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Abstract: Myclobutanil is a systemic fungicide belonging to the triazole group, which is frequently
detected in environmental samples. Triticonazole, also a triazole fungicide, controls soil and seed-
borne diseases and it is mainly used as a seed-coating pesticide. Both myclobutanil and triticonazole
are considered as persistent pollutants in the environment, raising concerns about their environmental
fate and ecotoxicity potential. The purpose of the present study was to investigate the efficiency of four
pilot-scale horizontal subsurface flow (HSF) constructed wetlands (CWs) to remediate myclobutanil
and triticonazole from artificially polluted water. Daily loading of the four CWs took place from
March 2022 to July 2022 with contaminated water fortified with myclobutanil and triticonazole. Three
of the CWs, encoded WMG-R, WMG-C, and WMG-U, with medium gravel (MG) as porous media
and the fourth, with code name WFG-R, fine gravel (FG). Common reed (R, Phragmites australis) was
planted in the WMG-R and WFG-R units, and cattail (C, Typha latifolia) in the WMG-C unit. The
WMG-U unit with no plant was used as a control unit. The results showed that the removal rate
follows the pattern: WFG-R (88.4%) > WMG-R > (83.4%) > WMG-C (59.3%) > WMG-U (36.6%) and
WFG-R (88.5%) > WMG-C (71.0%) > WMG-R > (70.9%) > WMG-U (49.2%) for myclobutanil and
triticonazole, respectively. The most significant factors influencing the fungicides’ dissipation were
the porous media content and the plant species.

Keywords: pesticides; myclobutanil; triticonazole; phytoremediation; constructed wetlands

1. Introduction

A broad range of substances are covered by the term “pesticide”, including herbicides,
insecticides, acaricides, bactericides, nematicides, rodenticides, algaecides molluscicides,
and fungicides as well as repellents and plant growth regulators (European Commission,
2020). Pesticides are mainly organic substances that are applied to crops to control weeds,
diseases, and pests in an effort to increase productivity and improve food quality. However,
pesticides can easily enter natural water reservoirs due to incorrect handling of tank-mix
leftovers, accidents, direct application, or other point and nonpoint pollution sources
(e.g., agricultural runoff, soil erosion, subsurface drainage), raising concerns about their
impact on surface and groundwater quality and human health [1]. For this reason, many
plant protection products are classified as toxic contaminants by the Water Framework
Directive [2] and as priority substances by Directive 2013/39/EU [3].

Myclobutanil is a systemic fungicide used against a broad spectrum of diseases in
cereals, fruits, and vegetables, including summer patch, powdery mildew, dollar spot,
and rusts. It exhibits a therapeutic, eradicative, and preventative effect attributed to
the suppression of the sterol 14-demethylase enzyme [4]. Myclobutanil’s high chemical,
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biological, and photochemical persistence with a half-life value ranging from 25 to 222
days in water and soils raise concerns about a potential contamination in water bodies [5,6].
According to Wightwick et al. [7], myclobutanil was one of the most frequently detected
fungicides presenting concentrations higher than 0.2 µg/L in water samples and higher
than 120 µg/kg dw (dry weight) in the sediment samples of aquatic systems in Australia.
Similar to this, Smalling et al. [8] showed that myclobutanil has a high frequency of
detection in water, sediment, fish, and sand in the estuary sites in the coastal California,
America lettuce-growing region.

Triticonazole controls soil and seed-borne diseases, primarily in cereals, by inhibiting
fungi sterol production. Under aerobic conditions, the half-life of triticonazole and its
metabolites in soil ranges from 3.7 to 429 days while laboratory tests show that the fungicide
is degraded slowly under anaerobic conditions [9]. Triticonazole has a field half-life of over
100 days on average, with a strong potential for accumulation in soil and other matrices.
This fungicide can enter wastewater through runoff after use in farms. According to an
analysis of the triticonazole concentrations in sewage sludge samples in the province
of Madrid, Spain [10], triticonazole was measured at concentrations between 4.6 and
12.1 (ng/g dw). It is mostly used as a seed-coating pesticide, which raises concerns
about its fate. According to Schleiffer and Speiser [11], a primary pollution route is the
direct treatment of soil to control weeds, soilborne pests, or diseases, and the use of
pesticide-treated seeds. In addition, the wastewater from a seed-coating industry contains
a significant amount (approximately 1%) of the pesticides used during application [12].

