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Abstract: The timely and accurate identification of stripe rust and leaf rust is essential in effective
disease control and the safe production of wheat worldwide. To investigate methods for identifying
the two diseases on different wheat varieties based on image processing technology, single-leaf
images of the diseases on different wheat varieties, acquired under field and laboratory environmental
conditions, were processed. After image scaling, median filtering, morphological reconstruction,
and lesion segmentation on the images, 140 color, texture, and shape features were extracted from
the lesion images; then, feature selections were conducted using methods including ReliefF, 1R,
correlation-based feature selection, and principal components analysis combined with support vector
machine (SVM), back propagation neural network (BPNN), and random forest (RF), respectively.
For the individual-variety disease identification SVM, BPNN, and RF models built with the optimal
feature combinations, the identification accuracies of the training sets and the testing sets on the
same individual varieties acquired under the same image acquisition conditions as the training sets
used for modeling were 87.18–100.00%, but most of the identification accuracies of the testing sets for
other individual varieties were low. For the multi-variety disease identification SVM, BPNN, and
RF models built with the merged optimal feature combinations based on the multi-variety disease
images acquired under field and laboratory environmental conditions, identification accuracies in the
range of 82.05–100.00% were achieved on the training set, the corresponding multi-variety disease
image testing set, and all the individual-variety disease image testing sets. The results indicated that
the identification of images of stripe rust and leaf rust could be greatly affected by wheat varieties,
but satisfactory identification performances could be achieved by building multi-variety disease
identification models based on disease images from multiple varieties under different environments.
This study provides an effective method for the accurate identification of stripe rust and leaf rust and
could be a useful reference for the automatic identification of other plant diseases.

Keywords: wheat stripe rust; wheat leaf rust; image processing; disease identification; machine learning

1. Introduction

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), and wheat leaf rust,
caused by P. triticina (Pt), are two important airborne fungal diseases with characteristics
of strong epidemicity and serious destructiveness that threaten wheat production world-
wide [1–4]. The causal agents of the two diseases mainly infect wheat leaves, and multiple
uredinia can be produced on the infected leaves. The wheat plant symptoms caused by the
two diseases are very similar; thus, it is very difficult to distinguish and identify the two
diseases, especially in the wheat seedling stage [1,5,6]. Therefore, the rapid and accurate
identification of wheat stripe rust and wheat leaf rust is of great significance for prediction
and management of the two diseases.

Plant disease identification is a prerequisite and basis of effective disease management.
At present, plant disease identification can be carried out using the artificial visual observa-
tion method [7–9] and methods based on molecular biology technology [10–12], remote
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sensing technology [6,12–15], image processing technology [7–9,14,16–18], near infrared
spectroscopy [5], and Internet of Things technology [19–21]. In practice, plant disease iden-
tification mainly relies on experienced personnel to implement it using the artificial visual
observation method. This method requires high levels of personnel experience and can
easily lead to errors. Most importantly, experienced personnel may not be able to reach the
fields with plant diseases in time to make a disease diagnosis, which can mean that the most
suitable period for disease control is missed. When molecular biology technology is used
to detect and identify plant diseases, professional experimental instruments and reagents
are required, testing personnel need to have certain professional ability and experimental
data-analysis abilities, and the disease identification method based on this technology is
time-consuming and laborious [10]. Remote sensing technology is rarely used in practical
disease identification applications due to the limitations of remote sensing resolution, its
technical applicability, and instrument prices. Near-infrared spectroscopy instruments are
generally expensive; studies on plant disease identification based on near-infrared spec-
troscopy technology need to be further strengthened, and the related disease identification
methods are far from having practical applications. Disease identification based on Internet
of Things technology requires many sensors and electronic devices, and it is difficult to
deploy these devices in large-scale crop fields. For users, disease identification based on
image processing technology does not require more expensive instruments and profes-
sional knowledge. Disease images can be collected by using mobile phones or cameras
with photo-taking functions; then, the acquired disease images can be processed by using
software or an application program, and the disease identification results can be obtained,
which can save costs and improve production efficiency [22].

With the rapid development of information technology, devices with photo-taking
functions have become widely used in daily life, and it is very convenient and fast to obtain
plant disease images. Image-processing technology has been used in the studies on the
identification of various plant diseases [7–9,14,16–18,23–38]. Plant disease identification
based on traditional image-processing technology generally includes plant disease image
acquisition, image preprocessing, lesion image segmentation, image feature extraction and
selection, and the construction and application of disease image identification models. In re-
cent years, deep learning methods, which are widely used, can directly extract features from
plant disease images, with great advantages in disease image identification [8,28,32,34–40].

There have been some research reports on wheat disease image identification [41–45].
Li et al. [41] used the K-means clustering algorithm to segment acquired images of wheat
stripe rust and wheat leaf rust and built a support vector machine (SVM) model with a
radial basis function (RBF) kernel based on the 26 selected features from the 50 extracted
color, shape, and texture features to carry out image-based recognition of the two diseases.
The results showed that the recognition accuracies of the training set and the testing set
for the built SVM model were 96.67% and 100.00%, respectively. Based on the acquired
images of wheat leaves infected by three diseases (including powdery mildew, stripe
rust, and leaf rust) and healthy wheat leaves, Du et al. [43] performed image-processing
operations, including Gaussian filter, top hat and bottom hat transformations, green portion
acquisition operations, gray-level binarization, and morphological operations. Then, they
obtained segmented lesion images, subsequently extracted 10 color, shape, and texture
features from the segmented lesion images, and finally built SVM classifiers with different
kernel functions and feature combinations. The results showed that for the optimal SVM
classifier with an RBF kernel, an overall recognition accuracy of 97.73% was achieved.
Genaev et al. [45] proposed a deep learning method based on a convolutional neural
network with EfficientNet architecture for image-based identification of five kinds of wheat
diseases, including leaf rust, stem rust, yellow rust, powdery mildew, and Septoria; the
best accuracy of 0.942 was obtained.

Plant disease identification based on image processing technology is affected by many
factors, such as disease image capture conditions, complex backgrounds, and disease
symptom variations [7,46]. At present, to the best of our knowledge, there are no reports
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on the effects that different wheat varieties have on the image identification of wheat stripe
rust and wheat leaf rust. In this study, the identification of stripe rust and leaf rust on
different varieties of wheat was investigated based on image processing technology. Based
on the single-leaf images of stripe rust and leaf rust with different severity levels—and
looking at different wheat varieties acquired under field and laboratory environmental
conditions—image scaling, median filtering, and morphological processing of the images
were conducted, and image segmentation was carried out using the combined method
of the threshold segmentation method and K-means clustering algorithm. After color,
texture, and shape features were extracted from the segmented lesion images, feature
selections were performed by using a combination of the ReliefF [47], 1-rule (1R) [48],
correlation-based feature selection (CFS) [49] and principal components analysis (PCA)
methods, and the SVM, back propagation neural network (BPNN) and random forest (RF)
modeling methods. Subsequently, the individual-variety disease identification models
and the multi-variety disease identification models were built by using the SVM, BPNN,
and RF modeling methods, and the identification effects of the models, built based on
different training sets, were analyzed to explore the influence of wheat varieties on disease
image identification. In this study, efforts were made to overcome the influence of wheat
varieties on the identification of disease images and to provide an accurate and rapid
method for the identification of stripe rust and leaf rust on different varieties in order
to accomplish the timely, accurate, and intelligent identification of stripe rust and leaf
rust on different wheat varieties in practical production. The results of this study will be
helpful in the implementation of real-time and accurate integrated management strategies
for the two diseases, and can also provide a valuable reference for the identification and
monitoring of other plant diseases.

2. Materials and Methods

The image-based identification of stripe rust and leaf rust on different wheat varieties
was carried out according to the main steps, as shown in Figure 1, aiming to explore the
effects of wheat varieties on image-based disease identification performance.

2.1. Acquisition of Single-Leaf Images of Wheat Stripe Rust and Wheat Leaf Rust

Single diseased wheat leaves with typical symptoms of stripe rust and leaf rust, used
for image acquisition in this study, were sampled from the wheat field in Shangzhuang
Experimental Station of China Agricultural University, Haidian District, Beijing, China; the
controlled-climate chamber in the Laboratory of Macro-Phytopathology, China Agricultural
University, Beijing, China; and the wheat field in Gangu Testing Station of the Institute of
Plant Protection, Gansu Academy of Agricultural Sciences, Gangu, Gansu, China.

The seeds of wheat varieties Beijing 0045 (moderately resistant to Pst and Pt), Mingxian
169 (highly susceptible to Pst and Pt), and Nongda 211 (moderately resistant to Pst and Pt)
were sown in Shangzhuang Experimental Station on 6 and 7 October 2020. The experimental
field was divided into the experimental zone of wheat stripe rust and the experimental zone
of wheat leaf rust. Late in the afternoon of 5 April 2021, using the artificial spray inoculation
method described by Wang et al. [6], the wheat seedlings in the experimental zones were
inoculated with Pst and Pt, respectively. The urediospores of Pst and Pt, multiplied in
the controlled-climate chamber, were used to make urediospore suspensions of 300 mg/L,
200 mg/L and 100 mg/L with 0.05% Tween 20 solution, respectively. The urediospore
suspensions were evenly sprayed on the leaves of wheat seedlings, the inoculated wheat
seedlings were immediately covered with plastic films sprayed with water droplets, and
the plastic film edges were covered with soil to moisturize the wheat leaves. The plastic
films were unveiled between 8:00 and 9:00 (Beijing time) on 6 April 2021.
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Figure 1. Workflow diagram of the main steps for image-based identification of stripe rust and leaf 
rust on different wheat varieties. 

2.1. Acquisition of Single-Leaf Images of Wheat Stripe Rust and Wheat Leaf Rust 
Single diseased wheat leaves with typical symptoms of stripe rust and leaf rust, used 

for image acquisition in this study, were sampled from the wheat field in Shangzhuang 
Experimental Station of China Agricultural University, Haidian District, Beijing, China; 
the controlled-climate chamber in the Laboratory of Macro-Phytopathology, China Agri-
cultural University, Beijing, China; and the wheat field in Gangu Testing Station of the 
Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Gangu, Gansu, 
China. 

The seeds of wheat varieties Beijing 0045 (moderately resistant to Pst and Pt), 
Mingxian 169 (highly susceptible to Pst and Pt), and Nongda 211 (moderately resistant to 
Pst and Pt) were sown in Shangzhuang Experimental Station on October 6th and 7th, 2020. 
The experimental field was divided into the experimental zone of wheat stripe rust and 
the experimental zone of wheat leaf rust. Late in the afternoon of April 5th, 2021, using the 
artificial spray inoculation method described by Wang et al. [6], the wheat seedlings in 

Figure 1. Workflow diagram of the main steps for image-based identification of stripe rust and leaf
rust on different wheat varieties.

In Gangu Testing Station, the seeds of wheat varieties Longjian 9822 (moderately sus-
ceptible to Pst), Longjian 9825 (highly resistant to Pst), and Tianxuan 66 (moderately resis-
tant to Pst) were sown on 19 October 2020. A Mingxian 169 cluster was planted at the center
of each plot. Late in the afternoon of 27 March 2021, the seedlings of Mingxian 169 at the
center of each plot were inoculated with Pst using the artificial spray inoculation method.

In the controlled-climate chamber, wheat varieties Beijing 0045, Mingxian 169, and
Nongda 211 were used. The selected plump wheat seeds were sown in pots (10 cm in di-
ameter and 10 cm high, 15–20 seeds per pot), and the pots were incubated in the controlled-
climate chamber at 12–15 ◦C with 50–70% relative humidity (12 h/12 h light/dark cycle).
When the first leaves of the wheat seedlings fully expanded, the urediospores of Pst or
Pt were collected from the diseased seedlings of Mingxian 169 used for multiplication of
the corresponding causal agent, and the healthy wheat seedlings were inoculated using
the artificial spray inoculation method, as described by Cheng et al. [50]. After a ure-
diospore suspension made with 0.02% Tween 20 solution was sprayed on the leaves of
wheat seedlings in the pots, the pots were immediately placed into a moist chamber under
dark conditions at 12–15 ◦C for 24 h. Subsequently, each pot with the inoculated wheat
seedlings was taken from the moist chamber and covered with a transparent and clean glass
cylinder wrapped with two layers of sterile cotton gauze on the top side. All the inoculated
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wheat seedlings were placed into the controlled-climate chamber for incubation under the
conditions described above. To acquire wheat disease images with different severity levels,
different concentrations of urediospore suspensions were used. To acquire the images of
diseased wheat leaves with high severity levels, the urediospore suspensions with the
concentrations of 15 mg/10 mL, 12 mg/10 mL, and 9 mg/10 mL were made and used for
artificial spray inoculation. The urediospore suspension concentrations of 5 mg/10 mL,
3 mg/10 mL, and 1 mg/10 mL were used to acquire the images of diseased wheat leaves
with low severity levels.

The disease symptoms appeared in the fields about 15 days after inoculation, and the
symptoms of wheat stripe rust and wheat leaf rust appeared on the wheat seedlings in the
controlled-climate chamber about 10 days after inoculation. According to the Rules for
Monitoring and Forecast of the Wheat Stripe Rust (Puccinia striiformis West.) (National Stan-
dard of the People’s Republic China, GB/T 15795–2011) and the Rules for the Investigation
and Forecast of Wheat Leaf Rust (Puccinia recondita Rob. et Desm.) (Agricultural Industry
Standard of the People’s Republic China, NY/T 617–2002), single leaves of stripe rust and
leaf rust with different severity levels on different wheat varieties were collected from the
wheat fields and the controlled-climate chamber. On each collected, diseased, single wheat
leaf, there were only typical symptoms of wheat stripe rust or wheat leaf rust, without any
interference from symptoms caused by other diseases and insect pests. After the disease
symptoms appeared on the inoculated wheat seedlings, the single-leaf images of wheat
stripe rust and wheat leaf rust were acquired many times under field conditions, and direct
sunlight or insufficient light was avoided during image acquisition. The images of single
wheat leaves collected from the controlled-climate chamber were acquired under laboratory
environmental conditions. Each single diseased leaf was expanded to appear as flat as
possible on a white background; the leaf image was taken using an iPhone 6S smartphone
or a Nikon D700 digital camera (Nikon Corp., Tokyo, Japan) with the lens perpendicular to
the leaf under good light conditions. The sizes of the images (jpeg format) acquired using
the iPhone 6S smartphone and the Nikon D700 digital camera were 4032 × 3024 pixels and
4256 × 2832 pixels, respectively. The images of single diseased leaves infected by wheat
leaf rust, collected from the controlled-climate chamber, were acquired between 1 March
2021 and 2 July 2021, and between 5 January 2022 and 20 February 2022. The images of
single diseased leaves infected by wheat stripe rust, collected from the controlled-climate
chamber, were acquired between 1 September 2021 and 31 December 2021. The quantities
of the acquired single-leaf images of stripe rust and leaf rust in this study are shown in
Table 1, and the samples of the acquired disease images are shown in Figures 2a–i and 3a–f.

Table 1. Quantities of the acquired single-leaf images of stripe rust and leaf rust on different wheat
varieties from the wheat field in Shangzhuang Experimental Station of China Agricultural Univer-
sity, Haidian District, Beijing, China; the controlled-climate chamber in the Laboratory of Macro-
Phytopathology, China Agricultural University, Beijing, China; and the wheat field in Gangu Test-
ing Station of the Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Gangu,
Gansu, China.

