounting for 81.26%, 65.13%, and 65.36% of the planting areas in 2022, respectively.
During the period from 2014 to 2022, the outflow rates of highland barley, spring wheat,
and oilseed rape were 26.75 km2/year, 70.20 km2/year, and 85.32 km2/year, respectively,
and the inflow rates were 43.37 km2/year, 58.40 km2/year, and 64.79 km2/year.

From 2002 to 2022, the increased area of highland barley mainly originated from the
transfer of oilseed rape and other crops, accounting for 57.52% of the total area transferred
to the highland barley. The decreased areas of spring wheat and oilseed rape were mainly
converted to other crops and non-agricultural land, accounting for 67.72% and 63.01% of
the total area transferred from spring wheat and oilseed rape, respectively.

3.4. Change Analysis of Crop Planting Structure Characteristics

From 2000 to 2022, the gravity center and the SDE of crop distribution in the Huangshui
basin changed, as shown in Figure 6. The planting center of highland barley initially moved
22.61 km to the southeast, and then moved 16.95 km to the northwest. The planting center
of spring wheat initially moved 4.67 km to the northwest, and then moved 7.73 km to the
southeast. The planting center of oilseed rape initially moved northward by 2.83 km, and
then moved northwestward by 5.95 km. The planting center of other crops initially moved
eastward by 8.47 km and then westward by 4.73 km. During the study period, the overall
trend of highland barley and spring wheat cultivation direction was towards the southeast,



Agronomy 2023, 13, 2467 12 of 17

and the cultivation direction of oilseed rape showed an overall northwest movement. The
cultivation direction of other crops exhibited an overall eastward movement.
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Figure 6. Gravity center and standard deviation ellipse of major crops in the Huangshui basin,
including four categories of crops: highland barley, spring wheat, oilseed rape, and other crops in
2002, 2014, and 2022.

During the period from 2002 to 2014, the movement rates of the planting center
for highland barley, spring wheat, oilseed rape, and other crops were 1.88 km/year,
0.39 km/year, 0.24 km/year, and 0.59 km/year, respectively. From 2014 to 2022, the
movement rates of the gravity center for highland barley, spring wheat, oilseed rape, and
other crops were 2.12 km/year, 0.97 km/year, 0.74 km/year, and 0.71 km/year, respectively.

The SDE of the major crops covered almost the entire central region of the Huangshui
basin (Figure 6), exhibiting an overall northwest–southeast distribution. This region rep-
resents the core area of crop distribution in the Huangshui basin. Regarding the spatial
distribution pattern (Table 4), the elliptic azimuth of highland barley cultivation shifted
clockwise from 116.75◦ in 2002 to 122.02◦ in 2014, and then rotated counterclockwise to
116.63◦ in 2022. This indicates a shift in the region driven by highland barley cultivation,
from the southeastern to the northwestern part of the Huangshui basin, while the opposite
trend was observed for spring wheat. The elliptic azimuths of oilseed rape and other
crop distributions continuously rotated clockwise, with the elliptic azimuth of oilseed rape
changing from 116.07◦ in 2002 to 116.27◦ in 2022, and the elliptic azimuth of other crops
changing from 115.30◦ in 2002 to 116.13◦ in 2022. This indicates that the southeastern
part of the Huangshui basin serves as the driving region for oilseed rape and other crop
cultivation.

Considering the central elevation of the SDE, the altitude of the highland barley and
oilseed rape planting centers has shown an increasing trend, with an elevation of 183 m
and 462 m, respectively. The altitude of the spring wheat planting center increased from
2002 to 2014, but decreased from 2014 to 2022. Overall, the altitude of the spring wheat
planting center decreased by 242 m. The altitude of the other crops remained relatively
stable from 2002 to 2014, but showed a decreasing trend from 2014 to 2022, with an overall
decrease of 256 m.
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Table 4. Standard deviation ellipsometric parameters for crops in the Huangshui basin in 2002, 2014,
and 2022.