The aforementioned research results show the need to reduce and/or eliminate the
entry of pesticides into surface and groundwater. For this purpose, several methods have
been proposed worldwide such as vegetated buffer zones at field margins and the use
of constructed wetlands [13,14]. Constructed wetlands are artificial systems created to
take advantage of various physicochemical and biological processes of pollutants dissi-
pated under regulated settings, and can treat municipal and industrial wastewaters and
agricultural runoff. That treatment involves biological, chemical, and physical processes
such as biodegradation, plant uptake, adsorption, retention, and settling [15,16]. One
of the main components in CWs is the support matrix, also known as substrate, porous
media, or filter material [17]. It is crucial for the sorption of contaminants, the system’s
permeability to allow a proper water flow in constructed wetland (CW), the support for
plant roots, and the attachment and retention of suspended materials and organic mat-
ter [18]. Macrophytes (such as Phragmites australis, Iris pseudacorus, Typha latifolia, and
Phalaris arundinacea) are planted on porous media contributing significantly to pesticides
removal. Vegetation can uptake contaminants and increase the microbial diversity, biomass,
and activity, contributing to biodegradation and sequestration [19].

There are many studies about the use of CWs to remove organic compounds [20–22],
pesticides [23–26], heavy metals [27,28], and other contaminants from natural waters; however,
there is a lack of investigations using CWs to treat agricultural wastewater contaminated
with myclobutanil and triticonazole. Therefore, the purpose of the present study was to
optimize the effectiveness of mature pilot-scale CWs to remediate aquatic systems polluted by
persistent fungicides. Such point-source pollution sites are usually found at sprayer rinsing
places’ or seed-coating industries’ wastewater.

2. Materials and Methods
2.1. Reagents and Chemicals

Myclobutanil and triticonazole analytical standards of ≥98.0%, were purchased from
Dr. Ehrenstorfer GmbH (Augsburg, Germany). Bondesil PSA (primary secondary amine)
anhydrous MgSO4, anhydrous CH3COONa, anhydrous NaCl (>99%), and bondesil carbon
SPE sorbent were purchased from Agilent Technologies (Agilent 7000D, Palo Alto, CA,
USA). Purchases from Riedel de Haen (Seelze, Germany) included HPLC grades, acetoni-
trile, ethyl acetate, and hexane, which were used for the extraction process. Commercial
formulations of myclobutanil (purchased from ELLAGRET SA, Thessaloniki, Greece) and
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triticonazole (provided by BASF Hellas A.G., Thessaloniki, Greece) with tradenames Rib-
bon 12 EC and Alios 30 FS, respectively, were used to prepare the fortification solutions
loaded to CWs. Table 1 presents the physicochemical properties of the fungicides.

Table 1. Physicochemical properties of the target fungicides [29].

Parameter Myclobutanil Triticonazole

Molecular formula C15H17ClN4 C17H20ClN3O
Substance group Triazole fungicide Triazole fungicide

Structural formula
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24°55′09″ E). The four pilot-scale HSF CWs used in this investigation were named WMG-
C, WMG-R, WMG-U, and WFG-R. They were rectangular tanks with a length, width, and 
depth of 3.0 m, 0.75 m, and 1 m, respectively, and a porous media depth of 0.45 m (Figure 
1) [29]. Medium gravel (MG, D50 = 15.0 mm, range 4–25 mm) was used as the porous media 
in the WMG-C, WMG-R, and WMG-U units. In the WFG-R unit, the porous media was 
fine gravel (FG, D50 = 8 mm, range 4–16 mm). The medium gravel was carbonate rock and 
came from a quarry. The fine gravel was igneous rock and mined from a river bed. The 
plant species used were common reed (R, Phragmites australis) in WMG-R and WFG-R, 
and cattail (C, Typha latifolia) in WMG-C. The WMG-U unit was not planted (U) and was 
used as a control unit. The common reed is considered an invasive species because it can 
displace native plants. Despite the necessity to prevent its expansion, common read has 
been shown to be effective in the bioremediation of contaminated areas due to its ability 
to survive under stress. However, control strategies could be used to stop its proliferation 
and its encroachment on the natural environment (e.g., cutting) [30]. The effect of plants 
on the two fungicides’ dissipation can be evaluated by comparing the efficiency of the 
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2.2. Pilot-Scale CW Units Configuration and Operational Conditions