Diseased leaf Collection Location Wheat Variety Number of Acquired Images of
Wheat Stripe Rust

Number of Acquired Images of
Wheat Leaf Rust

The wheat field in Shangzhuang
Experimental Station

Beijing 0045 345 170
Mingxian 169 448 101
Nongda 211 227 41

The controlled-climate chamber
Beijing 0045 1035 1258

Mingxian 169 1473 1254
Nongda 211 1224 1036

The wheat field in Gangu Testing Station
Longjian 9822 198 –
Longjian 9825 145 –
Tianxuan 66 132 –
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Figure 2. The original single-diseased-leaf images and the corresponding segmented color lesion
images of wheat stripe rust and wheat leaf rust on different varieties, acquired in the wheat fields in
Shangzhuang Experimental Station and Gangu Testing Station. To ensure a clear demonstration, all
the images are shown after being uniformly cropped. (a–c) are the original single-diseased-leaf images
of wheat stripe rust on wheat varieties Beijing 0045, Mingxian 169, and Nongda 211, acquired in the
wheat field in Shangzhuang Experimental Station, respectively; (d–f) are the original single-diseased-
leaf images of wheat leaf rust on wheat varieties Beijing 0045, Mingxian 169, and Nongda 211,
acquired in the wheat field in Shangzhuang Experimental Station, respectively; (g–i) are the original
single-diseased-leaf images of wheat stripe rust on wheat varieties Longjian 9822, Longjian 9825, and
Tianxuan 66, acquired in the wheat field in Gangu Testing Station, respectively; (j–l) are the segmented
color lesion images of the single-diseased-leaf images of wheat stripe rust on wheat varieties Beijing
0045, Mingxian 169, and Nongda 211, acquired in the wheat field in Shangzhuang Experimental
Station, respectively; (m–o) are the segmented color lesion images of the single-diseased-leaf images
of wheat leaf rust on wheat varieties Beijing 0045, Mingxian 169, and Nongda 211, acquired in the
wheat field in Shangzhuang Experimental Station, respectively; and (p–r) are the segmented color
lesion images of the single-diseased-leaf images of wheat stripe rust on wheat varieties Longjian 9822,
Longjian 9825, and Tianxuan 66, acquired in the wheat field in Gangu Testing Station, respectively.
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Figure 3. The original single-diseased-leaf images and the corresponding segmented color lesion
images of wheat stripe rust and wheat leaf rust on different varieties, acquired under laboratory
environmental conditions. For a clear demonstration, all the images are shown after being uniformly
cropped. (a–c) are the original single-diseased-leaf images of wheat stripe rust on wheat varieties
Beijing 0045, Mingxian 169, and Nongda 211, acquired under laboratory environmental conditions,
respectively; (d–f) are the original single-diseased-leaf images of wheat leaf rust on wheat varieties
Beijing 0045, Mingxian 169, and Nongda 211, acquired under laboratory environmental conditions,
respectively; (g–i) are the segmented color lesion images of the single-diseased-leaf images of wheat
stripe rust on wheat varieties Beijing 0045, Mingxian 169, and Nongda 211, acquired under laboratory
environmental conditions, respectively; and (j–l) are the segmented color lesion images of the single-
diseased-leaf images of wheat leaf rust on wheat varieties Beijing 0045, Mingxian 169, and Nongda
211, acquired under laboratory environmental conditions, respectively.

2.2. Disease Image Preprocessing and Lesion Image Segmentation

To reduce noise interference and improve image processing speed, image preprocess-
ing operations, including image scaling, median filtering, and morphological opening and
closing using reconstruction operations, were successively performed on all the acquired
disease images. All the image preprocessing operations were performed in the software
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MATLAB 2019b (MathWorks, Natick, MA, USA). Image scaling was performed using the
nearest-neighbor interpolation algorithm, and each original single-diseased-leaf image was
scaled to 1703 × 1133 pixels. The median filtering algorithm based on a 3 × 3 filtering
window was used to denoise each disease image. The morphological opening and closing
operations of the R, G, and B color components of each disease image were performed by
using the circular structure element with a radius of 3, and then reconstruction operations
were carried out to obtain a new color disease image.

As the difference between the single leaf and the corresponding background in each
single diseased leaf image acquired in this study was very obvious, in the software MATLAB
R2019b, the Otsu threshold segmentation method (i.e., the maximization of interclass
variance method) was used to segment the single diseased leaf from the background in
an acquired disease image, and then the K-means clustering algorithm [41,51] was used
to implement lesion image segmentation; thus, the segmented color lesion image and
segmented binary lesion image were obtained. The segmented color lesion images of the
images of wheat stripe rust and wheat leaf rust on different varieties acquired under field
and laboratory environmental conditions are shown in Figures 2j–r and 3g–l.

2.3. Feature Extraction from the Segmented Lesion Images

Color, texture, and shape features were extracted from the segmented color lesion
images and the segmented binary lesion images of wheat stripe rust and wheat leaf rust.
The 30 extracted color features included the first moments, the second moments, and the
third moments of the gray images of the nine components in the RGB, HSV, and L*a*b* color
spaces, and the three corresponding color ratios r, g, and b of the R, G, and B components.
The 99 extracted texture features included the seven Hu invariant moments, gray-level co-
occurrence matrix (GLCM)-based contrast, GLCM-based correlation, GLCM-based energy,
and GLCM-based homogeneity of the gray images of the nine components in the RGB, HSV,
and L*a*b* color spaces. The 11 extracted shape features included area, perimeter, circularity
and complexity, and the seven Hu invariant moments of each segmented binary lesion
image. A total of 140 features were extracted for each acquired single-diseased-leaf image.

Except the GLCM-based correlation of the gray images of the nine components in the
RGB, HSV, and L*a*b* color spaces, and the shape features area and perimeter, the other
129 features extracted in this study were the same as the 129 lesion image features extracted
by Qin et al. [27], and these features were calculated according to the methods described by
Qin et al. [27]. Correlation is used to describe the similarity of GLCM elements in the row or
column direction. Area refers to the total number of pixels in the lesion region/regions in a
segmented lesion image. Perimeter is used to describe the boundary length of the lesion
region/regions; that is, the total number of pixels on the edge contours of all the lesion
regions in a segmented lesion image. Correlation, area, and perimeter were calculated
according to Formulas (1)–(3), as described in References [41,52].

Correlation =
P−1

∑
i=0

P−1

∑
j=0

(i, j)2 p(i, j) (1)

where P refers to the total number of pixels in the lesion region/regions, (i, j) denotes any
coordinate in the lesion region/regions, and p(i, j) represents the color value of the point
with the coordinate (i, j).

Area =
N

∑
x=0,y=0

f (x, y) (2)

where N refers to the lesion region/regions, and f (x, y) represents the unit coordinate of the
lesion region/regions.

Perimeter =
N

∑
i=1

∆li (3)
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where N refers to the lesion region/regions, and ∆li represents the unit coordinate on the
edge contours of all the lesion regions.

All the color, texture, and shape features were extracted by using programming
with the MATLAB R2019b software. To conveniently present the extracted features, each
extracted feature in this study was given a name and a number, as shown in Table 2.
The features numbered 1–30 were color features, the ones numbered 31–129 were texture
features, and the ones numbered 130–140 were shape features. In Table 2, the feature names
r, g, and b denote the three color ratios of the R, G, and B components, respectively. The
feature name µ1RGB_R denotes the first moment of the gray image of the R component in
the RGB color space; the feature name Φ1RGB_R denotes the first Hu invariant moment
of the gray image of the R component in the RGB color space; the feature name Contrast
RGB_R denotes the contrast of the gray image of the R component in the RGB color space,
the feature name Φ1shape denotes the first Hu invariant moment of a segmented binary
lesion image, and the rest can be deduced by analogy.

2.4. Feature Selection of the Segmented Lesion Images

To improve the speed of data processing and the model identification, feature se-
lections were carried out using a combination of the ReliefF, 1R, CFS, and PCA feature
selection methods and the SVM, BPNN, and RF modeling methods based on the multi-
variety disease image dataset consisting of 1332 images (including 1020 images of stripe
rust and 312 images of leaf rust) acquired in the wheat field in Shangzhuang Experimental
Station, and the multi-variety disease image dataset consisting of 7280 images (including
3732 images of stripe rust and 3548 images of leaf rust) acquired under laboratory environ-
mental conditions, respectively. Before feature selection, the values of all features extracted
from the segmented lesion images were normalized to the range of 0–1 by using the fol-
lowing formula: Xi

norm =
(
Xi − Xi

min
)
/
(
Xi

max − Xi
min

)
, where Xi

norm was the value of the
ith feature after normalization, Xi was the value of the ith feature before normalization,
Xi

min was the minimum value of the ith feature before normalization, and Xi
max was the

maximum value of the ith feature before normalization.
Firstly, the feature selection methods ReliefF, 1R, CFS, and PCA were used to con-

duct the feature selections based on the multi-variety disease image dataset consisting
of the images acquired in the wheat field in Shangzhuang Experimental Station, and the
multi-variety disease image dataset consisting of the images acquired under laboratory
environmental conditions, respectively. The ReliefF, 1R, and CFS methods were imple-
mented with the default values for the parameters involved in the software Weka (Waikato
Environment for Knowledge Analysis) 3.8.5, developed by The University of Waikato in
Hamilton, New Zealand.

For the ReliefF method, the importance ranking of each extracted feature was achieved
according to the correlation between the feature and the categories. For the 1R method, the
importance ranking of each feature was obtained according to the classification accuracy of
the 1R classifier, which was built based on the corresponding single feature. For the ReliefF
and 1R methods, a feature with a higher ranking is more important for disease identification,
indicating that it is more likely that better identification results will be achieved if disease-
identification modeling is conducted based on this feature. For the CFS method, the best
combination of features used for disease-identification modeling can be directly obtained.
To obtain the best feature combination, the correlation between the combination and the
categories should be as high as possible, and the correlations among the features in the
combination should be as low as possible. Feature selection using the PCA method was
implemented in the MATLAB R2019b software in this study. In this software, the corrcoef
function was used to calculate the correlation coefficient matrix, and then the eigenvalues,
contribution rate of each principal component, and cumulative contribution rates of the
principal components were calculated. A cumulative contribution rate greater than 95%
was treated as the criterion for selecting the number of principal components.
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Table 2. Names and feature numbers of the color, texture, and shape features extracted in this study.

Feature
Name

Feature
Number

Feature
Name

Feature
Number

Feature
Name

Feature
Number

Feature
Name

Feature
Number

Feature
Name

Feature
Number

r 1 Φ1RGB_R 31 Φ3HSV_S 61 Φ5Lab_b 91 Homogeneity
Lab_L 121

g 2 Φ2RGB_R 32 Φ4HSV_S 62 Φ6Lab_b 92 Contrast
Lab_a 122

b 3 Φ3RGB_R 33 Φ5HSV_S 63 Φ7Lab_b 93 Correlation
Lab_a 123

µ1RGB_R 4 Φ4RGB_R 34 Φ6HSV_S 64 Contrast
RGB_R 94 Energy

Lab_a 124

µ2RGB_R 5 Φ5RGB_R 35 Φ7HSV_S 65 Correlation
RGB_R 95 Homogeneity

Lab_a 125

µ3RGB_R 6 Φ6RGB_R 36 Φ1HSV_V 66 Energy
RGB_R 96 Contrast

Lab_b 126

µ1RGB_G 7 Φ7RGB_R 37 Φ2HSV_V 67 Homogeneity
RGB_R 97 Correlation

Lab_b 127

µ2RGB_G 8 Φ1RGB_G 38 Φ3HSV_V 68 Contrast
RGB_G 98 Energy

Lab_b 128

µ3RGB_G 9 Φ2RGB_G 39 Φ4HSV_V 69 Correlation
RGB_G 99 Homogeneity

Lab_b 129

µ1RGB_B 10 Φ3RGB_G 40 Φ5HSV_V 70 Energy
RGB_G 100 Area 130

µ2RGB_B 11 Φ4RGB_G 41 Φ6HSV_V 71 Homogeneity
RGB_G 101 Perimeter 131

µ3RGB_B 12 Φ5RGB_G 42 Φ7HSV_V 72 Contrast
RGB_B 102 Circularity 132

µ1HSV_H 13 Φ6RGB_G 43 Φ1Lab_L 73 Correlation
RGB_B 103 Complexity 133

µ2HSV_H 14 Φ7RGB_G 44 Φ2Lab_L 74 Energy
RGB_B 104 Φ1shape 134

µ3HSV_H 15 Φ1RGB_B 45 Φ3Lab_L 75 Homogeneity
RGB_B 105 Φ2shape 135

µ1HSV_S 16 Φ2RGB_B 46 Φ4Lab_L 76 Contrast
HSV_H 106 Φ3shape 136

µ2HSV_S 17 Φ3RGB_B 47 Φ5Lab_L 77 Correlation
HSV_H 107 Φ4shape 137

µ3HSV_S 18 Φ4RGB_B 48 Φ6Lab_L 78 Energy
HSV_H 108 Φ5shape 138

µ1HSV_V 19 Φ5RGB_B 49 Φ7Lab_L 79 Homogeneity
HSV_H 109 Φ6shape 139

µ2HSV_V 20 Φ6RGB_B 50 Φ1Lab_a 80 Contrast
HSV_S 110 Φ7shape 140

µ2HSV_V 21 Φ7RGB_B 51 Φ2Lab_a 81 Correlation
HSV_S 111

µ1Lab_L 22 Φ1HSV_H 52 Φ3Lab_a 82 Energy
HSV_S 112

µ2Lab_L 23 Φ2HSV_H 53 Φ4Lab_a 83 Homogeneity
HSV_S 113

µ3Lab_L 24 Φ3HSV_H 54 Φ5Lab_a 84 Contrast
HSV_V 114

µ1Lab_a 25 Φ4HSV_H 55 Φ6Lab_a 85 Correlation
HSV_V 115

µ2Lab_a 26 Φ5HSV_H 56 Φ7Lab_a 86 Energy
HSV_V 116

µ3Lab_a 27 Φ6HSV_H 57 Φ1Lab_b 87 Homogeneity
HSV_V 117

µ1Lab_b 28 Φ7HSV_H 58 Φ2Lab_b 88 Contrast
Lab_L 118

µ2Lab_b 29 Φ1HSV_S 59 Φ3Lab_b 89 Correlation
Lab_L 119

µ3Lab_b 30 Φ2HSV_S 60 Φ4Lab_b 90 Energy
Lab_L 120

The multi-variety disease images acquired in the wheat field in Shangzhuang Experi-
mental Station and the multi-variety disease images acquired under laboratory environ-
mental conditions were randomly divided into the training sets and the corresponding
testing sets in ratios (training set: testing set) equal to 2:1. The training set constructed based
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on images acquired in the wheat field in Shangzhuang Experimental Station consisted of
888 disease images, including 680 images of wheat stripe rust and 208 images of wheat leaf
rust; the corresponding testing set consisted of 444 disease images, including 340 images
of wheat stripe rust and 104 images of wheat leaf rust. The training set constructed based
on images acquired under laboratory environmental conditions consisted of 4853 disease
images, including 2488 images of wheat stripe rust and 2365 images of wheat leaf rust;
the corresponding testing set consisted of 2427 disease images, including 1244 images of
wheat stripe rust and 1183 images of wheat leaf rust. A total of 475 multi-variety disease
images of wheat stripe rust, acquired in the wheat field in Gangu Testing Station, were
used to construct an additional testing set. With the features selected using the ReliefF,
1R, CFS, and PCA methods, the optimal SVM, BPNN, and RF models for disease identi-
fication were built based on the multi-variety disease images acquired in the wheat field
in Shangzhuang Experimental Station and the multi-variety disease images acquired un-
der laboratory environmental conditions, respectively. The identification accuracies of
the corresponding training sets, testing sets, and additional testing set were calculated.
Based on the criterion of using as few features as possible, and trying to include the three
kinds of color, texture, and shape features under the premise of ensuring the identification
performances of the built disease identification models, the optimal feature combinations
were selected through comprehensive comparisons. Based on the corresponding selected
optimal feature combinations, the SVM, BPNN, and RF modeling methods were used to
build different individual-variety and multi-variety disease identification models in the
subsequent research.