Crop Year
Center Coordinate

X dist/km Y dist/km
Rotation θ

(◦)
Elevation of
Center (m)X/m Y/m

Highland
Barley

2002 748,287 4,074,175 64.18 33.52 116.75 2365
2014 768,298 4,063,647 74.86 29.04 122.02 2504
2022 752,384 4,069,489 61.72 33.28 116.63 2548

Spring Wheat
2002 754,042 4,064,954 60.49 32.38 117.99 2522
2014 751,269 4,068,716 58.52 32.39 117.26 2663
2022 757,229 4,063,792 65.03 30.10 118.24 2280

Oilseed Rape
2002 756,783 4,061,854 65.18 30.71 116.07 2264
2014 757,323 4,064,631 67.09 30.45 116.14 2289
2022 752,215 4,067,687 62.86 31.04 116.27 2726

Other crops
2002 755,067 4,062,722 64.12 32.01 115.30 2564
2014 763,514 4,062,034 74.07 28.59 115.53 2561
2022 758,921 4,063,183 68.06 28.74 116.13 2305

4. Discussion
4.1. Impact of Data Sources, Feature Selection, and Classification Algorithms on Crop Extraction

Considering the temporal scope of this study, we opted for using freely available long
time-series Landsat imagery as our foundational dataset. In the paper, we applied data
fusion and vegetation-enhancement techniques to process the imagery, thereby improving
its data quality. This data processing workflow can serve as a valuable reference for related
research endeavors. However, without temporal constraints, the utilization of remote
sensing data with higher temporal and spectral resolutions, such as the Sentinel’s imagery,
is expected to yield improved classification results.

To reduce the impact of mixed pixels, in addition to extracting traditional spectral
features, this study also incorporated the NDVI, terrain, and texture features for crop
classification. However, during the feature selection process, it was observed that the
importance and retention of features varied across different years, indicating that the
factors influencing crop classification are subject to changes in the environment. The initial
selection of feature parameters in this study may have resulted in the omission of certain
critical information. Therefore, there is room for further exploration and improvement in
our approach. In future research, addressing the issues related to changing environmental
conditions and feature importance across years will be crucial. Furthermore, incorporating
environmental factors such as climate and precipitation into the classification process
would be beneficial [53,54].

Comparing our results with existing research, Wang et al. [55] achieved the highest
accuracy of 77.12% by comparing four machine learning models and two deep learning
models combined with time-series satellite data for large-scale regional crop-type classifi-
cation. Yan et al. [56], based on MODIS and Landsat imagery, constructed features using
phenological parameters to extract crop information on the Qinghai–Tibet Plateau, with an
overall accuracy of 86.23% and a kappa coefficient of 0.82. In this study, we employed a
combination of feature selection and the ROF algorithm to classify crops in the Huangshui
basin for 2002, 2014, and 2022, yielding an overall accuracy above 86.97% and a kappa
coefficient above 0.824. The obtained crop classification accuracy in this paper exceeds
that of the previous studies, indicating that the ROF algorithm, through the PCA’s trans-
formation of the selected feature subset, achieves better classification results. The method
proposed in this paper provides a reference for implementing crop mapping in small- and
medium-sized areas.

4.2. Spatial Evolution Characteristics of Crops

Regarding the analysis of crop transitions, it was found that the inflow of highland
barley exceeded the outflow, resulting in an increase in the highland barley’s cultivation
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area. One possible reason for this is the rapid development of the liquor industry that relies
on highland barley as a raw material, leading to a growing demand for highland barley.
Another possible reason is the implementation of various subsidies by the government
for highland barley cultivation, including breeding subsidies, promotion subsidies, and
direct grain subsidies [38]. These policies have made highland barley cultivation more
profitable compared to other crops, thereby promoting its cultivation in the basin. However,
for oilseed rape and spring wheat, the outflow exceeded the inflow, leading to a decrease
in cultivation area. One reason for this is the reduction in arable land, which has resulted
in a decrease in the sowing area for major crops. Another reason is the shift in crop
structure over the past 20 years, with a transition towards a diversified planting structure
that includes oilseed rape, wheat, potatoes, and corn [57]. In the future planning of crop
cultivation in this region, the government should not only promote the development of
specialized agriculture but also strengthen farmland protection measures. It is essential
to establish comprehensive farmland compensation policies to reduce instances of local
farmers abandoning their fields, ensuring the preservation of arable land [58].