The CWs were situated in the outdoor area of the Laboratory of Ecological Engineer-
ing and Technology at Democritus University of Thrace (DUTH) (location: 41◦08′47′′ N,
24◦55′09′′ E). The four pilot-scale HSF CWs used in this investigation were named WMG-
C, WMG-R, WMG-U, and WFG-R. They were rectangular tanks with a length, width,
and depth of 3.0 m, 0.75 m, and 1 m, respectively, and a porous media depth of 0.45 m
(Figure 1) [29]. Medium gravel (MG, D50 = 15.0 mm, range 4–25 mm) was used as the
porous media in the WMG-C, WMG-R, and WMG-U units. In the WFG-R unit, the porous
media was fine gravel (FG, D50 = 8 mm, range 4–16 mm). The medium gravel was carbonate
rock and came from a quarry. The fine gravel was igneous rock and mined from a river
bed. The plant species used were common reed (R, Phragmites australis) in WMG-R and
WFG-R, and cattail (C, Typha latifolia) in WMG-C. The WMG-U unit was not planted (U)
and was used as a control unit. The common reed is considered an invasive species because
it can displace native plants. Despite the necessity to prevent its expansion, common
read has been shown to be effective in the bioremediation of contaminated areas due to
its ability to survive under stress. However, control strategies could be used to stop its
proliferation and its encroachment on the natural environment (e.g., cutting) [30]. The
effect of plants on the two fungicides’ dissipation can be evaluated by comparing the
efficiency of the WMG-C, WMG-R, and WMG-U units. Furthermore, the effect of porous
media can be evaluated by comparing the removal capacity of the WMG-R and WFG-R
units. Previous studies provide strong evidence that CW planted with common reed and
cattail are capable to successfully remove various pesticides without showing symptoms of
plant toxicity [24,25]. The pilot-scale units were originally installed in 2003 [31] and since
then have been used in various experiments of wastewater treatments (e.g., municipal
wastewater and pesticide residues) and to remove various pollutants (e.g., organics, heavy
metals, and pesticides) [25,26,28,31–33]. The last experiment related to the removal of
pesticides from polluted water using the pilot-scale CW units took place in 2015. From then
until the present experiment, the pilot-scale units were maintained and loaded only with
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tap water for the needs of plant evapotranspiration. All plants used are perennial and they
have not needed to be planted each year. Therefore, the pilot-scale CWs are considered as
mature CWs with fully grown plants, and the microbial community has been adjusted to
the operation conditions.
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Figure 1. View of the four pilot-scale HSF CWs.

From March 2022 to July 2022, water enriched with myclobutanil and triticonazole at a
concentration of about 1.9 mg/L was loaded to the pilot-scale CWs. A pump with a volume
meter was used for the daily loading of the units. Hydraulic residence times (HRT) of 8 and
6 days were used with influent volumes of 40.5 L/day and 54.0 L/day, respectively. These
volumes were split into two equal dosages and supplied to the systems twice daily, around
every 12 h. During the spring, an 8-day HRT was employed (from March to May), while the
HRT of 6 days was applied in June and July (higher temperature) and therefore, wetland
water demand is higher due to increased evapotranspiration. Similar HRTs were applied to
previous studies aiming for pesticide removal [24,33]. According to a recent review study
on agricultural runoff treatment for pesticide removal using CW, an HRT of 6–7 days is
adequate [19]. With this configuration, it was possible to evaluate: (a) the contribution of
the presence of plants, (b) the effect of porous media (medium carbonate gravel and fine
igneous gravel) and HRT (8 and 6 days) on the removal of the two fungicides, and (c) the
phytoaccumulation capacity of common reed and cattail.

2.3. Sampling Campaign

Weekly water samples from the influent and effluent of each CW were taken for analy-
sis in the laboratory and processed to determine the CW unit performance. Simultaneously
with the sampling, physicochemical parameters in the water such as dissolved oxygen
(DO), pH, electrical conductivity (EC), and temperature (T) were measured in situ by a
portable device (HQ30D Field Case, HACH-LANGE E.P.E., Athens, Greece). To give the
units time to acclimate, sampling began one and a half months after loading.

In order to determine the concentration of the two fungicides in the substrate, 500 g
samples of substrate were collected from the inlet and outlet of each CW unit using a
soil sampling auger. Samples contained gravel, soil, organic matter, and plant materials.
Firstly, gravel was removed by hand and then using a 2 mm sieve, samples were processed.
Each sample was stored in a refrigerator at a temperature of −2 ◦C for one day before
being processed for analysis. Additionally, the role of the plant in fungicides removal was
evaluated by collecting plants from each CW unit at random in triplicate and the various
parts of the plants (i.e., roots, stems, and leaves) were separately analyzed to determine the
myclobutanil and triticonazole concentrations.

2.4. Instrumental Analysis of Myclobutanil and Triticonazole

The fungicide was extracted three times from the water samples using 25 mL of
hexane in total. A salting-out procedure employing 1.5 g NaCl was performed during
the third extraction. The organic phase from three extracts was collected and evaporated
to dry. With 5 mL of hexane, the residues were reconstituted and they were once more
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evaporated to dryness using a nitrogen stream. Fungicide residues were extracted with
5 mL of ethyl acetate, passed through a 0.2 m PTFE filter, and stored in vials at−20 ◦C until
instrument analysis (GC-MS/MS). Typha latifolia and Phragmites australis plant samples as
well as substrate samples were processed using the QuEChERS protocol, as reported by
Matadha et al. [34]. Briefly, five grams of each sample, homogenized, were put to 50 mL
Falcon tubes together with 4 g of MgSO4, 1 g of CH3COONa, 10 mL of acetonitrile, and
10 mL of water. A vortex mixer was used to blend the solution and it was centrifuged
repeatedly for 10 min at 4000 rpm. The acetonitrile from the upper phase was collected
and placed into 15 mL Falcon tubes along with 750 mg of MgSO4, 150 mg of bondesil PSA,
and 50 mg of bondesil carbon SPE sorbent, and mixed on a vortex for one minute. A gas
chromatographic (GC–MS/MS) method was used for the detection and quantification of
myclobutanil and triticonazole.