The SVM models for disease identification were built using the C-SVM in the LIBSVM-
3.23 package [53]. The RBF function was chosen as the kernel function. The grid search
algorithm and the 3-fold cross-validation method were applied to search the optimal
penalty parameter C (Cbest) and the optimal kernel function parameter g (gbest). When the
identification accuracy reached the highest level, the values of C and g were treated as
optimal parameters for SVM modeling. The optimal SVM model for disease identification
was built by using Cbest, gbest, and other parameters, with the default values.

The disease identification BPNN models with three layers, including an input layer,
hidden layer, and output layer, were built by using the neural network toolbox in the
MATLAB software. To obtain the optimal BPNN model for disease identification, the
transfer function tansig was used in both the hidden layer and the output layer; the
maximum number of epochs, the learning rate, and the goal of training performance
were set to 3000, 0.05, and 0.01, respectively, and the default values were used for all the
other parameters.

The RF modeling method makes voting decisions by constructing multiple decision
trees. In this study, to build different disease identification RF models, the number of
decision trees was set to 10, 20, 30, 40, 50, 60, 70, 80, and 100, respectively, and the default
values were used for the other parameters. The optimal number of decision trees was
determined according to the disease identification performances of the built RF models.
Finally, the optimal RF model for disease identification was built using the optimal number
of decision trees and other parameters with default values.

2.5. Building of Disease Identification Models of Stripe Rust and Leaf Rust on Different
Wheat Varieties
2.5.1. Image Datasets for Building Disease Identification Models

For the single-leaf images of stripe rust and leaf rust on Beijing 0045, Mingxian 169,
and Nongda 211 acquired in the wheat field in Shangzhuang Experimental Station, to
ensure balance in the numbers of disease images of stripe rust and leaf rust used for disease-
identification modeling, the disease images of wheat stripe rust on Beijing 0045, Mingxian
169, and Nongda 211 were evenly divided into two, four, and three parts, respectively,
according to severity levels. Then, the images in individual parts of different severity levels
of the same wheat varieties were combined into new image sub-datasets; thus, two image
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sub-datasets of Beijing 0045, four image sub-datasets of Mingxian 169, and three image
sub-datasets of Nongda 211 were constructed. Subsequently, the images in each image
sub-dataset were combined with the leaf rust images to construct a new dataset. Finally,
a total of nine new image datasets were constructed, consisting of the stripe rust and
leaf rust images. For the single-leaf images of stripe rust and leaf rust on Beijing 0045,
Mingxian 169, and Nongda 211 acquired under laboratory environmental conditions, the
stripe rust and leaf rust images of the corresponding wheat varieties formed three new
image datasets. To build the individual-variety disease identification models, each of
the 12 image datasets of wheat stripe rust and wheat leaf rust was divided into training
sets and testing sets with ratios equal to 2:1 according to the different severity levels of
each disease, and then the disease images in the training set and the testing set for each
severity level of the two diseases were recombined into new training sets and testing sets,
ensuring that the training set and the corresponding testing set used to build each model
contained disease images of different severity levels. For the disease images acquired in
the wheat field in Shangzhuang Experimental Station, two training sets (Training Set 1
and Training Set 2) and two corresponding testing sets (Testing Set 1 and Testing Set 2) of
Beijing 0045, four training sets (Training Set 1, Training Set 2, Training Set 3, and Training
Set 4) and four corresponding testing sets (Testing Set 1, Testing Set 2, Testing Set 3, and
Testing Set 4) of Mingxian 169, and three training sets (Training Set 1, Training Set 2, and
Training Set 3) and three corresponding testing sets (Testing Set 1, Testing Set 2, and Testing
Set 3) of Nongda 211 were constructed, respectively. For the disease images acquired
under laboratory environmental conditions, one training set and one corresponding testing
set were constructed for Beijing 0045, Mingxian 169, and Nongda 211, respectively. The
training and testing sets constructed to build the disease identification models using the
acquired images of stripe rust and leaf rust on different wheat varieties from the wheat
field in Shangzhuang Experimental Station and under laboratory environmental conditions
are shown in Table 3.

Table 3. Training and testing sets constructed for disease-identification modeling by using the
acquired images of stripe rust and leaf rust on different wheat varieties from the wheat field in
Shangzhuang Experimental Station and the controlled-climate chamber.

Diseased Leaf
Collection
Location

Wheat Variety

Training Set Testing Set Corresponding to the Training Set

Dataset

Image
Quantity of

Wheat
Stripe Rust

Image
Quantity
of Wheat
Leaf Rust

Total
Quantity Dataset

Image
Quantity of

Wheat
Stripe Rust

Image
Quantity of

Wheat
Leaf Rust

Total
Quantity

The wheat
field in

Shangzhuang
Experimental

Station

Beijing 0045 Training Set 1 115 113 228 Testing Set 1 57 57 114
Training Set 2 115 113 228 Testing Set 2 58 57 115

Mingxian 169

Training Set 1 75 67 142 Testing Set 1 37 34 71
Training Set 2 75 67 142 Testing Set 2 37 34 71
Training Set 3 75 67 142 Testing Set 3 37 34 71
Training Set 4 75 67 142 Testing Set 4 37 34 71

Nongda 211
Training Set 1 50 27 77 Testing Set 1 25 14 39
Training Set 2 50 27 77 Testing Set 2 26 14 40
Training Set 3 50 27 77 Testing Set 3 26 14 40

The controlled-
climate

chamber

Beijing 0045 Training set 690 839 1529 Testing set 345 419 764
Mingxian 169 Training set 982 836 1818 Testing set 491 418 909
Nongda 211 Training set 816 691 1507 Testing set 408 345 753

To build the multi-variety disease identification models based on the disease images
of the different wheat varieties acquired in the wheat field in Shangzhuang Experimental
Station and under laboratory environmental conditions, the training sets and the corre-
sponding testing sets constructed using images of stripe rust and leaf rust acquired in the
wheat field in Shangzhuang Experimental Station and under laboratory environmental
conditions were combined into a new training set and testing set, respectively. The new
training set was composed of 5741 disease images, including 3168 images of stripe rust and
2573 images of leaf rust, and the new testing set was composed of 2871 disease images,
including 1584 images of stripe rust and 1287 images of leaf rust. The disease identifica-
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tion models built based on the new training set were used to identify the images in the
corresponding new testing set and the testing sets consisting of the individual variety
disease images of the different wheat varieties acquired in the wheat field in Shangzhuang
Experimental Station and under laboratory environmental conditions, with the aim of
comparing the models’ identification performances.

When building the individual-variety disease identification models and multi-variety
disease identification models, a total of 475 multi-variety disease images of wheat stripe rust
acquired in the wheat field in Gangu Testing Station were used to construct an additional
testing set to test the identification performance of each model.

2.5.2. Building of the Individual-Variety Disease Identification Models Based on the
Disease Images of the Different Wheat Varieties Acquired in the Wheat Field in
Shangzhuang Experimental Station

With the optimal feature combinations selected by using the feature selection methods
ReliefF, 1R, CFS, and PCA, combined with the SVM, BPNN, and RF modeling methods
based on the multi-variety disease images acquired in the wheat field in Shangzhuang
Experimental Station, the individual-variety disease identification models of the images of
different wheat varieties acquired in the wheat field in Shangzhuang Experimental Station
were built using the SVM, BPNN, and RF modeling methods, as described above. By using
the individual-variety disease identification SVM, BPNN, and RF models built based on
different training sets of the wheat varieties Beijing 0045, Mingxian 169, and Nongda 211
consisting of the disease images acquired in the wheat field in Shangzhuang Experimental
Station, the images in the individual-variety disease image testing sets acquired in the wheat
field in Shangzhuang Experimental Station and under laboratory environmental conditions
and the additional testing set consisting of the multi-variety disease images acquired in
the wheat field in Gangu Testing Station were identified. The identification performances
of the built models for the individual-variety disease images acquired in the wheat field
in Shangzhuang Experimental Station and under laboratory environmental conditions
as well as the multi-variety disease images acquired in the wheat field in Gangu Testing
Station were evaluated and analyzed. The identification accuracies of the individual-variety
disease identification models built based on the different training sets were calculated for
the corresponding training sets and the different testing sets, respectively.

2.5.3. Building of the Individual-Variety Disease Identification Models Based on the
Disease Images of the Different Wheat Varieties Acquired under Laboratory
Environmental Conditions

With the optimal feature combinations selected using the feature selection methods Re-
liefF, 1R, CFS, and PCA, combined with the SVM, BPNN, and RF modeling methods based
on the multi-variety disease images acquired under laboratory environmental conditions,
the individual-variety disease identification models of the images of the different wheat
varieties acquired under laboratory environmental conditions were built using the SVM,
BPNN, and RF modeling methods, as described above. The individual-variety disease
identification SVM, BPNN, and RF models, built based on the different training sets of
the wheat varieties Beijing 0045, Mingxian 169, and Nongda 211, consisting of the disease
images acquired under laboratory environmental conditions, were used to identify the
images in the individual-variety disease image testing sets acquired in the wheat field in
Shangzhuang Experimental Station and under laboratory environmental conditions, as
well as the additional testing set consisting of the multi-variety disease images acquired
in the wheat field in Gangu Testing Station. The identification performances of the built
models regarding the individual-variety disease images acquired in the wheat field in
Shangzhuang Experimental Station and under laboratory environmental conditions, and
the multi-variety disease images acquired in the wheat field in Gangu Testing Station, were
investigated. By using the individual-variety disease identification models built based on
the different training sets, the identification accuracies of the corresponding training sets
and the different testing sets were calculated, respectively.
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2.5.4. Building of the Multi-Variety Disease Identification Models Based on the Disease
Images of Different Wheat Varieties Acquired in the Wheat Field in Shangzhuang
Experimental Station and under Laboratory Environmental Conditions

The optimal feature combinations were selected by using the feature selection methods
ReliefF, 1R, CFS, and PCA, combined with the SVM, BPNN, and RF modeling methods
based on the multi-variety disease images acquired in the wheat field in Shangzhuang
Experimental Station. The optimal feature combinations were selected using the feature
selection methods ReliefF, 1R, CFS, and PCA, combined with the SVM, BPNN, and RF
modeling methods based on the multi-variety disease images acquired under laboratory
environmental conditions. These were merged into new feature combinations according
to the combined feature selection methods. With the new feature combinations, the multi-
variety disease identification models based on the training set, composed of multi-variety
disease images acquired in the wheat field in Shangzhuang Experimental Station and
under laboratory environmental conditions, were built using the corresponding modeling
methods that were used for feature selection. The disease identification SVM, BPNN, and
RF models were built as described above. The disease identification SVM, BPNN, and
RF models were used to identify the images in the training set composed of multi-variety
disease images acquired in the wheat field in Shangzhuang Experimental Station and under
laboratory environmental conditions, the individual-variety disease image testing sets
acquired in the wheat field in Shangzhuang Experimental Station and under laboratory
environmental conditions, and the additional testing set consisting of the multi-variety
disease images acquired in the wheat field in Gangu Testing Station. The identification
accuracies of the training set composed of multi-variety disease images acquired in the
wheat field in Shangzhuang Experimental Station and under laboratory environmental
conditions, the individual-variety disease image testing sets acquired in the wheat field in
Shangzhuang Experimental Station and under laboratory environmental conditions, and
the additional testing set consisting of the multi-variety disease images acquired in the
wheat field in Gangu Testing Station, were calculated, respectively, and the identification
performances of the built models on the disease images in the corresponding testing sets
were investigated.

3. Results
3.1. Feature Selection Results of the Segmented Lesion Images

Feature selection results, as shown in Table 4, were achieved using the ReliefF, 1R,
and CFS methods based on the multi-variety disease image dataset consisting of images
acquired in the wheat field in Shangzhuang Experimental Station, and the multi-variety
disease image dataset consisting of the images acquired under laboratory environmental
conditions, respectively. Looking at the same disease image dataset, there were great
differences among the feature selection results obtained using different feature selection
methods. Based on the different disease image datasets, the feature selection results ob-
tained using the same feature selection method were also greatly different. The feature
selection results obtained by using the PCA method, based on the multi-variety disease
image dataset consisting of the images acquired in the wheat field in Shangzhuang Ex-
perimental Station, showed that the cumulative contribution rate of the first 20 principal
components reached up to 95.40%. The feature selection results obtained by using the PCA
method, based on the multi-variety disease image dataset consisting of the images acquired
under laboratory environmental conditions, showed that the cumulative contribution rate
of the first 21 principal components reached 95.28%. Based on the multi-variety disease
image dataset consisting of images acquired in the wheat field in Shangzhuang Experi-
mental Station and the multi-variety disease image dataset consisting of images acquired
under laboratory environmental conditions, the best feature combinations obtained by
using the CFS method consisted of five features and two features, respectively. Since the
best feature combinations only consisted of a few features, the features selected by using
the CFS method were not used for disease identification modeling. In this study, with
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feature combinations consisting of the top 13, 20, and 27 features, selected by using the
ReliefF and 1R methods, the multi-variety disease identification models were built using
the SVM, BPNN, and RF modeling methods based on the training sets constructed using
the multi-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station and the multi-variety disease images acquired under laboratory environmental
conditions, with ratios of 2:1, respectively. With the first 20 principal components selected
by using the PCA method, the multi-variety disease identification models were built using
the SVM, BPNN, and RF modeling methods based on the training set constructed using
the multi-variety disease images acquired in the wheat field in Shangzhuang Experimen-
tal Station, with a ratio of 2:1. With the first 21 principal components selected using the
PCA method, the multi-variety disease identification models were built by using the SVM,
BPNN, and RF modeling methods, based on the training set constructed using the multi-
variety disease images acquired under laboratory environmental conditions, with a ratio
of 2:1. The testing sets constructed using the multi-variety disease images acquired in the
wheat field in Shangzhuang Experimental Station and the multi-variety disease images
acquired under laboratory environmental conditions with ratios of 2:1, and the additional
testing set consisting of the multi-variety disease images acquired in the wheat field in
Gangu Testing Station, were used for model verification. The optimal feature combinations
were determined by comprehensive comparisons, as described above.

Table 4. Feature selection results obtained by using the ReliefF, 1R, and CFS methods, based on
the multi-variety disease image dataset consisting of the images acquired in the wheat field in
Shangzhuang Experimental Station, and the multi-variety disease image dataset consisting of the
images acquired under laboratory environmental conditions, respectively.

