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Abstract: The increasing regulatory pressure to monitor and reduce GHG emissions and air pollu-
tants requires cost-effective methods for their surveillance. The most common techniques used for
scientific investigations into gas concentration monitoring in barns are accurate but expensive and
require complex maintenance. This research study analyzed the potential use of low-cost portable
measurement devices for the measurement of ammonia (NH3) and carbon dioxide (CO2) concen-
trations in an open dairy barn. A comparison between the gas concentrations acquired at different
heights from the floor by using portable devices and those acquired by a photoacoustic infrared
multigas spectroscope (i.e., reference measurement) in the same sampling locations was carried out
to determine the precision of the low-cost portable devices. The performances of the low-cost portable
devices were statistically analyzed by application of the one-way analysis of variance, correlation
analysis, and regression analysis. The results showed a significant difference between the gas con-
centration values at various heights from the floor for both NH3 and CO2. The correlations between
the concentrations acquired by the low-cost portable devices and the INNOVA were statistically
significant (r = 0.83; p < 0.001) for gas concentrations monitored at 0.4 m from the floor. Compared
with the reference measurement device, the low-cost devices were effective at the monitoring of NH3

concentrations at 0.40 m from the floor; however, they underestimated the concentrations in the barn
at increasing heights from the floor, and the device was not adequate for CO2 concentrations. In
detail, the relative measurement error of the low-cost devices compared to the INNOVA was reduced
close to the floor during NH3 concentration measurements. Within these limitations, this device
may be useful for monitoring the NH3 concentration in the barn and assessing variations in the NH3

concentrations mainly related to the animal occupied zone. Further efforts are needed in this field of
research to identify a low-cost device that can simplify emission estimation from open dairy barns.

Keywords: low-cost sensors; portable device; environmental monitoring; gas concentrations; dairy barn;
photoacoustic infrared spectroscope

1. Introduction

The relevant role of agriculture in climate change was underlined in the Paris Agree-
ment under the United Nations Framework Convention on Climate Change (UNFCCC)
in 2015, which deals with issues such as food production, security, and GHGs emissions [1].
Specifically, 92 countries included the livestock sector in order to achieve their national re-
duction emission targets [2]. Although Europe has implemented policies for improving air
quality (e.g., Directive 2008/50/EC, Directive 2010/75/EC, and Directive 2016/2284/EU),
the text A Europe that Protects: Clean Air for Al’ [3], adopted by the European Parliament
on 13 March 2019, emphasizes that the costs of air pollution control in Europe are signifi-
cantly lower in the agricultural sector than in other sectors where more stringent emission
controls have already been implemented. In Italy, emissions from farms are assessed by a
monitoring and control plan carried out by the farmers through the utilization of regional
guidelines [4]. However, Italian law on emissions into the atmosphere requires in the
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cattle sector that only dairy houses with over 200 heads have an emission authorization
(D.Lgsl. n. 152/2006 [5]; D.Lgsl. n. 128/2010 [6]). For a lower number of livestock units,
there is no control on emissions, though high levels of gas concentrations are likely to be
reached for both large and small herds [7,8].

Livestock activity has a significant influence on environmental balance both locally
and globally (in terms of air and climate quality, water and soil quality, biodiversity, and
landscape quality) [9]. The effects of emissions impact not only the environment but also
other fields, as they can affect animal welfare and farmer safety [7,10–12].

The increasing regulatory pressure to reduce GHG emissions and air pollutants re-
quires cost-effective methods to allow their regular surveillance. In this context, the mon-
itoring of air pollution is the basis for the application of efficient emission mitigation
strategies [13].

According to Wang et al. [14], the available technologies for measuring gas concentra-
tions can be subdivided into three categories: (a) rapidly responding sensors that provide
concentrations over time (e.g., electrochemical cells, chemiluminescence, fluorescence, pho-
toacoustic spectroscopy, and long path optical instruments); (b) cumulative concentration
devices that carry out only time-averaged values (e.g., denuders, passive samplers, and
adsorption bottles); and (c) instantaneous devices that give snapshot measurements. The
operating principles, advantages, limitations, and costs of these technologies were classified
in a study by Hassouna et al. [15].