In this study, an Agilent 8890 GC system equipped with a triple quadrupole mass
spectrometer (Agilent 7000D, Palo Alto, CA, USA) was operated for triticonazole and
myclobutanil detection and quantification. The column used was a dual capillary Agilent
190905-431U1 (15 m length, 250 i.d. µm, 0.25 film thickness µm).

Myclobutanil was detected and quantified by a dynamic multiple reaction monitoring
(dMRM) method developed at the Laboratory of Agricultural Pharmacology and Ecotox-
icology, Democritus University of Thrace. A sample aliquot (1 µL) was injected into the
injection port heated at 280 ◦C with spitless mode. As a carrier gas, helium was set at a flow
rate of 1 mL/min. The oven temperature was initially 60 ◦C for 1 min, ramped to 170 ◦C
at 40 ◦C/min, and then finally increased to 310 ◦C at 10 ◦C/min, and held for 3 min. The
transfer line temperature was set at 250 ◦C, the electron ionization energy was set at 70 eV,
and the ion source temperature was set at 230 ◦C. The selected transitions (precursor and
product ions) were the qualifier transition 179 > 90 and quantification transition 179 > 25.1.
The retention time was 12.013 min. In triticonazole’s case, a single mass spectrometer was
used in full scan mode, according to Börjesson et al. [35] Briefly, the injection temperature
and volume was 250 ◦C and 1 µL, respectively, and the column flow was 1 mL helium/min.
The oven temperatures were 100 ◦C for 2 min, 100 ◦C to 250 ◦C with rate at 20 ◦C/min,
250 ◦C to 260 ◦C at 5 ◦C/min, and 260 ◦C to 280 ◦C at 15 ◦C/min. The transfer line tem-
perature, electron ionization energy, and ion source temperature were 250 ◦C, 70 eV, and
230 ◦C, respectively. The retention time was 11.37 min.

In order to create a calibration curve, pesticide standard solutions in ethyl acetate were
prepared at concentrations of 1, 10, 50, and 100 g/mL. Recovery rates varied from 80 to
110% for each matrix (water, plant, and porous media) in all tested concentrations. For
both plant and substrate samples, the limits of detection and quantification were 0.01 and
0.02 mg/kg, respectively, and for the water samples they were 3 and 5 ng/L, respectively.

2.5. Statistical Analysis

To evaluate the differences in the fungicide removal efficiency of CW units, nonpara-
metric tests such as Kruskal–Wallis (K–W) and Mann–Whitney U (M–W U) were used. The
K–W test was specifically used to inspect the effect of plants on unit remediation efficiency.
Where the K–W test showed a significant difference between CWs, the M–W U test was
used to assess pair comparisons. In order to assess how porous material affects the ability
of CW to remove the fungicides, the M–W U test was also used. The Windows statistical
package, SPSS 25.0, was used and the threshold for statistical significance was established
at p = 0.05.

3. Results and Discussion
3.1. Physicochemical Parameters in CW Units

The measured physicochemical parameters in influent and effluent water samples of
the four CW units are shown in Table 2 (statistics) and in Figure 2 (distribution box and
whisker plots). The water temperature in the CW units followed the seasonal variation
and varied from 8.0 to 32.5 ◦C (Table 2 and Figure 2a). The pH values throughout the
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measurement period varied between acidic (6.66) and alkaline values (7.73). The mean
pH values of all pilot-scale CWs were in the alkaline range with no significant variation
among them (Table 2 and Figure 2b). The influent EC value was lower than the mean
effluent EC values for all CWs (Table 2 and Figure 2c). The results also indicated that the
mean effluent EC value of the planted units was higher than that of the WMG-U unit. This
fact is attributed to water losses and condensation due to evapotranspiration [24]. The
mean DO concentration in the influent was 7.37 mg/L and in the effluent was 4.01, 5.66,
5.12, and 4.57 mg/L for WMG-C, WMG-R, WMG-U, and WFG-R, respectively (Table 2 and
Figure 2d). These results indicate that the DO concentration decreased in the CW units
probably due to the consumption by microorganisms despite the fact that in the planted
CWs, oxygen is transferred from plant leaves to the root system. Furthermore, the WMG-R
and WFG-R units had a lower mean DO concentration than the unplanted unit indicating
greater microbiome growth in these units compared to the unplanted unit. Similar results
have been reported elsewhere [24,25].

Table 2. Statistics of measured physicochemical parameters (SD: standard deviation, Min: minimum,
Max: maximum, n: samples number).