Disease Image Dataset Feature Selection Method Feature Selection Results

The multi-variety disease image
dataset consisting of the images

acquired in the wheat field
in Shangzhuang

Experimental Station

ReliefF

107, 111, 2, 110, 13, 132, 18, 106, 16, 103, 15, 95, 99, 119, 3, 17, 19, 115, 27, 1,
104, 14, 116, 127, 96, 21, 109, 100, 22, 120, 4, 29, 7, 133, 10, 87, 126, 11, 28, 25, 5,
123, 20, 8, 23, 88, 9, 24, 112, 80, 105, 108, 117, 26, 6, 113, 128, 101, 97, 121, 94,
118, 98, 114, 131, 12, 122, 129, 125, 102, 66, 30, 59, 45, 52, 31, 38, 81, 134, 124,
73, 130, 90, 53, 60, 92, 67, 32, 46, 39, 74, 89, 83, 135, 82, 48, 47, 62, 61, 136, 137,
85, 55, 54, 91, 40, 68, 33, 41, 69, 75, 34, 76, 49, 72, 138, 79, 37, 44, 56, 63, 65, 58,

35, 70, 77, 42, 140, 93, 36, 71, 57, 64, 86, 78, 43, 50, 51, 84, 139

1 R

107, 21, 24, 111, 19, 9, 131, 18, 6, 13, 133, 130, 132, 95, 115, 7, 15, 119, 22, 16, 99,
4, 12, 35, 134, 127, 135, 38, 74, 56, 39, 32, 138, 73, 10, 31, 30, 66, 100, 77, 70, 28,
120, 79, 110, 41, 20, 103, 104, 67, 140, 116, 76, 42, 87, 106, 44, 137, 96, 63, 72, 34,
139, 75, 136, 78, 45, 40, 51, 46, 37, 49, 68, 48, 5, 71, 43, 50, 123, 97, 8, 69, 33, 122,
105, 36, 27, 90, 65, 26, 29, 88, 1, 47, 109, 82, 58, 101, 108, 98, 2, 52, 124, 128, 54,
55, 117, 93, 23, 53, 114, 86, 102, 121, 85, 126, 125, 84, 3, 62, 92, 118, 112, 17, 89,

64, 25, 57, 80, 94, 59, 129, 83, 61, 14, 91, 113, 11, 81, 60
CFS 64, 67, 79, 86, 138

The multi-variety disease image
dataset consisting of the images

acquired under laboratory
environmental conditions

ReliefF

95, 115, 119, 17, 110, 123, 15, 99, 1, 13, 107, 18, 16, 103, 2, 8, 111, 3, 127, 11, 14,
23, 10, 27, 5, 134, 20, 112, 19, 31, 66, 38, 7, 73, 21, 6, 109, 132, 106, 113, 25, 22,
108, 45, 24, 117, 121, 97, 4, 80, 30, 101, 118, 131, 114, 9, 98, 94, 59, 124, 81, 88,
26, 12, 122, 104, 100, 52, 125, 116, 96, 120, 102, 105, 126, 133, 128, 129, 29, 28,
87, 82, 130, 89, 83, 135, 32, 67, 74, 39, 90, 85, 46, 92, 60, 53, 86, 84, 136, 51, 137,
44, 91, 79, 93, 72, 33, 68, 37, 34, 62, 75, 65, 69, 61, 40, 47, 58, 48, 76, 140, 41, 55,

54, 64, 57, 63, 49, 42, 77, 35, 70, 138, 56, 50, 43, 78, 71, 36, 139

1 R

45, 46, 38, 39, 134, 17, 73, 135, 74, 16, 15, 67, 31, 10, 66, 32, 52, 53, 50, 60, 59, 11,
43, 123, 78, 18, 139, 36, 102, 98, 71, 1, 89, 105, 114, 118, 104, 107, 101, 121, 90,
91, 57, 94, 27, 115, 95, 97, 47, 117, 120, 13, 100, 64, 116, 8, 48, 96, 128, 40, 2, 41,
7, 129, 119, 75, 92, 93, 126, 30, 130, 88, 137, 76, 136,28,33,99,3,12, 68, 127, 23,
140, 69, 108, 26, 87, 72, 34, 19, 65, 55, 138, 37, 44, 79, 131, 54, 61, 125, 29, 22,
122, 58, 35, 77, 62, 124, 70, 113, 42, 63, 109, 14, 25, 49, 80, 106, 84, 56, 21, 112,

111, 20, 81, 82, 4, 51, 132, 6, 110, 9, 24, 133, 85, 83, 5, 103, 86
CFS 37, 41

Note: For convenience, the feature numbers were used to represent the features, and the features corresponding to
the feature numbers are shown in Table 2. For the ReliefF or 1R method, the importance ranking of each extracted
feature was achieved.
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3.1.1. Feature Selection Results Using the Different Feature Selection Methods Combined
with the SVM Modeling Method

Disease identification results of the SVM models built with the top 13, 20, and
27 features, selected based on the multi-variety disease image dataset consisting of images
acquired in the wheat field in Shangzhuang Experimental Station by using ReliefF and 1R,
are shown in Table 5. For the SVM models, the identification accuracies of the training set
and the testing set constructed by using the multi-variety disease images acquired in the
wheat field in Shangzhuang Experimental Station were 98.87–100.00%, and the identifica-
tion accuracies of the testing set consisting of the multi-variety disease images acquired
under laboratory environmental conditions were 56.65–69.67%. For the built SVM model
(both Cbest and gbest were 1.320) with the top 13 features in the importance ranking for
disease identification, selected based on the multi-variety disease image dataset consisting
of images acquired in the wheat field in Shangzhuang Experimental Station by using the
1R method, the identification accuracies of the training set and testing set constructed using
the multi-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station both reached 100.00%. For the built SVM model (both Cbest and gbest were 0.021)
with the first 20 principal components selected based on the multi-variety disease image
dataset consisting of images acquired in the wheat field in Shangzhuang Experimental
Station using the PCA method, the identification accuracies of the training set and the
testing set constructed using the multi-variety disease images acquired in the wheat field
in Shangzhuang Experimental Station were 99.89% and 100.00%, respectively; the identifi-
cation accuracy of the testing set consisting of the multi-variety disease images acquired
under laboratory environmental conditions was only 39.31%. For the SVM models built
with the features selected based on the multi-variety disease image dataset consisting of
images acquired in the wheat field in Shangzhuang Experimental Station using the ReliefF,
1R, and PCA methods, the identification accuracies of the additional testing set consisting of
the multi-variety disease images acquired in the wheat field in Gangu Testing Station were
99.58–100.00%. According to comprehensive comparisons of the results, the optimal feature
combination, selected by using the SVM modeling method, for building individual-variety
disease identification models based on disease images of different wheat varieties acquired
in the wheat field in Shangzhuang Experimental Station, was composed of the 13 most
important features for disease identification. These were selected based on the multi-variety
disease image dataset consisting of images acquired in the wheat field in Shangzhuang
Experimental Station using the 1R method.

Table 5. Disease identification results of the SVM models built with features selected based on the
multi-variety disease image dataset consisting of images acquired in the wheat field in Shangzhuang
Experimental Station using feature selection methods including ReliefF and 1R, respectively.

Feature
Selection
Method

Number
of

Selected
Features

Cbest
Value

gbest
Value

Identification Accuracy of
the Training Set

Consisting of the
Multi-Variety Disease

Images Acquired in the
Wheat Field in
Shangzhuang

Experimental Station (%)

Identification Accuracy of
the Testing Set

Consisting of the
Multi-Variety Disease

Images Acquired in the
Wheat Field in
Shangzhuang

Experimental Station (%)

Identification
Accuracy of the

Testing Set
Consisting of the

Multi-Variety
Disease Images
Acquired under

Laboratory
Environmental
Conditions (%)

Identification
Accuracy of the

Additional Testing
Set Consisting of the

Multi-Variety
Disease Images
Acquired in the
Wheat Field in
Gangu Testing

Station (%)

ReliefF
13 36.758 0.758 100.00 98.87 64.31 99.58
20 5.278 0.435 100.00 100.00 63.90 99.79
27 12.126 0.144 100.00 100.00 69.67 100.00

1R
13 1.320 1.320 100.00 100.00 56.65 100.00
20 1.741 1.000 100.00 99.55 59.70 100.00
27 64.000 0.083 100.00 99.77 62.26 100.00

Disease identification results of the SVM models built with the top 13, 20, and
27 features, selected based on the multi-variety disease image dataset consisting of images
acquired under laboratory environmental conditions by using feature selection methods
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including ReliefF and 1R, are shown in Table 6. For the built SVM models, the identification
accuracies of the training set and the testing set constructed using the multi-variety disease
images acquired under laboratory environmental conditions were 99.67–100.00%, and the
identification accuracies of the testing set consisting of the multi-variety disease images
acquired in the wheat field in Shangzhuang Experimental Station were low. For the built
SVM model (Cbest = 256.000 and gbest = 1.320) with the top 13 features (including color,
texture, and shape features) in the importance ranking for disease identification selected
based on the multi-variety disease image dataset consisting of images acquired under
laboratory environmental conditions using the 1R method, the identification accuracies of
the training set and the testing set constructed using multi-variety disease images acquired
under laboratory environmental conditions were 99.88% and 99.67%, respectively. For the
SVM model (Cbest = 0.027 and gbest = 0.036) built with the first 21 principal components se-
lected based on the multi-variety disease image dataset consisting of images acquired under
laboratory environmental conditions using the PCA method, the identification accuracies
of the training set and the testing set constructed using the multi-variety disease images
acquired under laboratory environmental conditions were 99.98% and 52.49%, respectively;
the identification accuracy of the testing set consisting of the multi-variety disease images
acquired in the wheat field in Shangzhuang Experimental Station was 23.42%, and the
identification accuracy of the additional testing set consisting of the multi-variety disease
images acquired in the wheat field in Gangu Testing Station was only 3.57%. According
to comprehensive comparisons of the results, the optimal feature combination, selected
by using the SVM modeling method for building individual-variety disease identification
models based on disease images of different wheat varieties acquired under laboratory
environmental conditions, was composed of the 13 most important features for disease iden-
tification. These were selected based on the multi-variety disease image dataset consisting
of images acquired under laboratory environmental conditions using the 1R method.

Table 6. Disease identification results of the SVM models built with features selected based on the
multi-variety disease image dataset consisting of images acquired under laboratory environmental
conditions using feature selection methods including ReliefF and 1R, respectively.

Feature
Selection
Method

Number of
Selected
Features

Cbest Value gbest Value

Identification
Accuracy of the

Training Set
Consisting of the

Multi-Variety
Disease Images
Acquired under

Laboratory
Environmental
Conditions (%)

Identification
Accuracy of the

Testing Set
Consisting of the

Multi-Variety
Disease Images
Acquired under

Laboratory
Environmental
Conditions (%)

Identification
Accuracy of the

Testing Set
Consisting of the

Multi-Variety
Disease Images
Acquired in the
Wheat Field in
Shangzhuang
Experimental

Station (%)

Identification
Accuracy of the

Additional Testing
Set Consisting of
the Multi-variety
Disease Images
Acquired in the
Wheat Field in
Gangu Testing

Station (%)

ReliefF
13 12.126 1.000 99.92 99.92 23.42 84.63
20 21.112 0.190 100.00 100.00 26.35 100.00
27 4.000 0.574 100.00 100.00 23.87 16.63

1R
13 256.000 1.320 99.88 99.67 43.69 70.53
20 48.503 0.109 99.96 99.96 76.58 4.00
27 1.320 0.083 100.00 99.92 64.64 99.16

3.1.2. Feature Selection Results Using the Different Feature Selection Methods Combined
with the BPNN Modeling Method

Disease identification results of the BPNN models built with the top 13, 20, and
27 features selected based on the multi-variety disease image dataset consisting of images
acquired in the wheat field in Shangzhuang Experimental Station using the ReliefF and
1R methods, respectively, are shown in Table 7. For the built optimal BPNN models, the
identification accuracies of the training set and the testing set constructed using the multi-
variety disease images acquired in the wheat field in Shangzhuang Experimental Station
were 97.52–99.66%, and the identification accuracies of the testing set consisting of the
multi-variety disease images acquired under laboratory environmental conditions were
3.96–52.37%. For the optimal BPNN model, built with the top 13 features in the importance
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ranking for disease identification selected based on the multi-variety disease image dataset
consisting of images acquired in the wheat field in Shangzhuang Experimental Station
using the 1R method, the identification accuracies of the training set and the testing set con-
structed using the multi-variety disease images acquired in the wheat field in Shangzhuang
Experimental Station were 99.44% and 98.42%, respectively. The identification accuracy
of the additional testing set consisting of the multi-variety disease images acquired in the
wheat field in Gangu Testing Station was 96.21%. For the optimal BPNN model, built
with the first 20 principal components selected based on the multi-variety disease image
dataset consisting of images acquired in the wheat field in Shangzhuang Experimental
Station using the PCA method, the identification accuracies of the training set and the
testing set constructed using the multi-variety disease images acquired in the wheat field in
Shangzhuang Experimental Station were 99.89% and 95.50%, respectively; the identification
accuracy of the additional testing set consisting of the multi-variety disease images acquired
in the wheat field in Gangu Testing Station was 98.95%, and the identification accuracy of
the testing set consisting of the multi-variety disease images acquired under laboratory
environmental conditions was only 20.11%. According to comprehensive comparisons of
the results, the optimal feature combination, selected using the BPNN modeling method
for building individual-variety disease identification models based on disease images of
different wheat varieties acquired in the wheat field in Shangzhuang Experimental Station,
comprised the 13 most important features for disease identification, selected based on the
multi-variety disease image dataset consisting of images acquired in the wheat field in
Shangzhuang Experimental Station using the 1R method.

Table 7. Disease identification results of the BPNN models built with features selected based on the
multi-variety disease image dataset consisting of images acquired in the wheat field in Shangzhuang
Experimental Station using feature selection methods including ReliefF and 1R, respectively.

Feature
Selection
Method

Number of
Selected
Features

Identification Accuracy of the
Training Set Consisting of the
Multi-Variety Disease Images
Acquired in the Wheat Field

in Shangzhuang Experimental
Station (%)

Identification Accuracy of the
Testing Set Consisting of the
Multi-Variety Disease Images
Acquired in the Wheat Field

in Shangzhuang Experimental
Station (%)

Identification Accuracy
of the Testing Set
Consisting of the

Multi-Variety Disease
Images Acquired under

Laboratory
Environmental
Conditions (%)

Identification Accuracy
of the Additional

Testing Set Consisting
of the Multi-Variety

Disease Images
Acquired in the Wheat
Field in Gangu Testing

Station (%)

ReliefF
13 97.86 97.52 45.28 99.37
20 99.66 97.97 13.64 73.89
27 99.10 98.20 3.96 70.32

1R
13 99.44 98.42 43.88 96.21
20 99.66 99.55 52.37 94.32
27 99.32 99.10 11.37 77.89

The disease identification results of the BPNN models built with the top 13, 20, and
27 features, selected based on the multi-variety disease image dataset consisting of images
acquired under laboratory environmental conditions using the ReliefF and 1R methods,
respectively, are shown in Table 8. For the optimal BPNN models, the identification accura-
cies of the training set and the testing set constructed using the multi-variety disease images
acquired under laboratory environmental conditions were 98.64–99.92%, and the identifi-
cation accuracies of the testing set consisting of multi-variety disease images acquired in
the wheat field in Shangzhuang Experimental Station were low. For the optimal BPNN
model built with the top 27 features (including color, texture, and shape features) in the
importance ranking for disease identification selected based on the multi-variety disease
image dataset consisting of the images acquired under laboratory environmental conditions
using the 1R method, the identification accuracies of the training set and the testing set
constructed using multi-variety disease images acquired under laboratory environmental
conditions were 99.92% and 99.84%, respectively, and the identification accuracy of the
additional testing set consisting of multi-variety disease images acquired in the wheat
field in Gangu Testing Station was 99.37%. For the optimal BPNN model built with the
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first 21 principal components selected based on the multi-variety disease image dataset
consisting of images acquired under laboratory environmental conditions using the PCA
method, the identification accuracies of the training set and the testing set constructed using
the multi-variety disease images acquired under laboratory environmental conditions were
99.59% and 48.74%, respectively; the identification accuracies of the testing set consisting
of multi-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station and the additional testing set consisting of multi-variety disease images acquired in
the wheat field in Gangu Testing Station were 11.04% and 16.21%, respectively. According
to comprehensive comparisons of the results, the optimal feature combination, selected by
using the BPNN modeling method for building individual-variety disease identification
models based on disease images of different wheat varieties acquired under laboratory
environmental conditions, was composed of the 27 most important features for disease
identification selected based on the multi-variety disease image dataset consisting of images
acquired under laboratory environmental conditions using the 1R method.