One of the most common techniques used for scientific investigations into gas con-
centration monitoring in dairy barns is photoacoustic infrared multigas spectroscopy. In
the literature, several research studies have measured the gas concentrations in NV dairy
barns by using photoacoustic infrared spectroscopes [16–22]. Photoacoustic infrared spec-
troscopy is based on analyses of the acoustic waves produced from gases that are exposed
to radiation [23,24]. Among the most commonly used devices, the photoacoustic infrared
spectroscope (INNOVA, Lumasense Technology, Denmark) is a widespread technology
for the continuous measurement of gas concentrations, but the cost of the instrumentation
and routine maintenance is too high [14]. In detail, the purchase price of this kind of
equipment and the cost of routine maintenance are relatively high, and, thus, these devices
are not suitable for environmental control carried out by farmers. Generally, the use of this
instrument is for scientific purposes, in particular, for determining emission factors under
specific barn characteristics and constraints (e.g., barn structure, climatic conditions, barn
management, and herd size), which requires long-term measurements [25]. Therefore, the
use of several instruments during the same period in more than one barn requires higher
costs and more complex maintenance than for low-cost devices.

However, simplified measurement systems are emerging; these are equipped with less
accurate sensors than scientific instruments, yet they boast much lower costs, easier usage,
and the possibility of monitoring several points continuously at the same time [26].

Based on the background described above, the purpose of this research study was
to validate innovative low-cost devices for gas concentration monitoring. The following
objectives were pursued by investigating the performance of each low-cost device against
an advanced photoacoustic infrared spectroscope: (i) to study the profiles of the gas
concentrations acquired by the two instruments; (ii) to assess the performance of the
low-cost device; and (iii) to identify their potential use in an open dairy barn.

2. Materials and Methods
2.1. Description of the Barn

The site of the experiment was located in the province of Ragusa (Southern Italy),
which is a geographical area with the highest number of dairy barns in the Mediterranean
Basin. The data were acquired in a cubicle free-stall dairy barn from 11th to 18th June 2021.

The open structure (Figure 1) was defined by three completely open sides and one side
closed by a continuous wall with four small openings. The rectangular plan (i.e., 55.50 m long and
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20.80 m wide) was covered by a concrete floor with a roof made of fiber-reinforced corrugated
concrete panels. The heights at the ridge vent and the eave were 7 m and 4 m, respectively.
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Figure 1. Indoor view of the barn characterized by completely open sides.

The different functional areas can be distinguished in the plan view of the barn
(Figure 2): the feeding area, subdivided into the feeding alley, manger, and feeding passage;
the resting area with 64 head-to-head cubicles in two rows and three pens; the service alley
for herd management; offices; and boxes for calves, located on the southwest side.
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Figure 2. Position of sampling points in the barn. In the plan view of the barn, (a) the localization of
the sampling pole was located in the central area of the barn. The section of the barn (b) shows the
vertical distribution of the sampling points in the sample pole at different heights from the floor.

In addition to the fact that the natural ventilation of the indoor space was assured by
the open structure, the barn was equipped with sprinklers and fans in the feeding alley
and a fogging system with fans in the resting area. The fans located in both the resting area
and the feeding alley had tilt angles of 20◦ from the horizontal plane. In detail, the fans in
the resting area had a rotation axis located 2.75 m from the floor along the longitudinal axis
of the barn, whereas the fans in the feeding alley had a rotation axis 2.70 m from the floor
and parallel to the longitudinal axis of the feeding alley.

Fifty-seven Friesian cows were milked twice a day—once in the morning and once
in the afternoon. The floor of the barn was made of concrete and was cleaned by a tractor
with a scraper every morning. A mixed ratio was delivered at 12 a.m. for ad libitum
consumption. The barn was equipped with a cooling system made of fans located in both
the resting area and the feeding alley. The fans operated every 20 min to move air in the
barn. Moreover, during milking sessions, the cooling system was switched off.

2.2. Measurement Devices

The measurements of the NH3 and CO2 concentrations were continuously carried out
at three sampling locations (SLs) located in the central area of the barn along a vertical axis
(Figure 2). The first, the second, and the third SLs (i.e., hereafter named SLA, SLB, and SLC,
respectively) were located 0.40 m, 1.55 m, and 2.70 m from the floor, respectively. The data
were acquired from 9 to 14 April 2022.