Parameter Influent
Effluent

WMG-C WMG-R WMG-U WFG-R

T (◦C) Mean 19.3 20.9 20.9 20.8 21.9
SD 6.4 7.7 7.5 7.6 8.1
Min 8.4 8.6 8.6 8.0 8.5
Max 28.0 30.5 29.1 32.5 30.9
n 20 20 20 20 20

pH Mean 7.32 7.06 7.50 7.43 7.11
SD 0.22 0.19 0.14 0.14 0.15
Min 6.85 6.66 7.20 7.15 6.82
Max 7.83 7.45 7.73 7.64 7.39
n 20 20 20 20 20

EC (µS/cm) Mean 513 742 856 530 811
SD 14 121 156 91 166
Min 481 612 678 430 590
Max 546 1095 1215 819 1052
n 20 20 20 20 20

DO (mg/L) Mean 7.37 4.01 5.66 5.12 4.57
SD 2.24 1.85 2.15 2.14 1.76
Min 4.12 1.03 2.80 2.29 1.15
Max 10.76 7.23 9.86 9.86 7.74
n 20 20 20 20 20

3.2. Statistical Evaluation of CW Units Performance

The temporal distributions of the myclobutanil concentrations in the influent and
effluents as well as the removal rate in the CW units during the experiment are shown
in Figure 3. The four CW units’ effluent concentrations were lower than those of the
influent, confirming myclobutanil removal (Figure 3a). Myclobutanil’s mean influent
concentration was 1.79 mg/L, while the units WMG-C, WMG-R, WMG-U, and WFG-R had
respective effluent concentrations of 0.71, 0.29, 1.12, and 0.20 mg/L over the full operation
period (EP). The mean percentage removals of myclobutanil were 59.3%, 83.4%, 36.6%, and
88.4% for the WMG-C, WMG-R, WMG-U, and WFG-R units, respectively (Figure 4). Plant
uptake, adsorption on substrate, sedimentation, and biodegradation are the main pathways
for pesticide removal in the constructed wetlands environment [13]. Pesticides are also
removed in aqueous systems by hydrolysis, photolysis, volatilization, and oxidation [26,36].
Myclobutanil is not hydrolyzed at 50 ◦C, at pH 4, 7, and 9, and its aqueous photolysis DT50
at pH 7 is 15 days. Myclobutanil has a Henry’s law constant of 4.3 × 10−4 Pa m3/mol
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at 25 ◦C and a vapor pressure of 0.198 mPa at 20 ◦C, indicating that it is nonvolatile
(Table 1) [6,29].

Agronomy 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. Box-whisker plots of physicochemical parameters of the influent and effluents in WMG-
C, WMG-R, WMG-U, and WFG-R units: (a) temperature, (b) pH, (c) electrical conductivity, and (d) 
dissolved oxygen. The box is defined by the lower and upper quartiles. The line in the box denotes 
the median value and the whiskers at the end of each box indicate the minimum and maximum 
values. 

3.2. Statistical Evaluation of CW Units Performance 
The temporal distributions of the myclobutanil concentrations in the influent and ef-

fluents as well as the removal rate in the CW units during the experiment are shown in 
Figure 3. The four CW units’ effluent concentrations were lower than those of the influent, 
confirming myclobutanil removal (Figure 3a). Myclobutanil’s mean influent concentra-
tion was 1.79 mg/L, while the units WMG-C, WMG-R, WMG-U, and WFG-R had respec-
tive effluent concentrations of 0.71, 0.29, 1.12, and 0.20 mg/L over the full operation period 
(EP). The mean percentage removals of myclobutanil were 59.3%, 83.4%, 36.6%, and 88.4% 
for the WMG-C, WMG-R, WMG-U, and WFG-R units, respectively (Figure 4). Plant up-
take, adsorption on substrate, sedimentation, and biodegradation are the main pathways 
for pesticide removal in the constructed wetlands environment [13]. Pesticides are also 
removed in aqueous systems by hydrolysis, photolysis, volatilization, and oxidation 
[26,36]. Myclobutanil is not hydrolyzed at 50 °C, at pH 4, 7, and 9, and its aqueous pho-
tolysis DT50 at pH 7 is 15 days. Myclobutanil has a Henry’s law constant of 4.3 × 10−4 Pa 
m3/mol at 25 °C and a vapor pressure of 0.198 mPa at 20 °C, indicating that it is nonvolatile 
(Table 1) [6,29].  

Figure 2. Box-whisker plots of physicochemical parameters of the influent and effluents in WMG-
C, WMG-R, WMG-U, and WFG-R units: (a) temperature, (b) pH, (c) electrical conductivity, and (d)
dissolved oxygen. The box is defined by the lower and upper quartiles. The line in the box denotes the
median value and the whiskers at the end of each box indicate the minimum and maximum values.

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. Temporal variation of myclobutanil in the pilot-scale CWs: (a) influent and effluent con-
centrations; (b) removal (%). 

 
Figure 4. Mean removal values and standard deviation of myclobutanil and triticonazole in the pi-
lot-scale CWs for the entire operation period (EP) and at HRT of 8 and 6 days. 