Table 8. Disease identification results of the BPNN models built with features selected based on the
multi-variety disease image dataset consisting of images acquired under laboratory environmental
conditions using feature selection methods including ReliefF and 1R, respectively.

Feature Selection
Method

Number of
Selected Features

Identification Accuracy
of the Training Set
Consisting of the

Multi-Variety Disease
Images Acquired
Under Laboratory

Environmental
Conditions (%)

Identification Accuracy
of the Testing Set
Consisting of the

Multi-Variety Disease
Images Acquired
Under Laboratory

Environmental
Conditions (%)

Identification Accuracy of the
Testing Set Consisting of the
Multi-Variety Disease Images

Acquired in the Wheat Field in
Shangzhuang Experimental

Station (%)

Identification Accuracy
of The additional

Testing Set Consisting
of The Multi-Variety

Disease Images
Acquired in the Wheat
Field in Gangu Testing

Station (%)

ReliefF
13 99.34 99.18 22.75 64.42
20 98.89 98.76 22.52 0.84
27 99.42 99.26 22.52 0.42

1R
13 98.83 98.64 29.50 66.95
20 99.48 99.34 76.35 17.89
27 99.92 99.84 20.95 99.37

3.1.3. Feature Selection Results Using the Different Feature Selection Methods Combined
with the RF Modeling Method

Disease identification results of the RF models built with the top 13, 20, and 27 features,
selected based on the multi-variety disease image dataset consisting of images acquired in
the wheat field in Shangzhuang Experimental Station using the ReliefF and 1R methods,
respectively, are shown in Table 9. For the optimal RF models, the identification accuracies
of the training set and the testing set constructed using multi-variety disease images
acquired in the wheat field in Shangzhuang Experimental Station were 97.07–100.00%,
and the identification accuracies of the testing set consisting of multi-variety disease
images acquired under laboratory environmental conditions were 43.02–51.92%. For the
optimal RF model built with the top 13 features in the importance ranking for disease
identification selected based on the multi-variety disease image dataset consisting of images
acquired in the wheat field in Shangzhuang Experimental Station using the 1R method,
the identification accuracies of the training set and the testing set constructed using multi-
variety disease images acquired in the wheat field in Shangzhuang Experimental Station
were 100.00% and 99.10%, respectively, and the identification accuracy of the additional
testing set consisting of multi-variety disease images acquired in the wheat field in Gangu
Testing Station was 93.47%. For the optimal RF model built with the first 20 principal
components selected based on the multi-variety disease image dataset consisting of images
acquired in the wheat field in Shangzhuang Experimental Station using the PCA method,
the identification accuracies of the training set and the testing set constructed using multi-
variety disease images acquired in the wheat field in Shangzhuang Experimental Station
were 100.00% and 99.77%, respectively; the identification accuracy of the additional testing
set consisting of multi-variety disease images acquired in the wheat field in Gangu Testing
Station was 97.05%, and the identification accuracy of the testing set consisting of multi-
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variety disease images acquired under laboratory environmental conditions was only
25.05%. According to comprehensive comparisons of the results, the optimal feature
combination, selected by using the RF modeling method for building individual-variety
disease identification models based on disease images of different wheat varieties acquired
in the wheat field in Shangzhuang Experimental Station, comprised the 13 most important
features for disease identification selected based on the multi-variety disease image dataset
consisting of images acquired in the wheat field in Shangzhuang Experimental Station
using the 1R method.

Table 9. Disease identification results of the RF models built with features selected based on the
multi-variety disease image dataset consisting of images acquired in the wheat field in Shangzhuang
Experimental Station using feature selection methods including ReliefF and 1R, respectively.

Feature Selection
Method

Number of
Selected Features

Identification Accuracy of
the Training Set Consisting

of the Multi-Variety
Disease Images Acquired in

the Wheat Field in
Shangzhuang Experimental

Station (%)

Identification Accuracy of
the Testing Set Consisting

of the Multi-Variety
Disease Images Acquired in

the Wheat Field in
Shangzhuang Experimental

Station (%)

Identification Accuracy
of the Testing Set
Consisting of the

Multi-Variety Disease
Images Acquired
Under Laboratory

Environmental
Conditions (%)

Identification Accuracy
of the Additional

Testing Set Consisting
of the Multi-Variety

Disease Images
Acquired in the Wheat
Field in Gangu Testing

Station (%)

ReliefF
13 100.00 97.07 48.95 71.37
20 99.89 97.52 51.92 85.47
27 99.89 99.10 43.18 90.95

1R
13 100.00 99.10 48.21 93.47
20 100.00 99.55 45.04 95.37
27 100.00 99.32 43.02 92.42

The disease identification results of the RF models built with the top 13, 20, and
27 features, selected based on the multi-variety disease image dataset consisting of images
acquired under laboratory environmental conditions using the ReliefF and 1R methods,
respectively, are shown in Table 10. For the built optimal RF models, the identification
accuracies of the training set and the testing set constructed using the multi-variety disease
images acquired under laboratory environmental conditions were 97.32–100.00%, and
the identification accuracies of the testing set consisting of the multi-variety disease im-
ages acquired in the wheat field in Shangzhuang Experimental Station were 27.03–99.10%.
For the optimal RF model, built with the top 27 features (including color, texture, and
shape features) in the importance ranking for disease identification selected based on
the multi-variety disease image dataset consisting of images acquired under laboratory
environmental conditions using the 1R method, the identification accuracies of the training
set and the testing set constructed using the multi-variety disease images acquired under
laboratory environmental conditions were 100.00% and 99.37%, respectively; the identifica-
tion accuracy of the testing set consisting of the multi-variety disease images acquired in
the wheat field in Shangzhuang Experimental Station was 99.10%, and the identification
accuracy of the additional testing set consisting of the multi-variety disease images acquired
in the wheat field in Gangu Testing Station was 94.95%. For the optimal RF model built
with the first 21 principal components, selected based on the multi-variety disease image
dataset consisting of images acquired under laboratory environmental conditions using the
PCA method, the identification accuracies of the training set and the testing set constructed
using the multi-variety disease images acquired under laboratory environmental conditions
were 100.00% and 87.68%, respectively, and the identification accuracies of the testing set
consisting of the multi-variety disease images acquired in the wheat field in Shangzhuang
Experimental Station and the additional testing set consisting of the multi-variety disease
images acquired in the wheat field in Gangu Testing Station were 20.50% and 16.63%,
respectively. According to comprehensive comparisons of the results, the optimal feature
combination, selected using the RF modeling method for building individual-variety dis-
ease identification models based on disease images of different wheat varieties acquired
under laboratory environmental conditions, comprised the 27 most important features for
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disease identification, selected based on the multi-variety disease image dataset consisting
of images acquired under laboratory environmental conditions using the 1R method.

Table 10. Disease identification results of the RF models built with features selected based on the
multi-variety disease image dataset consisting of images acquired under laboratory environmental
conditions using feature selection methods including ReliefF and 1R, respectively.

Feature Selection
Method

Number of Selected
Features

Identification Accuracy
of the Training Set
Consisting of the

Multi-Variety Disease
Images Acquired
Under Laboratory

Environmental
Conditions (%)

Identification Accuracy
of the Testing Set
Consisting of the

Multi-Variety Disease
Images Acquired
Under Laboratory

Environmental
Conditions (%)

Identification Accuracy of
the Testing Set

Consisting of the
Multi-Variety Disease

Images Acquired in the
Wheat Field in
Shangzhuang

Experimental Station (%)

Identification Accuracy
of the Additional

Testing Set Consisting
of the Multi-Variety

Disease Images
Acquired in the Wheat
Field in Gangu Testing

Station (%)

ReliefF
13 100.00 97.36 39.64 67.16
20 99.88 97.32 39.41 52.00
27 100.00 99.01 27.03 59.58

1R
13 99.92 99.09 59.91 88.42
20 100.00 100.00 76.58 1.68
27 100.00 99.37 99.10 94.95

3.2. Identification Results of the Disease Identification Models of Stripe Rust and Leaf Rust Built
Based on Disease Images of the Different Wheat Varieties
3.2.1. Identification Results of the Individual-Variety Disease Identification Models Built
Based on Disease Images of the Different Wheat Varieties Acquired in the Field in
Shangzhuang Experimental Station

With the 13 most important features for disease identification selected based on the
multi-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station using the 1R method combined with the SVM, BPNN, and RF modeling methods,
the individual-variety disease identification models were built using the SVM, BPNN, and
RF modeling methods based on the two training sets (Training Set 1 and Training Set 2)
of Beijing 0045, consisting of disease images acquired in the wheat field in Shangzhuang
Experimental Station. The images in the corresponding two testing sets of Beijing 0045,
the four testing sets of Mingxian 169, and the three testing sets of Nongda 211 acquired
in the wheat field in Shangzhuang Experimental Station, the testing sets of Beijing 0045,
Mingxian 169, and Nongda 211 acquired under laboratory environmental conditions,
and the additional testing set consisting of the multi-variety disease images acquired
in the wheat field in Gangu Testing Station were identified using the built models; the
identification results are shown in Table 11. Based on Training Set 1 of Beijing 0045,
acquired in the wheat field in Shangzhuang Experimental Station, the optimal SVM model
was built with a Cbest value of 48.503 and gbest of 0.190. Based on Training Set 2 of Beijing
0045, acquired in the wheat field in Shangzhuang Experimental Station, the optimal SVM
model was built with the Cbest value of 48.503 and gbest of 0.250. Based on Training
Set 1 and Training Set 2 of Beijing 0045, acquired in the wheat field in Shangzhuang
Experimental Station, the optimal RF models were built with decision tree numbers equal
to 30 and 40, respectively. The identification accuracies of the testing sets of Beijing 0045
and Mingxian 169 acquired in the wheat field in Shangzhuang Experimental Station using
the SVM, BPNN, and RF models were 87.32–99.13%. In particular, the identification
accuracies of the testing sets of Beijing 0045 and Mingxian 169 acquired in the wheat
field in Shangzhuang Experimental Station using the SVM models were 98.59–99.13%. The
identification accuracies of the three testing sets of Nongda 211 acquired in the wheat field in
Shangzhuang Experimental Station using the SVM and RF models were 60.00–77.50%. For
the individual-variety disease image testing sets of the three wheat varieties acquired under
laboratory environmental conditions, the identification accuracies achieved using the SVM
models were 66.75–69.24%, those achieved using the BPNN models were 37.58–54.32%,
and those achieved using the RF models were 53.01–63.08%. For the SVM models based on
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Training Set 1 and Training Set 2 of Beijing 0045, acquired in the wheat field in Shangzhuang
Experimental Station, the identification accuracies of the additional testing set acquired in
Gangu Testing Station were 99.79% and 99.16%, respectively. The results showed that when
the SVM, BPNN, and RF models built based on the different training sets of Beijing 0045,
acquired in the wheat field in Shangzhuang Experimental Station, were used to identify the
individual-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station and under laboratory environmental conditions, there were great differences among
the identification accuracies of the corresponding testing sets. The results indicated that the
identification performances of the SVM models were optimal, and that image identification
of wheat stripe rust and wheat leaf rust on Beijing 0045 and Mingxian 169 in Shangzhuang
Experimental Station could be accomplished using the SVM models.

With the 13 most important features for disease identification, selected based on the
multi-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station using the 1R method combined with the SVM, BPNN, and RF modeling methods,
the individual-variety disease identification models were built using the SVM, BPNN,
and RF modeling methods based on the four training sets (Training Set 1, Training Set
2, Training Set 3, and Training Set 4) of Mingxian 169 consisting of the disease images
acquired in the wheat field in Shangzhuang Experimental Station. The built models were
used to conduct image identification for the corresponding four testing sets of Mingxian
169, the two testing sets of Beijing 0045, and the three testing sets of Nongda 211 acquired
in the wheat field in Shangzhuang Experimental Station, the testing sets of Beijing 0045,
Mingxian 169, and Nongda 211 acquired under laboratory environmental conditions, and
the additional testing set consisting of the multi-variety disease images acquired in the
wheat field in Gangu Testing Station, respectively; the identification results are shown
in Table 12. Based on Training Set 1 of Mingxian 169, acquired in the wheat field in
Shangzhuang Experimental Station, the optimal SVM model was built with a Cbest value
of 1.000 and a gbest of 5.278. Based on Training Set 2 of Mingxian 169 acquired in the
wheat field in Shangzhuang Experimental Station, the optimal SVM model was built with
a Cbest of 1.741 and a gbest of 0.435. Based on Training Set 3 of Mingxian 169 acquired
in the wheat field in Shangzhuang Experimental Station, the optimal SVM model was
built with a Cbest of 0.574 and a gbest of 4.000. Based on Training Set 4 of Mingxian 169
acquired in the wheat field in Shangzhuang Experimental Station, the optimal SVM model
was built with a Cbest of 1.320 and a gbest of 1.000. For the four built SVM models, the
identification accuracies of the corresponding training sets of Mingxian 169 which were
used for modeling were all 100.00%; the identification accuracies of the corresponding
testing sets of Mingxian 169 acquired in the wheat field in Shangzhuang Experimental
Station were 97.18–100.00%; the identification accuracies of the two testing sets of Beijing
0045 acquired in the wheat field in Shangzhuang Experimental Station were 90.35–94.78%,
and the identification accuracies of the three testing sets of Nongda 211 acquired in the
wheat field in Shangzhuang Experimental Station were 45.00–75.00%. For the BPNN
models, the identification accuracies of the training and testing sets of Mingxian 169
acquired in the wheat field in Shangzhuang Experimental Station were 94.37–100.00%. For
the BPNN model built based on Training Set 2 of Mingxian 169 acquired in the wheat
field in Shangzhuang Experimental Station, the identification accuracies of Testing Set 1,
Testing Set 2, and Testing Set 3 of Nongda 211, acquired in the wheat field in Shangzhuang
Experimental Station were 71.79%, 80.00%, and 85.00%, respectively. Using the BPNN
models built based on Training Set 1, Training Set 3, and Training Set 4 of Mingxian 169,
acquired in the wheat field in Shangzhuang Experimental Station, poor identification
performances were obtained for the images of Nongda 211 acquired in the wheat field
in Shangzhuang Experimental Station. Based on Training Set 1, Training Set 2, Training
Set 3, and Training Set 4 of Mingxian 169 acquired in the wheat field in Shangzhuang
Experimental Station, the optimal RF models were built with the decision tree numbers 30,
10, 40, and 30, respectively. For these RF models, the identification accuracies of the training
and testing sets of Mingxian 169 acquired in the wheat field in Shangzhuang Experimental



Agronomy 2023, 13, 260 23 of 39

Station were 92.96–100.00%; the identification accuracies of the testing sets of Beijing 0045
and Nongda 211 acquired in the wheat field in Shangzhuang Experimental Station were
70.00–92.50%. For the SVM, BPNN, and RF models, built based on the different training
sets of Mingxian 169 acquired in the wheat field in Shangzhuang Experimental Station, the
identification accuracies of the individual-variety disease image testing sets of the three
wheat varieties Beijing 0045, Mingxian 169, and Nongda 211, acquired under laboratory
environmental conditions, were low. For the individual-variety disease image testing
sets of the three wheat varieties acquired under laboratory environmental conditions, the
identification accuracies obtained using the SVM models were 52.46–74.04%; those obtained
using the BPNN models were 43.43–59.85%, and those obtained using the RF models
were 52.09–72.39%. Among the SVM, BPNN, and RF models built based on the different
training sets of Mingxian 169 acquired in the wheat field in Shangzhuang Experimental
Station, the identification accuracies of the additional testing set acquired in Gangu Testing
Station were 80.84–93.26%, with the exception of the BPNN models built based on Training
Set 1 and Training Set 3, which had identification accuracies less than 80%. The results
demonstrated that the identification performances of the SVM models were optimal among
the models built based on the four Mingxian 169 training sets acquired in the wheat field
in Shangzhuang Experimental Station, and that wheat stripe rust and wheat leaf rust on
Mingxian 169 and Beijing 0045 in Shangzhuang Experimental Station could be identified
by using the SVM models.