The measurements were carried out by using three low-cost portable devices (SKY2000-M2,
Digitron Italia, Ferentino (Fr), Italy) and a photoacoustic infrared multigas spectroscope
as the reference measurement device (Lumasense Technology A/S, Ballerup, Denmark).
In each SL, a small box contained the sampling points for both the low-cost and reference
devices (Figure 3). An air filter was attached to the end of each sampling tube to keep the
sampler free of particles. Each sampling point was attached to a sampler tube in PTFE
(polytetrafluoroethylene) linking the sampling point to the measurement device.
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Figure 3. Installation of the low-cost system in the barn (a) with a large box (A) to contain the
three low-cost measurement devices and small perforated boxes (B) to contain the sampling points
for the measurements. The distance between two different consecutive sampling points was 1.15 m (a).
In the large box (b), three low-cost measurement devices were installed. In the small boxes (c), the
sampling points for the measurement are shown. In detail, each small box contained the sampling
tubes for both the low-cost and reference devices. Each sampling tube was equipped with an air filter.

The three low-cost devices were portable instruments suitable for continuous mea-
surement of the gas concentrations of NH3 and CO2. Each low-cost device had an internal
sampling pump linked to a sampler tube with an air filter to allow air sampling. In detail,
the measurements of the NH3 concentrations were carried out by a chemical sensor in the
low-cost device characterized by a range of 0–100 ppm, a resolution of 0.01 ppm, and a
precision of 2%FS. The CO2 concentrations were measured by an infrared sensor enclosed
in the low-cost devices characterized by a range of 0–4000 ppm, a 1 ppm resolution, and a
precision of 2%FS. The measurement frequencies were 2 min and 30 s for both gases. The
calibration of each instrument was performed by the company just before the measurement
activity. The beginning of the measurement was synchronized for all three devices in order
to acquire the gas concentrations at the same time for the three different SLs.

The reference instrument INNOVA was a photoacoustic analyzer composed of a
Multigas Monitor mod 1412 i and a multipoint sampler 1409/12. The system has 3 inlet
channels and tubes that connect each channel to the multipoint sampler 1409/12 and
to the respective sampling location. The device is able to perform simultaneous mea-
surements of different gases (i.e., NH3 and CO2), but not contemporaneously in all SLs.
Based on evidence reported in the study by Rom and Zhang [23], the measurement cycle
(i.e., composed by the numerical sequence of the SLs) was optimized to reduce bias related
to the detection of the very different concentrations (i.e., high and low concentrations)
between two adjacent SLs. According to the findings described in a recent study by
D’Urso et al. [27], three repetitions of measurement for each SL were recorded by the in-
strument before switching to the following SL. The gas concentrations were continuously
acquired according to a measurement cycle established before the experiment (i.e., SLA,
SLB, and SLC). The SITs used for the experiments were Normal (5s). The detection limits,
declared by the manufacturer, are as follows: 0.2 ppm for NH3 and 1.5 ppm for CO2. The
INNOVA was calibrated before the measurement campaign by the company.
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2.3. Data Processing and Statistical Analyses

The data on the NH3 and CO2 concentrations acquired by using the low-cost de-
vices and the data acquired by the INNOVA were organized in a spreadsheet based
on the time of the day and the location in which the measurement was carried out
(i.e., SLA, SLB, and SLC). A specific dataset was implemented by carrying out compu-
tations of the relative measurement errors εi(%) of the low-cost devices, according to the
following relation:

εi =

∣∣∣GCri f − GCi

∣∣∣
GCri f

× 100 (%)

where GCri f (ppm) is the reference value of the gas concentrations acquired by the INNOVA
analyzer, and GCi (ppm) is the gas concentration value measured by the low-cost devices.
The reference value for the gas concentrations was obtained by the mean value of the gas
concentration between the second and the third repetitions for NH3 and CO2 [27].