The variation of triticonazole concentrations in the influent and effluents of the pilot-
scale units are shown in Figure 5. Triticonazole had an average influent concentration of 
1.92 mg/L, while the EP effluent values for the WMG-C, WMG-R, WMG-U, and WFG-R 
units were 0.55, 0.55, 0.97, and 0.22 mg/L, respectively. The mean removal efficiencies of 
triticonazole were 71.02%, 70.87%, 49.21, and 88.5% for the WMG-C, WMG-R, WMG-U, 
and WFG-R units, respectively (Figure 4). The aqueous hydrolysis DT50 value at 20 °C and 
pH 7 of triticonazole is 7.4 days, indicating that it is a non-persistent pollutant [29]. On the 
other hand, according to EFSA [9] it is stable after a 30-day hydrolysis at pH 5, 7, and 9 at 
25 °C. The aqueous photolysis (DT50 value) at pH 7 is 300 days, indicating that it is stable 
[29]. The vapor pressure at 20 °C and Henry’s law constant at 25 °C of triticonazole are 1.2 

Figure 3. Temporal variation of myclobutanil in the pilot-scale CWs: (a) influent and effluent
concentrations; (b) removal (%).



Agronomy 2023, 13, 265 8 of 14

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. Temporal variation of myclobutanil in the pilot-scale CWs: (a) influent and effluent con-
centrations; (b) removal (%). 

 
Figure 4. Mean removal values and standard deviation of myclobutanil and triticonazole in the pi-
lot-scale CWs for the entire operation period (EP) and at HRT of 8 and 6 days. 

The variation of triticonazole concentrations in the influent and effluents of the pilot-
scale units are shown in Figure 5. Triticonazole had an average influent concentration of 
1.92 mg/L, while the EP effluent values for the WMG-C, WMG-R, WMG-U, and WFG-R 
units were 0.55, 0.55, 0.97, and 0.22 mg/L, respectively. The mean removal efficiencies of 
triticonazole were 71.02%, 70.87%, 49.21, and 88.5% for the WMG-C, WMG-R, WMG-U, 
and WFG-R units, respectively (Figure 4). The aqueous hydrolysis DT50 value at 20 °C and 
pH 7 of triticonazole is 7.4 days, indicating that it is a non-persistent pollutant [29]. On the 
other hand, according to EFSA [9] it is stable after a 30-day hydrolysis at pH 5, 7, and 9 at 
25 °C. The aqueous photolysis (DT50 value) at pH 7 is 300 days, indicating that it is stable 
[29]. The vapor pressure at 20 °C and Henry’s law constant at 25 °C of triticonazole are 1.2 

Figure 4. Mean removal values and standard deviation of myclobutanil and triticonazole in the
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The variation of triticonazole concentrations in the influent and effluents of the pilot-
scale units are shown in Figure 5. Triticonazole had an average influent concentration of
1.92 mg/L, while the EP effluent values for the WMG-C, WMG-R, WMG-U, and WFG-R
units were 0.55, 0.55, 0.97, and 0.22 mg/L, respectively. The mean removal efficiencies of
triticonazole were 71.02%, 70.87%, 49.21, and 88.5% for the WMG-C, WMG-R, WMG-U,
and WFG-R units, respectively (Figure 4). The aqueous hydrolysis DT50 value at 20 ◦C
and pH 7 of triticonazole is 7.4 days, indicating that it is a non-persistent pollutant [29].
On the other hand, according to EFSA [9] it is stable after a 30-day hydrolysis at pH 5,
7, and 9 at 25 ◦C. The aqueous photolysis (DT50 value) at pH 7 is 300 days, indicating
that it is stable [29]. The vapor pressure at 20 ◦C and Henry’s law constant at 25 ◦C of
triticonazole are 1.2 × 10−6 Pa m3/mol and 9.0 × 10−5 mPa, respectively, which show that
it is a nonvolatile compound (Table 1) [9,29].
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Based on the aforementioned data, the myclobutanil and triticonazole removal by
volatilization is negligible. The water in the CW units moves beneath the porous media
surface and the penetration of sunlight is further reduced by plants. Therefore, photodegra-
dation of myclobutanil and photolysis of triticonazole have insignificant contributions to
their removal in the CW units. Regarding the hydrolysis, it is negligible for myclobutanil
and considered limited for triticonazole under the applied hydraulic conditions of the
pilot-scale CW units because the applied HRT is 8 and 6 days. Therefore, myclobutanil and
triticonazole removal in pilot-scale CW units is mainly due to plant uptake, biodegradation,
sedimentation, and adsorption on the substrate.

Figure 4 also presents the mean removal percentage of myclobutanil and triticonazole
in the CW units at HRT of 8 and 6 days. HRT is considered an important factor influencing
the efficacy of CWs and the selection of an optimal HRT influences the overall performance
of CWs [37]. The four units showed higher mean removal values of myclobutanil and
triticonazole at the HRT of 8 days. This denotes that HRT of 8 days may be the optimal
value for the two fungicides’ removal.