With the 13 most important features for disease identification, selected based on the
multi-variety disease images acquired in the wheat field in Shangzhuang Experimental
Station using the 1R method combined with the SVM, BPNN, and RF modeling methods,
the individual-variety disease identification models were built using the SVM, BPNN, and
RF modeling methods based on the three training sets (Training Set 1, Training Set 2, and
Training Set 3) of Nongda 211, consisting of the disease images acquired in the wheat
field in Shangzhuang Experimental Station. The built models were used to conduct image
identification for the corresponding three testing sets of Nongda 211, the two testing sets
of Beijing 0045, and the four testing sets of Mingxian 169 acquired in the wheat field in
Shangzhuang Experimental Station, the testing sets of Beijing 0045, Mingxian 169, and
Nongda 211 acquired under laboratory environmental conditions, and the additional testing
set consisting of multi-variety disease images acquired in the wheat field in Gangu Testing
Station, respectively; the identification results are shown in Table 13. Based on Training
Set 1 of Nongda 211 acquired in the wheat field in Shangzhuang Experimental Station, the
optimal SVM model was built with a Cbest equal to 5.278 and a gbest equal to 0.435. Based
on Training Set 2 of Nongda 211 acquired in the wheat field in Shangzhuang Experimental
Station, the optimal SVM model was built with a Cbest equal to 12.126 and a gbest equal to
0.0825. Based on Training Set 3 of Nongda 211 acquired in the wheat field in Shangzhuang
Experimental Station, the optimal SVM model was built with a Cbest equal to 1.000 and
a gbest equal to 0.758. For the four built SVM models, the identification accuracies of the
three testing sets of Nongda 211 acquired in the wheat field in Shangzhuang Experimental
Station were 89.74–97.50%; those of the two testing sets of Beijing 0045 acquired in the
wheat field in Shangzhuang Experimental Station were 55.26–60.87%, and those of the four
testing sets of Mingxian 169 acquired in the wheat field in Shangzhuang Experimental
Station were 76.06–83.10%. For the built BPNN models, the identification accuracies of the
corresponding three testing sets of Nongda 211 acquired in the wheat field in Shangzhuang
Experimental Station were 87.18–97.50%, and those of the two testing sets of Beijing 0045
acquired in the wheat field in Shangzhuang Experimental Station were 50.43–55.65%; there
were great differences among the identification accuracies (53.52–71.83%) of the four testing
sets of Mingxian 169 acquired in the wheat field in Shangzhuang Experimental Station.
Based on Training Set 1, Training Set 2, and Training Set 3 of Nongda 211, acquired in
the wheat field in Shangzhuang Experimental Station, the optimal RF models were built
with decision tree numbers equal to 30, 40, and 40, respectively. For these RF models, the
identification accuracies of the three testing sets of Nongda 211 acquired in the wheat field
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in Shangzhuang Experimental Station were 92.50–100.00%; those of the two testing sets
of Beijing 0045 acquired in the wheat field in Shangzhuang Experimental Station were
55.26–63.48%, and those of the four testing sets of Mingxian 169 acquired in the wheat field
in Shangzhuang Experimental Station were 84.51–90.14%. By using the SVM, BPNN, and
RF models, built based on the different training sets of Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station, low identification accuracies were obtained for
all the individual-variety disease image testing sets of the three wheat varieties Beijing 0045,
Mingxian 169, and Nongda 211 acquired under laboratory environmental conditions. For
the individual-variety disease image testing sets of the three wheat varieties acquired under
laboratory environmental conditions, the identification accuracies obtained using the SVM
models were 45.29–58.64%; those obtained using the BPNN models were 43.98–58.20%,
and those achieved using the RF models were 43.19–55.67%. For the SVM, BPNN, and
RF models, built based on the different training sets of Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station, the identification accuracies of the additional
testing set acquired in Gangu Testing Station were 95.37–99.58%. Taken overall, among
the models built based on the different training sets of Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station, the optimal identification performances were
achieved by using the RF models. The results demonstrated that wheat stripe rust and
wheat leaf rust on Nongda 211 and Mingxian 169 in Shangzhuang Experimental Station
could be identified by using the RF modeling method.
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Table 11. Identification results for the individual-variety disease image testing sets acquired in the wheat field in Shangzhuang Experimental Station and under
laboratory environmental conditions, and the additional testing set consisting of multi-variety disease images acquired in the wheat field in Gangu Testing Station
using the SVM, BPNN, and RF models. These were built based on the different training sets of the variety Beijing 0045 consisting of disease images acquired in the
wheat field in Shangzhuang Experimental Station.

Model

Training Set of
Beijing 0045
Acquired in

Shangzhuang
Experimental

Station

Shangzhuang Experimental Station The Controlled-Climate Chamber Identification
Accuracy of

the
Additional
Testing Set

Acquired In
Gangu
Testing

Station (%)

Identification
Accuracy

of the
Training

Set of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 1 of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 2 of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 1 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 2 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 3 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 4 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 1 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 2 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 3 of
Nongda
211 (%)

Identification
Accuracy

of the
Testing Set
of Beijing
0045 (%)

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy

of the
Testing Set
of Nongda

211 (%)

SVM
Training Set 1 99.56 99.12 99.13 98.59 98.59 98.59 98.59 66.67 72.50 77.50 66.75 68.32 68.39 99.79
Training Set 2 100.00 99.12 99.13 98.59 98.59 98.59 98.59 74.36 77.50 77.50 69.24 68.65 68.13 99.16

BPNN
Training Set 1 96.93 96.49 94.74 91.55 91.55 91.55 91.55 27.5 25.00 25.00 43.59 51.38 54.32 89.47
Training Set 2 99.56 98.25 99.13 94.37 94.37 94.37 94.31 33.33 32.50 32.50 46.20 43.01 37.58 97.26

RF
Training Set 1 100.00 93.86 94.78 90.14 95.77 91.55 87.32 66.67 77.50 67.50 53.01 58.20 63.08 91.37
Training Set 2 100.00 94.74 93.91 91.55 92.96 94.37 92.96 61.54 67.50 60.00 56.28 58.31 61.35 91.58

Note: The table shows only the results of the optimal SVM, BPNN, and RF models, the same as below.
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Table 12. Identification results for the individual-variety disease image testing sets acquired in the wheat field in Shangzhuang Experimental Station and under
laboratory environmental conditions, and the additional testing set consisting of multi-variety disease images acquired in the wheat field in Gangu Testing Station
using the SVM, BPNN, and RF models, built based on the different training sets of the variety Mingxian 169, consisting of disease images acquired in the wheat field
in Shangzhuang Experimental Station.

Model

Training Set of
Mingxian 169
Acquired in

Shangzhuang
Experimental

Station

Shangzhuang Experimental Station The Controlled-Climate Chamber Identification
Accuracy of

the
Additional
Testing Set
Acquired in

Gangu
Testing

Station (%)

Identification
Accuracy

of the
Training

Set of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 1 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 2 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 3 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 4 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 1 of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 2 of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 1 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 2 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 3 of
Nongda
211 (%)

Identification
Accuracy

of the
Testing Set
of Beijing
0045 (%)

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy

of the
Testing Set
of Nongda

211 (%)

SVM

Training Set 1 100.00 98.59 100.00 97.18 98.59 93.86 93.04 69.23 65.00 75.00 66.23 74.04 65.21 85.26
Training Set 2 100.00 100.00 100.00 98.59 98.59 90.35 93.04 61.54 45.00 52.50 57.33 57.32 52.46 84.00
Training Set 3 100.00 100.00 100.00 98.59 98.59 91.23 92.17 69.23 50.00 65.00 64.66 67.88 60.96 80.84
Training Set 4 100.00 100.00 100.00 98.59 98.59 94.74 94.78 69.23 52.50 60.00 64.92 69.53 65.21 90.53

BPNN

Training Set 1 99.30 98.59 100.00 98.59 98.59 78.95 77.39 56.41 45.00 45.00 49.48 45.21 43.43 78.11
Training Set 2 95.07 97.18 95.77 94.37 98.59 85.96 90.43 71.79 80.00 85.00 47.12 59.85 56.44 84.63
Training Set 3 97.89 98.59 98.59 95.77 97.18 64.04 67.83 35.90 35.00 35.00 48.82 45.10 43.56 56.63
Training Set 4 98.59 100.00 100.00 98.59 98.59 71.05 78.26 35.90 35.00 35.00 51.44 43.45 45.02 83.58

RF

Training Set 1 100.00 94.37 97.18 94.37 94.37 77.19 80.00 92.31 87.50 92.50 53.66 60.07 58.96 91.79
Training Set 2 100.00 97.18 98.59 97.18 97.18 81.58 75.65 71.79 70.00 70.00 61.52 61.39 52.86 82.53
Training Set 3 100.00 94.37 95.77 94.37 92.96 71.93 73.04 87.18 80.00 85.00 52.09 59.96 55.78 93.26
Training Set 4 100.00 100.00 100.00 98.59 98.59 78.95 75.65 84.62 82.50 80.00 71.20 72.39 68.13 88.00
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Table 13. Identification results for the individual-variety disease image testing sets acquired in the wheat field in Shangzhuang Experimental Station and under
laboratory environmental conditions, and the additional testing set consisting of multi-variety disease images acquired in the wheat field in Gangu Testing Station
using the SVM, BPNN, and RF models built based on the different training sets of the variety Nongda 211 consisting of disease images acquired in the wheat field in
Shangzhuang Experimental Station.

Model

Training Set of
Nongda 211
Acquired in

Shangzhuang
Experimental

Station

Shangzhuang Experimental Station The Controlled-Climate Chamber Identification
Accuracy of

the
Additional
Testing Set
Acquired in

Gangu
Testing

Station (%)

Identification
Accuracy

of the
Training

Set of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 1 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 2 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 3 of
Nongda
211 (%)

Identification
Accuracy
of Testing

Set 1 of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 2 of
Beijing
0045 (%)

Identification
Accuracy
of Testing

Set 1 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 2 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 3 of
Mingxian

169 (%)

Identification
Accuracy
of Testing

Set 4 of
Mingxian

169 (%)

Identification
Accuracy

of the
Testing Set
of Beijing
0045 (%)

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy

of the
Testing Set
of Nongda

211 (%)

SVM
Training Set 1 100.00 92.31 92.50 95.00 57.02 57.39 83.10 83.10 83.10 81.69 45.29 56.22 52.86 98.95
Training Set 2 94.81 94.87 95.00 97.50 55.26 55.65 77.46 77.46 77.46 76.06 48.43 58.64 54.71 99.58
Training Set 3 96.10 89.74 90.00 92.50 60.53 60.87 83.10 83.10 83.10 83.10 48.56 57.43 52.72 98.95

BPNN
Training Set 1 94.81 89.74 95.00 97.50 54.39 55.65 53.52 53.52 53.52 53.52 43.98 55.56 51.00 98.11
Training Set 2 97.40 92.31 92.50 95.00 50.88 50.43 56.34 56.34 56.34 56.34 49.21 58.20 48.34 98.11
Training Set 3 98.70 87.18 90.00 92.50 50.88 53.04 71.83 71.83 71.83 71.83 44.37 52.19 55.01 97.89

RF
Training Set 1 100.00 94.87 95.00 97.50 55.26 56.52 85.92 85.92 84.51 84.51 43.19 51.38 49.14 95.37
Training Set 2 100.00 97.44 97.50 100.00 61.40 62.61 88.73 88.73 87.32 87.32 45.16 54.35 51.39 98.11
Training Set 3 100.00 94.87 95.00 92.50 62.28 63.48 88.73 90.14 88.73 88.73 45.81 55.67 52.06 97.89
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3.2.2. Identification Results of Individual-Variety Disease Identification Models Built Based
on Disease Images of the Different Wheat Varieties Acquired under Laboratory
Environmental Conditions