Moreover, correlation analyses were carried out between the NH3 concentrations and
the CO2 concentrations acquired by means of the two instruments at different heights from
the floor. Moreover, a linear regression was carried out for a correlation factor r higher
than 0.8. To deepen the statistical analyses, a one-way analysis of variance (ANOVA) was
applied to assess the occurrence of significant differences between the gas concentrations
at different heights for both the NH3 and CO2 acquired by the two instruments. Finally, a
post-hoc analysis was carried out for each ANOVA, and the mean values were separated
by Tukey’s honestly significant difference at p < 0.05.

3. Results
3.1. Gas Concentrations

Based on the results of the ANOVA (Table 1), the gas concentrations acquired at
different SLs were significantly different, showing an uneven distribution of gas along
the vertical axis of the barn. In detail, the NH3 concentrations measured by the reference
device decreased from the floor to the roof of the barn. In detail, the NH3 concentrations
acquired at SLA were significantly different (p < 0.001) than those acquired at SLB and SLC,
with the highest NH3 concentration measured at 0.40 m from the floor in SLA. The same
significant differences were found for the NH3 concentrations acquired by the portable
devices, with the highest NH3 concentrations found in SLA. However, the mean values
of the gas concentrations in SLB and SLC measured by the portable devices were lower
by about 1 ppm than those acquired by the reference instrument. With regard to the
CO2 concentrations, the results of the ANOVA showed that the lowest gas concentration
was detected in SLB, whereas there was not a significant difference between the gas
concentrations in SLA and SLC. This result was not found by the portable devices that
recorded the highest CO2 concentrations in SLC. In detail, based on the ANOVA, the gas
concentrations measured in SLA, SLB, and SLC were significantly different (p < 0.001), with
a decrease in the gas from SLC to SLA. Moreover, the results obtained by using the portable
devices showed an underestimation of the gas concentrations in SLA and an overestimation
of the gas concentrations in SLB and SLC.

The correlation analyses carried out between the gas concentrations acquired by the
INNOVA and the portable devices were significant (p < 0.001) for all of the heights from
the floor considered for both NH3 and CO2. However, the Pearson correlations of the NH3
concentrations measured by the INNOVA and the NH3 concentrations measured by the
portable devices were 0.83, 0.48, and 0.66 for SLA, SLB, and SLC, respectively. Regarding the
measurements of the CO2 concentrations, the Pearson correlations of the measurements by
the INNOVA and the measurements by the portable devices were 0.18, 0.57, and 0.41 for SLA,
SLB, and SLC, respectively. Therefore, a good level of correlation (Pearson coefficient > 0.7)
was found only in SLA for NH3.
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Table 1. Results of the ANOVA (p < 0.05) carried out for gas concentrations of NH3 and CO2 at
three groups of sampling locations (i.e., SLA, SLB, and SLC) for each gas.

SL
Mean of

NH3 INNOVA
Analyzer (ppm)

Tukey’s Post-Hoc Test SL
Mean of

NH3 Portable
Device (ppm)

Tukey’s Post-Hoc Test

A 3.51 A A 3.63 A
B 1.71 B C 0.77 B
C 1.69 B B 0.68 B

SL
Mean of

CO2 INNOVA
Analyzer (ppm)

Tukey’s Post-Hoc Test SL
Mean of

CO2 Portable
Device (ppm)

Tukey’s Post-Hoc Test

C 598.62 A C 779.6 A
A 596.44 A B 575.59 B
B 558.95 B A 444.83 C

Rows with a different letter (A, B, C) are significantly different.

Figure 4 shows the trend of gas concentrations having r > 0.5, acquired at different
SLs by using the two measurement devices. A good fit was found between the NH3
concentrations acquired by the reference and the portable device (Figure 4a) with an
overestimation of the NH3 concentrations for the portable devices, especially after the peaks
of the NH3 concentrations. The graphs show that the NH3 concentrations acquired by the
portable devices were lower for SLs located at a greater height from the floor (Figure 4b),
thus underestimating the values in comparison to the INNOVA device, whereas the CO2
concentrations acquired by the portable device at 1.55 m from the floor were higher than
those of the reference (Figure 4c).Agronomy 2022, 12, x FOR PEER REVIEW 8 of 15 
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Based on the outcomes, the NH3 concentrations acquired by the INNOVA and the
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Figure 5. Linear regression analysis between NH3 concentrations (ppm) acquired by the INNOVA
analyzer (reference) and NH3 concentrations (ppm) acquired by the low-cost device in SLA.