3.3. Effect of Vegetation

The planted units demonstrated a higher removal efficiency of fungicides when com-
pared to the unplanted units for both fungicides (Figures 3b and 5b). For the three units
using the same porous material (i.e., WMG-C, WMG-R, and WMG-Z), a comparison was
conducted. The WMG-R and WMG-C units displayed the highest myclobutanil and triti-
conazole removal efficiencies, with mean removal rates of 83.4% and 71.0%, respectively.
The K–W test revealed statistically significant (p < 0.001) differences in myclobutanil and
triticonazole removal rates between the pilot-scale CW units. Myclobutanil removal in the
WMG-C and WMG-R units were statistically significantly higher than that in the WMG-U
unit, and the removal in the WMG-C unit was statistically significantly higher than that in
the WMG-R unit (p < 0.001, M–W U test). The removal of triticonazole in the WMG-U unit
was statistically significantly lower than that in the WMG-C and WMG-R units (p < 0.001,
M–W U test), and there was no statistically significant difference of triticonazole removal
between the WMG-C and WMG-R units (p > 0.05, M–W U test). These findings claim that
the existence of vegetation, such as Phragmites australis and Typha latifolia, greatly facilitates
the elimination of both fungicides.

Plants contribute to contaminant removal in CW by providing higher microbial diver-
sity and richness in substrate, leading to phytoaccumulation and a higher biodegradation
rate compared to unplanted CW. The stability and preservation of CW treatment efficacy is
largely dependent on microbial diversity and richness. Pesticide degrading microorganisms
or beneficial microorganisms for plant growth can be located either in the substrate or in
the plant roots. [13,38–40]. Several researchers have supported that remarkably higher mi-
crobial activity is observed in planted than unplanted CW. The microbial communities that
are hosted in plant rhizosphere and porous media (gravel-associated) microenvironments
of a CW are assumed to be physiologically distinct from each other. However, macrophyte
rhizosphere can attract the microenvironment microorganisms around their roots and on
the other hand, the root exudates and enzymes can be used by microorganisms for the
development of microbial communities in the substrate where the majority of contaminant
breakdown is conducted. Additionally, it is anticipated that the presence of plants pro-
motes the growth of rhizospheric microbial communities by releasing root exudates and
plants provide surface for microbiome attachment. Those plant root exudates contribute to
microbial communities formation, which utilize carbon sources (for example, pesticides)
as nutrients [41–43]. Furthermore, epiphytic or endophytic microorganisms can colonize
wetland plants, enhancing plant growth and thus, pollutant phytoaccumulation can be
increased [44]. The rhizodegradation is associated with the fact that there are rhizospheric
bacteria that are tolerant to pesticides or can degrade pesticides. Furthermore, plants in CW
help to stabilize the wetland’s bed surface and enhance the substrate porosity, which allows
aerobic bacteria to thrive in the soil and speed up the biodegradation process [40,45].
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The pesticide’s physical and chemical properties as well as its interactions with the soil,
plant microbiome, water, and other substances of diverse types in the rhizosphere define the
behavior of a pesticide within a plant though various processes (i.e., uptake, translocation,
and excretion) [43]. Regarding the phytoaccumulation and the fungicides translocation
within plant processes, the octanol/water partition coefficient (LogKow) of pesticides
strongly affects their fate in plant tissues. In plant tissues, pesticides having LogKow values
between 3.0 and 4.0 are more readily absorbed and translocated [46,47]. However, water
solubility is another important factor which affect the uptake and translocation of pesticides.
The LogKow values of myclobutanil and triticonazole are 2.89 and 3.29, respectively, and the
water solubility values of myclobutanil and triticonazole are 132 and 9.3 mg/L, respectively
(Table 1). Therefore, an adequate phytoaccumulation is expected. The results of plant
analysis (Table 3) demonstrated that fungicide residues were accumulated in various
plant tissues. Additionally, both Typha latifolia and Phragmites australis accumulated a
higher amount of triticonazole than myclobutanil, which is explained by their different
lipophilicity and water solubility. According to Wang et al. [48], pesticides with greater
LogKow and lower water solubility are more easily adsorbed by roots, whereas those with
lower LogKow and higher water solubility are more likely to be transported from roots
to shoots.

Table 3. Fungicides concentration on plant parts in pilot-scale CWs (dw: dry weight, R: Phragmites
australis, C: Typha latifolia).