With the 13 most important features for disease identification, selected based on the
multi-variety disease images acquired under laboratory environmental conditions using
the 1R method combined with the SVM modeling method, the individual-variety disease
identification model was built using the SVM modeling method, based on the training
set of Beijing 0045 consisting of disease images acquired under laboratory environmental
conditions. With the 27 most important features for disease identification, selected based on
the multi-variety disease images acquired under laboratory environmental conditions using
the 1R method combined with the BPNN and RF modeling methods, the individual-variety
disease identification models were built using the BPNN and RF modeling methods, based
on the training set of Beijing 0045 consisting of disease images acquired under laboratory
environmental conditions. Using the built SVM, BPNN, and RF models, the images in
the corresponding testing sets of Beijing 0045, Mingxian 169, and Nongda 211 acquired
under laboratory environmental conditions, the two testing sets of Beijing 0045, the four
testing sets of Mingxian 169, and the three testing sets of Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station and the additional testing set consisting of
multi-variety disease images acquired in the wheat field in Gangu Testing Station were
identified, respectively; the identification results are shown in Table 14. Based on the
training set of Beijing 0045 consisting of the disease images acquired under the laboratory
environmental condition, the optimal SVM model was built with a Cbest equal to 1024.000
and a gbest equal to 0.435. Using this SVM model, the identification accuracies of the
training set and the corresponding testing set of Beijing 0045 acquired under laboratory
environmental conditions were 94.05% and 89.53%, respectively. For the built BPNN
model, the identification accuracies of the training set and the corresponding testing set
of Beijing 0045 acquired under laboratory environmental conditions were 96.99% and
92.80%, respectively. Based on the training set of Beijing 0045 consisting of disease images
acquired under laboratory environmental conditions, the optimal RF model was built with
50 decision trees. Using this built RF model, the identification accuracies of the training set
and the corresponding testing set of Beijing 0045 acquired under laboratory environmental
conditions were 100.00% and 92.28%, respectively. For the testing sets of Mingxian 169
and Nongda 211 acquired under laboratory environmental conditions, the identification
accuracies obtained using the built SVM model were 74.59% and 75.96%, respectively; those
obtained using the built BPNN model were 55.45% and 58.70%, respectively, and those
obtained using the built RF model were 84.27% and 82.07%, respectively. The identification
accuracies of Training Set 1 and Training Set 2 of Beijing 0045 acquired in the wheat field in
Shangzhuang Experimental Station using the built BPNN model were 77.19% and 78.95%,
respectively. Low identification accuracies (46.48–70.00%) were obtained for the other
individual-variety disease image testing sets acquired in the wheat field in Shangzhuang
Experimental Station using the built SVM, BPNN, and RF models. The identification
accuracies of the additional testing set consisting of the multi-variety disease images
acquired in Gangu Testing Station, obtained using the SVM, BPNN, and RF models built
based on the training set of Beijing 0045 consisting of the disease images acquired under
laboratory environmental conditions, were 85.26%, 95.58%, and 84.63%, respectively. The
results showed that, based on the training set of Beijing 0045 consisting of the disease
images acquired under the laboratory environmental condition, using the SVM, BPNN,
and RF modeling methods, satisfactory identification performances of the disease images
of Beijing 0045 acquired under laboratory environmental conditions were achieved. In
addition, there were great differences among the identification accuracies of the testing
sets of the other two varieties acquired under laboratory environmental conditions and
the testing sets of the three wheat varieties acquired in the wheat field in Shangzhuang
Experimental Station.
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With the 13 most important features for disease identification, selected based on the
multi-variety disease images acquired under laboratory environmental conditions using
the 1R method combined with the SVM modeling method, the individual-variety disease
identification model was built using the SVM modeling method based on the training set
of Mingxian 169 consisting of disease images acquired under laboratory environmental
conditions. With the 27 most important features for disease identification, selected based on
the multi-variety disease images acquired under laboratory environmental conditions using
the 1R method combined with the BPNN and RF modeling methods, the individual-variety
disease identification models were built using the BPNN and RF modeling methods based
on the training set of Mingxian 169 consisting of disease images acquired under laboratory
environmental conditions. Using the built SVM, BPNN, and RF models, the images in
the corresponding testing sets of Mingxian 169, Beijing 0045, and Nongda 211 acquired
under laboratory environmental conditions, the two testing sets of Beijing 0045, the four
testing sets of Mingxian 169, and the three testing sets of Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station, and the additional testing set consisting of
multi-variety disease images acquired in the wheat field in Gangu Testing Station were
identified, respectively; the obtained identification results are shown in Table 15. Based on
the training set of Mingxian 169 consisting of disease images acquired under laboratory
environmental conditions, the optimal SVM model was built with a Cbest of 1024.000
and a gbest of 1.741. Using this built SVM model, the identification accuracies of the
training set used for modeling and the corresponding Mingxian 169 testing set acquired
under laboratory environmental conditions were 97.96% and 92.52%, respectively. For
the built BPNN model, the identification accuracies of the training set used for modeling
and the corresponding Mingxian 169 testing set acquired under laboratory environmental
conditions were 97.08% and 94.39%, respectively. Based on the training set of Mingxian
169 consisting of disease images acquired under laboratory environmental conditions,
the optimal RF model was built with 60 decision trees. Using this built RF model, the
identification accuracies of the training set used for modeling and the corresponding
Mingxian 169 testing set acquired under laboratory environmental conditions were 100.00%
and 95.82%, respectively. For the testing sets of Beijing 0045 and Nongda 211 acquired
under the laboratory environmental condition, the identification accuracies obtained using
the built SVM model were 72.25% and 76.89%, respectively; those obtained using the
built BPNN model were 65.84% and 66.93%, respectively, and those obtained using the
RF model were 83.64% and 84.06%, respectively. The results indicated that the images of
stripe rust and leaf rust on the different individual varieties acquired under laboratory
environmental conditions could be identified using the built RF model. Using the built
SVM, BPNN, and RF models, the identification accuracies of the individual-variety disease
image testing sets acquired in the wheat field in Shangzhuang Experimental Station were
46.48–74.56%, and the identification accuracies of the additional testing set consisting of
multi-variety disease images acquired in Gangu Testing Station were 93.26%, 94.95% and
81.26%, respectively. The results showed that, based on the training set of Mingxian 169
consisting of disease images acquired under laboratory environmental conditions and using
the built SVM, BPNN, and RF models, the images of wheat stripe rust and wheat leaf rust
on Mingxian 169 acquired under laboratory environmental conditions could be identified.
In addition, the results demonstrated that the built SVM and RF models achieved better
identification performances on disease images of the different individual wheat varieties
acquired under laboratory environmental conditions than those obtained on disease images
of the different individual wheat varieties acquired in the wheat field in Shangzhuang
Experimental Station.
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Table 14. Identification results for the individual-variety disease image testing sets acquired under laboratory environmental conditions and in the wheat field
in Shangzhuang Experimental Station and the additional testing set consisting of the multi-variety disease images acquired in the wheat field in Gangu Testing
Station, using the SVM, BPNN, and RF models built based on the training set of the variety Beijing 0045, itself consisting of disease images acquired under laboratory
environmental conditions.

Model

Identification
Accuracy of the
Training Set of

Beijing 0045
Acquired under

Laboratory
Environmental
Conditions (%)

The Controlled-Climate Chamber Shangzhuang Experimental Station

Identification
Accuracy of
the Testing

Set of
Beijing 0045

(%)

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy of
the Testing

Set of
Nongda 211

(%)

Identification
Accuracy of
Testing Set 1

of Beijing
0045 (%)

Identification
Accuracy of
Testing Set 2

of Beijing
0045 (%)

Identification
Acuracy of

Testing Set 1
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 2
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 3
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 4
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 1
of Nongda

211 (%)

Identification
Accuracy of
Testing Set 2
of Nongda

211 (%)

Identification
Accuracy of
Testing Set 3
of Nongda

211 (%)

SVM 94.05 89.53 74.59 75.96 58.77 58.26 60.56 60.56 60.56 59.15 66.67 65 67.50
BPNN 96.99 92.80 55.45 58.70 77.19 78.95 46.48 50.70 46.48 47.89 66.67 47.50 50.00

RF 100.00 92.28 84.27 82.07 49.12 51.30 60.56 59.15 60.56 60.56 64.10 65.00 70.00

Table 15. Identification results for the individual-variety disease image testing sets acquired under laboratory environmental conditions and in the wheat field
in Shangzhuang Experimental Station, and the additional testing set consisting of the multi-variety disease images acquired in the wheat field in Gangu Testing
Station by using the SVM, BPNN, and RF models, built based on the training set of the variety Mingxian 169, consisting of disease images acquired under laboratory
environmental conditions.

Model

Identification
Accuracy of the
Training Set of
Mingxian 169

Acquired under
Laboratory

Environmental
Condition (%)

The Controlled-Climate Chamber Shangzhuang Experimental Station

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy of
the Testing

Set of
Beijing 0045

(%)

Identification
Accuracy of
the Testing

Set of
Nongda 211

(%)

Identification
Accuracy of
Testing Set 1

of Beijing
0045 (%)

Identification
Accuracy of
Testing Set 2

of Beijing
0045 (%)

Identification
Accuracy of
Testing Set 1
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 2
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 3
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 4
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 1
of Nongda

211 (%)

Identification
Accuracy of
Testing Set 2
of Nongda

211 (%)

Identification
Accuracy of
Testing Set 3
of Nongda

211 (%)

SVM 97.96 92.52 72.25 76.89 60.53 59.13 59.15 59.15 59.15 59.15 69.23 65.00 70.00
BPNN 97.08 94.39 65.84 66.93 74.56 73.04 50.70 49.30 52.11 46.48 56.41 57.50 62.50

RF 100.00 95.82 83.64 84.06 57.89 59.13 63.38 64.79 64.79 63.38 66.67 70.00 67.50
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With the 13 most important features for disease identification selected based on the
multi-variety disease images acquired under laboratory environmental conditions using
the 1R method combined with the SVM modeling method, the individual-variety disease
identification model was built using the SVM modeling method based on the training
set of Nongda 211 consisting of disease images acquired under laboratory environmental
conditions. With the 27 most important features for disease identification selected based on
the multi-variety disease images acquired under laboratory environmental conditions using
the 1R method combined with the BPNN and RF modeling methods, the individual-variety
disease identification models were built using the BPNN and RF modeling methods based
on the training set of Nongda 211 consisting of disease images acquired under laboratory
environmental conditions. By using the built SVM, BPNN, and RF models, the images in
the corresponding testing sets of Nongda 211, Mingxian 169, and Beijing 0045 acquired
under laboratory environmental conditions, the two testing sets of Beijing 0045, the four
testing sets of Mingxian 169, and the three testing sets of Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station, and the additional testing set consisting of
multi-variety disease images acquired in the wheat field in Gangu Testing Station were
identified, respectively; the obtained identification results are shown in Table 16. Based on
the training set of Nongda 211 consisting of disease images acquired under laboratory envi-
ronmental conditions, the optimal SVM model was built with a Cbest of 1024.000 and a gbest
of 0.574. Using this built SVM model, the identification accuracies of the training set used
for modeling and the corresponding testing set of Nongda 211 acquired under laboratory
environmental conditions were 94.69% and 93.49%, respectively. For the built BPNN model,
the identification accuracies of the training set used for modeling and the corresponding
testing set of Nongda 211 acquired under laboratory environmental conditions were 93.17%
and 92.30%, respectively. Based on the training set of Nongda 211 consisting of disease
images acquired under laboratory environmental conditions, the optimal RF model was
built with 40 decision trees. Using this built RF model, the identification accuracies of the
training set used for modeling and the corresponding testing set of Nongda 211 acquired
under laboratory environmental conditions were 100.00% and 92.03%, respectively. For
the testing sets of Beijing 0045 and Mingxian 169 acquired under laboratory environmental
conditions, the identification accuracies obtained using the built SVM model were 75.13%
and 77.23%, respectively; those obtained using the built BPNN model were 59.42% and
67.77%, respectively, and those obtained using the RF model were 86.39% and 83.28%,
respectively. For the built SVM model based on the Nongda 211 training set consisting
of disease images acquired under laboratory environmental conditions, the identification
accuracies of the Nongda 211 testing sets acquired in the wheat field in Shangzhuang Exper-
imental Station were 70.00–74.36%, and low identification accuracies were obtained for the
testing sets of Beijing 0045 and Mingxian 169 acquired in the wheat field in Shangzhuang
Experimental Station. For the built BPNN model based on the Nongda 211 training set
consisting of disease images acquired under laboratory environmental conditions, the
identification accuracies of the Mingxian 169 testing sets acquired in the wheat field in
Shangzhuang Experimental Station were 78.87–81.69%, and low identification accuracies
were obtained for the testing sets of Beijing 0045 and Nongda 211 acquired in the wheat
field in Shangzhuang Experimental Station. For the built RF model based on the Nongda
211 training set consisting of disease images acquired under laboratory environmental
conditions, the identification accuracies of the different individual-variety disease im-
age testing sets acquired in the wheat field in Shangzhuang Experimental Station were
47.50–64.79%. Using the built SVM, BPNN, and RF models based on the Nongda 211
training set consisting of disease images acquired under laboratory environmental condi-
tions, the identification accuracies of the additional testing set consisting of multi-variety
disease images acquired in Gangu Testing Station, were 91.37% and 89.89% and 83.58%,
respectively. The results showed that, based on the Nongda 211 training set consisting of
disease images acquired under laboratory environmental conditions, the images of wheat
stripe rust and wheat leaf rust on Mingxian 169 acquired under laboratory environmental
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conditions could be identified using the built SVM, BPNN, and RF models. Furthermore,
the results demonstrated that when using the built SVM, BPNN, and RF models, there
were great differences between the obtained identification performances for the disease
images of the other two individual wheat varieties acquired under laboratory environmen-
tal conditions and those obtained for the disease images of the different individual wheat
varieties acquired in the wheat field in Shangzhuang Experimental Station.

3.2.3. Identification Results of the Multi-Variety Disease Identification Models Built Based
on Disease Images of the Different Wheat Varieties Acquired in the Wheat Field in
Shangzhuang Experimental Station and under Laboratory Environmental Conditions

The 13 most important features for disease identification selected based on the multi-
variety disease images acquired in the wheat field in Shangzhuang Experimental Station using
the 1R method combined with the SVM modeling method, and the 13 most important features
for disease identification selected based on the multi-variety disease images acquired under
laboratory environmental conditions using the 1R method combined with the SVM modeling
method, were merged together. With these 26 merged features, the multi-variety disease
identification model based on the training set composed of multi-variety disease images
acquired in the wheat field in Shangzhuang Experimental Station and under laboratory
environmental conditions was built using the SVM modeling method. The 13 most important
features for disease identification selected based on the multi-variety disease images acquired
in the wheat field in Shangzhuang Experimental Station using the 1R method combined
with the BPNN and RF modeling methods, and the 27 most important features for disease
identification selected based on the multi-variety disease images acquired under laboratory
environmental conditions using the 1R method combined with the BPNN and RF modeling
methods were merged together. As there was an overlapping feature between the 13 most
important features and the 27 most important features, the 39 merged features were utilized
to build multi-variety disease identification models based on the training set composed of
multi-variety disease images acquired in the wheat field in Shangzhuang Experimental Station
and under laboratory environmental conditions using the BPNN and RF modeling methods,
respectively. Using the built SVM, BPNN, and RF models, the images in the corresponding
multi-variety image testing set consisting of disease images acquired in the wheat field in
Shangzhuang Experimental Station and under laboratory environmental conditions, the
two testing sets of Beijing 0045, the four testing sets of Mingxian 169, and the three testing
sets of Nongda 211 acquired in the wheat field in Shangzhuang Experimental Station, the
individual-variety disease image testing sets of Beijing 0045, Mingxian 169, and Nongda 211
acquired under laboratory environmental conditions, and the additional testing set consisting
of the multi-variety disease images acquired in the wheat field in Gangu Testing Station were
identified, respectively. The corresponding identification results are shown in Table 17. When
the values of Cbest and gbest were 588.133 and 0.330, respectively, the optimal SVM model
was achieved. Using this built SVM model, the identification accuracies of the training set
used for modeling and the corresponding testing set consisting of disease images acquired in
the wheat field in Shangzhuang Experimental Station and under laboratory environmental
conditions were 99.93% and 98.40%, respectively. For the built BPNN model, the identification
accuracies of the training set used for modeling and the corresponding testing set consisting
of disease images acquired in the wheat field in Shangzhuang Experimental Station and
under laboratory environmental conditions were 98.38% and 96.45%, respectively. Based
on the training set composed of multi-variety disease images acquired in the wheat field
in Shangzhuang Experimental Station and under laboratory environmental conditions, the
optimal RF model was built with 40 decision trees. Using this built RF model, the identification
accuracies of the training set used for modeling and the corresponding testing set consisting
of disease images acquired in the wheat field in Shangzhuang Experimental Station and under
laboratory environmental conditions were 100.00% and 95.82%, respectively. For the built SVM
model, the identification accuracies of the different individual-variety disease image testing
sets of Beijing 0045, Mingxian 169, and Nongda 211 acquired in the wheat field in Shangzhuang
Experimental Station were 92.50–97.44%; those of the individual-variety disease image testing
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sets of Beijing 0045, Mingxian 169, and Nongda 211 acquired under laboratory environmental
conditions, were 98.04%, 99.01%, and 98.94%, respectively, and the identification accuracy
of the additional testing set consisting of the multi-variety disease images acquired in the
wheat field in Gangu Testing Station was 99.79%. The identification accuracies of Testing Set 1
and Testing Set 2 of Nongda 211 acquired in the wheat field in Shangzhuang Experimental
Station using the built BPNN model were 82.05% and 85.00%, respectively. The identification
accuracies of the other individual-variety disease image testing sets of Beijing 0045, Mingxian
169, and Nongda 211 acquired in the wheat field in Shangzhuang Experimental Station were
90.00–98.59%, when using the built BPNN and RF models. For the built BPNN and RF models,
the identification accuracies of the individual-variety disease image testing sets of Beijing
0045, Mingxian 169, and Nongda 211 acquired under laboratory environmental conditions
were 93.49–97.34%, and the identification accuracies of the additional testing set consisting
of multi-variety disease images acquired in the wheat field in Gangu Testing Station were
98.74% and 99.79%, respectively. The results indicated that, using the multi-variety disease
identification models built by using the SVM, BPNN, and RF modeling methods based on
disease images of the different wheat varieties acquired in the wheat field in Shangzhuang
Experimental Station and under laboratory environmental conditions, the images of wheat
stripe rust and wheat leaf rust on the different individual-varieties acquired in the wheat field
in Shangzhuang Experimental Station and under laboratory environmental conditions could
be accurately identified.