3.2. Analysis of the Measurement Errors

The results of the ANOVA (Table 2) showed that the position of the SLs significantly
influenced the relative error of the gas concentrations for both NH3 (p < 0.001) and CO2
(p < 0.001). In detail, the lowest error for the portable devices was recorded during the
measurement of the NH3 concentrations in SLA. There was not a significant difference
between the error of gas computed in SLB and those in SLC. In these two groups, the NH3
concentrations were underestimated by about 60% when the measurement was carried out
by the portable devices. With regard to the CO2 measurements taken by portable devices,
the results showed that the error computed at SLB was the lowest, whereas the absolute
value of the error measurement for CO2 was about 30%. In detail, the portable device
underestimated the measurements in SLA and overestimated the measurements in SLC.
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Table 2. Results of the ANOVA (p < 0.05) carried out for the relative error εi (%) related to measurements
of the gas concentrations of NH3 and CO2 at the three sampling locations (i.e., SLA, SLB, and SLC) by
using the portable devices.

SL Mean of Error for
NH3 Portable Device (%)

Tukey’s
Post-Hoc

Test *

A 3.39 A
C −59.20 B
B −59.33 B

SL Mean of Error for
CO2 Portable Device (%)

Tukey’s
Post-Hoc

Test *

C 28.82 A
B 1.90 B
A −24.47 C

* Rows with a different letter (A, B, C) are significantly different.

These results were also represented in the boxplot reported in Figure 6a,b. Moreover,
it was also found that the relative error carried out by the portable devices in SLC had
the highest variability for both NH3 (Figure 6a) and CO2 (Figure 6b). This latter finding is
valuable for suggestions related to protocols applied in open dairy barns.
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Figure 6. Boxplots of the error of gas concentrations for measurements carried out at SLA, SLB, and
SLC by portable devices for both NH3 (a) and CO2 (b). The symbol * identify outliers.

4. Discussion
4.1. Gas Concentrations Measured by the Reference Instrument

The gas distribution analyzed in this study was heterogeneous in the barn, as was
found in other studies in the literature [25,28]. Based on the measurements acquired by
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the INNOVA analyzer (i.e., reference), the vertical pattern found in this barn is different
compared to that found by Mendes et al. [29]. In detail, in the study by Mendes et al. [29]
it was found that the variability of the NH3 concentrations increased from the animal
occupied zone (AOZ) to the top of the barn, whereas CO2 decreased from the floor to the
top of the barn. These results were found for a mechanically ventilated dairy barn.

In the present study, the vertical pattern of the gas concentrations was described for
an open dairy barn. The results showed how the highest gas concentrations were acquired
at floor level, which was lower along the vertical axis of the barn, and the highest CO2
concentrations were recorded at the top of the barn.

One of the influencing factors on gas distribution is the place where gaseous pro-
duction occurs. As described in the study by Baldini et al. [30], the NH3 concentration
is mainly produced at floor level in the AOZ, and then NH3 rises upward very quickly
due to its bulk density (equal to 0.66 kg/m3 in standard conditions). Since NH3 is lighter
than air (a bulk density of 1.293 kg/m3 in standard conditions), the movement of the gas
tends to be located upward along the vertical axis. However, the presence of the air flux
of the fans modifies the flow pattern of the air in the barn and, consequently, modifies
the gas concentrations in the air because it moves NH3 toward the outdoor environment,
increasing the dilution of the gas and, thus, its distribution in the barn. In detail, the tilt
angle of the fans provided ventilation at about 1.55 m from the floor in the AOZ, where
SLB was located. In addition to the fans that smooth the concentration gradients inside the
barn [31], another factor is the prevailing air direction, which is related to the downwind
orientation of the building; therefore, even in the absence of fan activation, there is always
a dilution of gas concentrations along the longitudinal axis of the barn due to the builder’s
choice of barn orientation.

Regarding the CO2 concentrations, the main difference compared to NH3 is that the
CO2 concentrations are mainly produced from animals in the AOZ, where SLB was located.
Since the gas concentrations are diluted at that location due to the fans and the main air
direction, the CO2 concentration was the lowest in SLB, as can be found in the results of
Table 1.