Myclobutanil Triticonazole

WMG-C WMG-R WFG-R WMG-C WMG-R WFG-R

Root
(mg/kg dw) 3.86 ± 0.6 3.93 ± 0.08 4.83 ± 0.08 4.51 ± 0.11 4.73 ± 0.12 5.25 ± 0.11

Stem
(mg/kg dw) 0.80 ± 0.08 0.85 ± 0.05 1.05 ± 0.10 0.87 ± 0.07 0.88 ± 0.8 1.31 ± 0.07

Leaves
(mg/kg dw) 0.19 ± 0.09 0.15 ± 0.09 0.33 ± 0.08 0.20 ± 0.09 0.19 ± 0.7 0.44 ± 0.09

The LogKow value of myclobutanil is more conducive to phytoaccumulation than
triticonazole, as shown above. The roots were the plant component in all of the CW
units that showed the greatest accumulation (root absorption); the order of the plant parts
was root > leaf > stem (Table 3), which is explained by an initially higher exposure to
pesticides in the roots of plants. According to recent studies, the tested macrophytes
accumulate the highest amounts in their roots [24,25,36]. The phytoaccumulation capacity
and translocation differences between the two macrophytes could be explain by distinctions
in oxygen transfer, root exudation processes, and microbial communities [49]. The roots
of the WMG-R and WFG-R units (with Phragmites australis) adsorbed higher fungicide
amounts than the WG-C roots (with Typha latifolia), which is related to the higher vigor of
Phragmites australis roots than Typha latifolia ones. The higher capacity of Phragmites australis
to adsorb higher amounts of pollutants than Typha latifolia is also reported in previous
studies [24,25].

3.4. Influence of the Substrate Material

The WMG-R and WFG-R units, which contained different porous media, namely mean
gravel of carbonate rock and fine gravel of igneous rock, respectively, and were planted
with common reed, were compared. The comparison was made to determine the impact
of the two porous media on the fungicides removal. The mean percentage removals of
myclobutanil were 83.4% and 88.4%, and of triticonazole were 79.9% and 88.5%, for the
WMG-R and WFG-R units, respectively (Figure 4). A statistical analysis indicated that there
was no statistically significant difference in myclobutanil removal between the two CW
units (M–W U test: p > 0.05) while removal of triticonazole in WMG-R was statistically
significantly lower than that in the WFG-R unit (M–W U test: p < 0.001).
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Both the substrate and the physicochemical characteristics of the fungicide are crucial
for fungicide adsorption in HSF CW. Pesticides with low water solubility (i.e., water solu-
bility < 10 mg/L) and high Koc (i.e., Koc > 1000 L/kg) show high pesticide sorption and
retention in soil and organic matter fraction [50]. The water solubility values of myclobu-
tanil and triticonazole are 132 and 9.3 mg/L, and their Koc values are 518 and 374 L/kg,
respectively [29]. Therefore, a medium adsorption of the fungicides on the substrate is ex-
pected. According to a recent study, batch column experiments were performed to evaluate
micropollutants removal by gravel. The results showed that the removal capability of gravel
and sand was negligible compared to granulated activated carbon, biochar, and igneous
rock [18]. More specifically, the authors demonstrated that the materials, sand and gravel,
have the lowest adsorption ability even though all tested adsorbents are geomaterials, due
to the lack of a large extended specific area [18]. Additionally, Huang et al. [51] support
that a higher specific surface area increases the amount of external surface adsorption.
Despite the low adsorption of pesticides on the gravel, the difference in removal between
the units (Figure 4) is likely related to the fact that the WFG-R unit contains porous media
which are igneous rocks and as mentioned previously, are finer than that of the WMG-R
unit and therefore, provides more “binding sites” for pesticides adsorption. Furthermore,
Akratos and Tsihrintzis [31] have demonstrated that igneous rocks have a higher adsorption
capacity than carbonate rocks.

In mature CW systems, such as the CW units in this study, plant tissue residues are
observed and organic matter concentration rises as a result of suspended solids accumula-
tion in porous media which could allow an increased adsorption [24,33,52]. It is known
that the higher the amount of organic matter is, the higher the adsorption of pesticides
is expected in the substrate [53]. In particular, the content of organic matter in WFG-R
(3.2%) is higher than WMG-R (2.9%), leading to an equivalently higher myclobutanil and
triticonazole adsorption on the WFG-R unit.

4. Conclusions

The removal of the fungicides myclobutanil and triticonazole in four pilot-scale CWs
was studied. The results of this study indicate that the plants and their ability to uptake
fungicides, HRT, and organic matter content in the substrate, and the type and granu-
lation of porous media are the most crucial parameters determining the CW capability
for the removal of myclobutanil and triticonazole, while hydrolysis, photodegradation,
and volatilization are negligible. CWs are known as an effective remediation technique to
purify water, which can protect the quality of water bodies and help reduce the toxicity
of pesticide-polluted water. Therefore, the construction of CWs near sites where pesticide
mixing and equipment rinsing takes place (e.g., myclobutanil) or/and seed-coating indus-
try wastewaters discharge (e.g., triticonazole) is recommended. In addition, according to
our knowledge this is the first investigation using CWs to treat agricultural wastewater
contaminated with myclobutanil and triticonazole and thus, further investigations using
different operations (i.e., different vegetation and porous media content) to optimize CWs’
effectiveness are suggested.
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