The results showed that, for the individual-variety disease identification models built
based on the different individual-variety disease image training sets acquired in the wheat
field in Shangzhuang Experimental Station and under laboratory environmental condi-
tions using the SVM, BPNN, and RF modeling methods, respectively, the identification
accuracies of the training sets used for modeling and the corresponding testing sets were
89.53–100.00%, and the identification accuracies of the other testing sets of the correspond-
ing individual varieties used for modeling acquired under the same acquisition conditions
were 87.18–100.00%, indicating that the identification of images of wheat stripe rust and
wheat leaf rust on the same individual wheat variety could be achieved under the acquisi-
tion conditions of images used for modeling. However, when the built individual-variety
disease identification models were used to conduct image identification on testing sets of
the same individual wheat variety acquired under conditions different from those of the
images used for modeling and the testing sets of other individual varieties acquired in the
wheat field in Shangzhuang Experimental Station and under laboratory environmental
conditions, most identification accuracies decreased and poor identification performances
were achieved. The results demonstrated that, for the multi-variety disease identification
models built by using the SVM, BPNN, and RF modeling methods based on the training
set composed of multi-variety disease images acquired in the wheat field in Shangzhuang
Experimental Station and under laboratory environmental conditions, the identification
accuracies of the training set used for modeling and the corresponding testing set consist-
ing of disease images acquired in the wheat field in Shangzhuang Experimental Station
and under laboratory environmental conditions were 95.82–100.00%. Good identification
performances were achieved on the different individual-variety disease image testing sets
acquired in the wheat field in Shangzhuang Experimental Station and under laboratory
environmental conditions and the additional testing set consisting of multi-variety disease
images acquired in the wheat field in Gangu Testing Station. The results indicated that
wheat varieties have a great influence on the image-based identification of wheat stripe
rust and wheat leaf rust, and that the identification of wheat stripe rust and wheat leaf rust
on different varieties acquired in the wheat field in Shangzhuang Experimental Station
and under laboratory environmental conditions could be implemented using the disease
identification SVM, BPNN, and RF models built based on multi-variety disease images
acquired in the wheat field in Shangzhuang Experimental Station and under laboratory
environmental conditions.
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Table 16. Identification results for the individual-variety disease image testing sets acquired under laboratory environmental conditions and in the wheat field in
Shangzhuang Experimental Station, and the additional testing set consisting of multi-variety disease images acquired in the wheat field in Gangu Testing Station
using the SVM, BPNN, and RF models built based on the training set of the variety Nongda 211, itself consisting of disease images acquired under laboratory
environmental conditions.

Model

Identification
Accuracy of the
Training Set of

Nongda 211
Acquired under

Laboratory
Environmental
Conditions (%)

The controlled-Climate Chamber Shangzhuang Experimental Station

Identification
Accuracy of
the Testing

Set of
Nongda 211

(%)

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy of
the Testing

Set of
Beijing 0045

(%)

Identification
Accuracy of
Testing Set 1

of Beijing
0045 (%)

Identification
Accuracy of
Testing Set 2

of Beijing
0045 (%)

Identification
Accuracy of
Testing Set 1
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 2
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 3
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 4
of Mingxian

169 (%)

Identification
Accuracy of
Testing Set 1
of Nongda

211 (%)

Identification
Accuracy of
Testing Set 2
of Nongda

211 (%)

Identification
Accuracy of
Testing Set 3
of Nongda

211 (%)

SVM 94.69 93.49 75.13 77.23 57.89 60.00 59.15 59.15 59.15 60.56 74.36 72.50 70.00
BPNN 93.17 92.30 59.42 67.77 27.19 22.61 81.69 81.69 80.28 78.87 61.54 55.00 65.00

RF 100.00 92.03 86.39 83.28 61.40 60.00 64.79 63.38 63.38 61.97 58.97 65.00 47.50

Table 17. Identification results for the multi-variety disease image testing set consisting of disease images acquired in the wheat field in Shangzhuang Experimental
Station and under laboratory environmental conditions, the individual-variety disease image testing sets acquired in the wheat field in Shangzhuang Experimental
Station and under laboratory environmental conditions, and the additional testing set consisting of the multi-variety disease images acquired in the wheat field in
Gangu Testing Station using the SVM, BPNN, and RF models built based on the multi-variety disease image training set consisting of disease images acquired in the
wheat field in Shangzhuang Experimental Station and under laboratory environmental conditions.

Model

The Multi-Variety Disease
Images Acquired in

Shangzhuang Experimental
Station and under Laboratory

Environmental Conditions

Shangzhuang Experimental Station The Controlled-Climate Chamber

Identification
Accuracy of
the Training

Set (%)

Identification
Accuracy of
the Testing

Set (%)

Identification
Accuracy of
Testing Set
1 of Beijing

0045 (%)

Identification
Accuracy of
Testing Set
2 of Beijing

0045 (%)

Identification
Accuracy of
Testing Set

1 of
Mingxian

169 (%)

Identification
Accuracy of
Testing Set

2 of
Mingxian

169 (%)

Identification
Accuracy of
Testing Set

3 of
Mingxian

169 (%)

Identification
Accuracy of
Testing Set

4 of
Mingxian

169 (%)

Identification
Accuracy of
Testing Set

1 of Nongda
211 (%)

Identification
Accuracy of
Testing Set

2 of Nongda
211 (%)

Identification
Accuracy of
Testing Set

3 of Nongda
211 (%)

Identification
Accuracy of
the Testing

Set of
Beijing 0045

(%)

Identification
Accuracy of
the Testing

Set of
Mingxian

169 (%)

Identification
Accuracy of
the Testing

Set of
Nongda 211

(%)

SVM 99.93 98.40 93.86 95.65 97.18 97.18 97.18 97.18 97.44 92.50 95.00 98.04 99.01 98.94
BPNN 98.38 96.45 94.74 96.52 98.59 98.59 98.59 98.59 82.05 85.00 90.00 94.37 96.81 97.34

RF 100.00 95.82 98.25 98.26 98.59 98.59 98.59 98.59 97.44 97.5 95.00 93.59 96.92 93.49
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4. Discussion

In this study, based on image processing technology, disease identification SVM,
BPNN, and RF models were built to identify images of stripe rust and leaf rust on different
wheat varieties acquired under field and laboratory environmental conditions. The results
showed that the disease identification models built by using different disease image datasets
showed great differences in the identification of the images of wheat stripe rust and
wheat leaf rust on different wheat varieties and under different environmental conditions,
indicating that wheat varieties influence image-based disease identification. The results
demonstrated that satisfactory image-based disease identification performance can be
achieved by comprehensively utilizing the disease images on different varieties acquired
under different conditions for modeling. The main reason for the influence of wheat
varieties on disease image identification should be that the wheat varieties affect the
phenotypic characteristics of the segmented lesion images, although the lesion images
are segmented from the acquired disease images in the disease image processing. In the
studies on plant disease image identification, disease images on different plant varieties
and under different acquisition conditions should be obtained; subsequently, based on
these disease images, disease-identification modeling can be carried out using suitable
modeling methods, aiming to overcome the influence of wheat varieties, improve the
identification ability and identification performance of the built identification models, and
expand their application range. This study provides support for the accurate image-based
identification of wheat stripe rust and wheat leaf rust and provides a reference for the
automatic image-based identification of other plant diseases.

In studies on the image identification of plant diseases in the field, the influence of
many uncertain factors, such as weather, geographical environmental conditions, disease
occurrence period, and disease severity, will lead to fewer images being acquired for model
building and training, and it is difficult to ensure a balance between the various disease
image categories during modeling. Thus, the generalization abilities of the built disease
identification models will be affected, making it difficult for the built models to be widely
used in actual production environments. Therefore, the number of disease images of
multi-variety plants in different environments should be increased as much as possible
to improve the application abilities of the built disease identification models in the field.
Many researchers have carried out studies on plant disease image identification based
on field-environment scenarios [54,55]. In most research reports, the high identification
accuracies of plant disease images acquired against complex backgrounds in the field
were achieved by using improved deep learning networks, such as the improved regional
convolutional neural network Faster R-CNN algorithm [54], the improved EfficientNet [45],
and the improved MobileNet-V2 [55]. In further studies, it is necessary to increase the
number of plant disease images with more complex sources, aiming to improve the balance
in disease image quantity of each kind of plant disease, and improve the generalization
and practical application abilities of image-based identification models of plant diseases.

Plant disease image features are affected by various factors [7,46]. Environmental
conditions during image acquisition may influence the features of plant disease images.
Different stages of the plant disease process, plant growth environmental conditions,
plant growing stage, plant varieties and other plant-related factors may affect the color,
shape, and texture of the disease images. The results obtained in this study showed
that, for the built image identification model based on disease images of an individual
variety, the identification performances of the images of the other different wheat varieties
decreased in most cases, indicating that the varieties can influence the identification of
disease images. This may be caused by the influence of wheat varieties on the characteristics
of disease images due to the different leaf characteristics of wheat varieties and their
different responses to pathogen infection. Therefore, it is important to extract or select
appropriate disease image features for disease image identification.

In some studies of plant disease image identification, many features were extracted
from disease images. To reduce the data dimensions and improve the efficiency of the
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identification models, feature selection methods such as ReliefF [47], 1R [48], CFS [49], and
PCA were used for feature selection; then, the selected features were used to build models
for disease identification. In this study, the feature selection methods ReliefF, 1R, CFS, and
PCA combined with the SVM, BPNN, and RF modeling methods were used for feature
selection. In this study, the top 13, 20, and 27 features were selected using the ReliefF and 1R
methods, and the principal components with a cumulative contribution rate of greater than
95% were selected using the PCA method. Then, the multi-variety disease identification
models were built using the SVM, BPNN, and RF modeling methods based on multi-
variety disease images acquired in the wheat field in Shangzhuang Experimental Station
and multi-variety disease images acquired under laboratory environmental conditions,
respectively. The optimal feature combinations were selected through comprehensive
comparisons. Then, with the corresponding optimal feature combinations, using the SVM,
BPNN, and RF modeling methods, the individual-variety disease identification models
were built based on the individual-variety disease image training sets acquired in the
wheat field in Shangzhuang Experimental Station and under laboratory environmental
conditions. Subsequently, the built models were used to identify the different individual-
variety disease image testing sets acquired in the wheat field in Shangzhuang Experimental
Station and under laboratory environmental conditions, respectively. The results showed
high identification accuracies for the testing sets on the corresponding individual varieties
used for modeling when acquired under the same environmental conditions as the training
sets. Most of the identification accuracies of the other individual-variety disease image
testing sets decreased. For the multi-variety disease identification models, built with
the merged feature combinations based on the training set composed of multi-variety
disease images acquired in the wheat field in Shangzhuang Experimental Station and
under laboratory environmental conditions, high identification accuracies were achieved
for the different individual-variety disease image testing sets acquired in the wheat field
in Shangzhuang Experimental Station and under laboratory environmental conditions, as
well as the additional testing set consisting of the multi-variety disease images acquired
in the wheat field in Gangu Testing Station. Therefore, during the feature selection of
plant disease images, feature selection methods such as ReliefF, 1R, CFS, and PCA can
be combined with modeling methods to select more suitable features for modeling and
achieve a better modeling performance.

For traditional image processing technology, various parameters need to be set artifi-
cially, and each process is affected by many factors. However, the increasing development
of deep learning technology can directly perform feature extraction and identification on
disease images, which is more conducive to automatic disease image identification. With
the development of computer technology, deep learning is increasingly used in image-based
plant disease identification [8,28,32,34–40]. Plant disease image identification based on
deep learning often requires more disease images. In further studies, more disease images
of various wheat varieties under different environmental conditions can be obtained for
the image identification of wheat stripe rust and wheat leaf rust based on deep learning.

The early detection of plant diseases is very important for effective plant disease man-
agement. It is necessary to strengthen studies on the image identification of plant diseases
during the incubation period and the early stage of disease progress in order to provide
support for the early detection, early diagnosis, early warning, and early management
of plant diseases. In further studies, image processing techniques and methods for the
early detection and rapid diagnosis of plant diseases should be explored and developed.
More attention should be paid to the development and application of Internet of Things
and artificial intelligence technology in wheat disease monitoring, as well as the devel-
opment of intelligent disease-monitoring systems for wheat diseases. Efforts should be
made toward the automatization, intellectualization, and digitization of disease detection
and identification. This will provide strong support for the detection, identification, and
accurate control of wheat and other plant diseases.
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5. Conclusions

In this study, after preprocessing operations of wheat stripe rust and wheat leaf rust
images on different wheat varieties acquired under field and laboratory environmental
conditions, the Otsu threshold segmentation method and the K-means clustering algorithm
were combined to perform image segmentation. A total of 140 color, texture, and shape
features were extracted from the segmented lesion images and feature selection was per-
formed using feature selection methods including ReliefF, 1R, CFS, and PCA combined
with the SVM, BPNN, and RF modeling methods. With the optimal feature combinations,
the individual-variety disease identification models were built using the SVM, BPNN, and
RF modeling methods based on the different individual variety disease images acquired in
the wheat field in Shangzhuang Experimental Station and under laboratory environmental
conditions. The individual-variety disease identification models could accurately iden-
tify disease images on the same individual varieties acquired under the same conditions.
However, the identification accuracies of most of the other different individual-variety
disease image testing sets decreased. With the merged feature combinations, the multi-
variety disease image identification models were built using the SVM, BPNN, and RF
modeling methods based on the multi-variety disease images acquired in the wheat field in
Shangzhuang Experimental Station and under laboratory environmental conditions. The
multi-variety disease image identification models showed good identification performances
on the training set used for modeling, the corresponding multi-variety disease image testing
set, and the 12 different individual-variety disease image testing sets acquired in the wheat
field in Shangzhuang Experimental Station and under laboratory environmental conditions.
The results showed that the wheat varieties had a great influence on the image identification
of the diseases, and that satisfactory image-based disease identification performances can
be obtained by comprehensively utilizing disease images of the different varieties acquired
under different conditions for modeling.
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