4.2. Performance of the Portable Device

The results of this study show that the analyzed portable device was found to be
affordable only for measuring the NH3 gas concentrations in SLs located close to the
floor of the barn. However, it is well known that chemical sensors, such as those used as
measurement analyzers in the portable devices to measure NH3, suffer from saturation [32].
In fact, the results of the experiments carried out in this study (Figure 4a) showed a shift in
the values of the NH3 measurements; this effect produced overestimation at high values of
the measured gas concentrations (Figure 4a).

With regard to the NH3 measurements carried out in SLB and SLC, the high influence
on the value produced by the air velocity and the distance of the source of production,
both mentioned in Section 4.1, produced a reduction in NH3. In detail, the portable devices
underestimated the measurement by about 1 ppm for values of NH3 below 2 ppm.

The results of the analysis on the measurements by portable devices are not satisfactory
for CO2 because the instrument produced high errors compared to the reference. Moreover,
although the correlation between the CO2 concentrations measured by the INNOVA ana-
lyzer and those measured by the portable device in SLB was 0.57, Figure 4c shows that the
sensor for CO2 was not accurate for application in dairy barns because the measurement
value was overestimated. In detail, based on the matching of the monitored data with
direct observation of herd management, it was found that the CO2 concentrations increased
quickly when the groups of cows were moved to the milking parlor; this CO2 increase in
the environment may be attributed to the movement of the air and also to a decrease in
the performance of the infrared sensors due to ambient particulate matter. In this regard,
further experimental analyses are required to confirm this conclusion.
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Since CO2 is generally used as a tracer gas to estimate emissions in this barn typol-
ogy [33–35], the CO2 measured by the Digitron is not adequate for this purpose because it
increases uncertainty in the estimation.

Therefore, the use of the portable device can be reduced to gas concentration mon-
itoring rather than emission estimation. The potential use of the Digitron device is thus
related to the monitoring of NH3 concentrations, especially when carried out by farmers. In
fact, portable devices, thanks to their cheaper price compared to other instruments, can be
acquired by farmers to measure gas concentrations in their barns. In fact, self-monitoring
of the barn environment by the farmer may provide information on exceeding the safety
thresholds [13] for workers in the barn. Another application of the portable device may
be the verification of the gas presence in the air to assess the application of mitigation
strategies as well as the welfare conditions of the cows; in fact, in the literature, it was
found that welfare conditions are related to animal breeding conditions [12,36].

The use of low-cost devices for monitoring purposes is not still common among
farmers due to reduced information on safety regulations, but their application may increase
awareness of the risks in livestock barns. Moreover, an effective design and fine-tuning of
the low-cost devices may be promising as well for emission estimation with the consequence
that current databases, models, and emission factors, based on all of the above data related
to northern European contexts [37], can be updated.

5. Conclusions

The outcomes of this research study highlight that the specific barn structure, char-
acterized by the absence of perimeter walls, influenced indoor conditions with effects on
the distribution of gas concentrations along the vertical axis of the barn. Moreover, the
presence of the cooling systems in both the feeding alley and the resting area was another
factor that influenced gas distribution because it contributed to moving the air along the
longitudinal axis of the barn.

This research study was carried out to assess the application of a low-cost device
(SKY2000-M2, Digitron Italia, Ferentino (Fr), Italy) for monitoring NH3 and CO2 in open
dairy barns. Statistical analyses were carried out to find out the relations among the
acquired gas concentration values by applying a rigorous approach. Based on the results,
the portable device could be used for the monitoring of NH3 concentrations, whereas the
device is not accurate enough for CO2 to be adequate for the purpose.

The monitoring of gas concentrations at the housing level will make it possible to
support farmers with barn management in order to increase the environmental performance
of the farm as well as to improve animal welfare and quality of production. The use of
low-cost devices for scientific purposes, provided that a specific design and fine-tuning are
carried out, may be useful to investigate the emission production in contexts characterized
by different barn typologies, housing systems, climatic conditions, and mitigation strategies
that have not been investigated yet. Moreover, the application of low-cost devices may
contribute to the estimation of emission factors in order to update emission inventories
from the livestock housing systems monitored.
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