From 2002 to 2022, the gravity centers of crops in the Huangshui basin were mainly
located in the central part, showing limited overall movement. The SDE exhibited a
northwest–southeast trend, indicating a relatively stable dispersion pattern of crops. This
is primarily attributed to the unique topography of the Huangshui basin, where the culti-
vation areas are predominantly located in the river-valley regions with relatively favorable
natural environmental conditions [59]. However, due to the fragile ecological environment
in this region, the following are true: the agricultural production capacity to withstand
natural disasters is relatively low; soil fertility is declining year by year; and the area of
high-quality arable land continues to shrink. The government can address these issues
through land remediation efforts, enhancing local agricultural water infrastructure, and re-
ducing land fragmentation in the shallow mountainous areas near river valleys to improve
the quality of arable land.

In recent years, the intensification of global climate change has had a significant
impact on agriculture in the Huangshui basin. During the period from 2002 to 2022, the
center of the SDE for spring wheat and other crops shifted towards lower altitudes. On
the other hand, the center of the SDE for highland barley and oilseed rape exhibited a
migration towards higher altitudes. This finding is consistent with the findings of Ma’s
research [60] and can likely be attributed to the warming temperatures in the study area
over the past two decades. Climate change is intensifying, with rising temperatures
potentially affecting the seasonality of agricultural production and leading to shifts in crop
planting boundaries [61]. Changes in precipitation patterns may lead to uneven rainfall,
resulting in droughts or floods. These changes will present new challenges to agricultural
development. The Ministry of Agriculture can adapt to these changes by establishing
meteorological information and early-warning systems, introducing climate-adaptive crop
varieties, improving water resource management, and implementing other measures to
ensure the sustainability of local food production.

5. Conclusions

In crop extraction, the spectral, vegetation index, and terrain features have been found
to be significantly more important than auxiliary features, such as texture, in this region.
The performance of three classifiers—the SVM, RF, and ROF—was compared; the ROF
algorithm achieved the best classification results. Based on the ROF algorithm, the overall
accuracy of crop extraction was above 86.97%, and the kappa coefficient was above 0.824.

The spatial distribution of oilseed rape was the most widespread among the major
crops grown in the Huangshui basin, followed by spring wheat, and then highland barley.
The planting area of crops in the study area changed significantly from 2002 to 2022, and
there was a noticeable shift in crop distribution.

During the study period, the SDE of crops was oriented in the northwest–southeast
direction. Highland barley exhibited the highest degree of movement in its planting center,
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followed by other crops, spring wheat, and Oilseed Rape. In the vertical direction, the
planting centers of highland barley and oilseed rape migrated towards higher altitudes,
while the planting centers of spring wheat and other crops showed a decreasing trend in
altitude.
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SVM Support Vector Machine
RF Random Forest
ROF Rotation Forest
RF_RFE Random Forest Recursive Feature Elimination
SDE Standard Deviation Ellipse
KNN K-nearest Neighbors
DT Decision Tree
PCA Principal Component Analysis
CLCD China Land Cover Dataset
GEE Google Earth Engine
GS Gram-Schmidt Pan Sharpening
NDVI Normalized Vegetation Index
DEM Digital Elevation Model
NASA United States’ National Aeronautics and Space Administration
RBF Radial Basis Function
UA User Accuracy
PA Producer Accuracy
AA Average Accuracy
OA Overall Accuracy
NIR Near Infrared
SWIR Short-wave Infrared
HB Highland Barley
SW Spring Wheat
OR Oilseed Rape
OC Other Crops
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