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Abstract: In this study, we aimed to develop a prediction model of the solid solutions concentration
(SSC) and moisture content (MC) in oriental melon with snapshot-type hyperspectral imagery (Visible
(VIS): 460–600 nm, 16 bands; Red-Near infrared (Red-NIR): 600–860 nm, 15 bands) using a machine
learning model. The oriental melons were cultivated in a hydroponic greenhouse, Republic of
Korea, and a total of 91 oriental melons that were harvested from March to April of 2022 were used
as samples. The SSC and MC of the oriental melons were measured using destructive methods
after taking hyperspectral imagery of the oriental melons. The reflectance spectrum obtained from
the hyperspectral imagery was processed by the standard normal variate (SNV) method. Variable
importance in projection (VIP) scores were used to select the bands related to SSC and MC. As a
result, ten (609, 736, 561, 849, 818, 489, 754, 526, 683, and 597 nm) and six (609, 736, 561, 818, 849,
and 489 nm) bands were selected for the SSC and MC, respectively. Four machine learning models,
support vector regression (SVR), ridge regression (RR), K-nearest neighbors regression (K-NNR),
and random forest regression (RFR), were used to develop models to predict SSC and MC, and their
performances were compared. The SVR showed the best performance for predicting both the SSC
and MC of the oriental melons. The SVR model achieved a relatively high accuracy with R2 values of
0.86 and 0.74 and RMSE values of 1.06 and 1.05 for SSC and MC, respectively. However, it will be
necessary to carry out more experiments under various conditions, such as differing maturities of
fruits and varying light sources and environments, to achieve more comprehensive predictions and
apply them to monitoring robots in the future. Nevertheless, it is considered that the snapshot-type
hyperspectral imagery aided by SVR would be a useful tool to predict the SSC and MC of oriental
melon. In addition, if the maturity classification model for the oriental melon can be applied to fields,
it could lead to less labor and result in high-quality oriental melon production.

Keywords: hyperspectral imagery; machine learning; oriental melon; soluble solid content; VIP score

1. Introduction

Oriental melon (Cucumis melo L.) belongs to the Cucurbitaceae family and is one of
six species (inodorus, reticulatus, cantalupensis, acidulous, saccharinus, and makuwa), and is
called ‘Chamoe’ in the Republic of Korea [1]. It is a commercially valuable fruit cultivated
in Korea, Japan, and China because of its sweet and crisp taste, flavor, juicy flesh, and
valuable nutrients (such as vitamin C and β-Carotene) [2]. Oriental melon is convention-
ally cultivated in soil culture; however, the culture method may cause a high workload
for farmers, changes in soil environments, and so on. Thus, several studies have been
conducted to find a new methods of cultivation to reduce these problems during oriental
melon cultivation, and a hydroponic culture is one of them [3,4]. For example, Lee et al. [5]
conducted a study on the workload of farmers and yields of oriental melons according to
the stem training methods in a hydroponic greenhouse environment, and they reported
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that the oriental melons can be cultivated with several advantages, such as labor-saving,
increase in yield, and so on, through hydroponics. Nevertheless, oriental melon farms
are having difficulty from cultivation until harvest, because of the aging of farmers, the
labor shortage as a proportion of the population, and so on. For these reasons, studies on
artificial intelligence, information and communications technology (ICT), and robot-based
automation technologies for various crops have been conducted to solve these problems. In
particular, several studies have been conducted to develop a crop monitoring system, and
it will be necessary for automation conversion in a hydroponic greenhouse [6–8]. Now, the
maturity level of the oriental melon is generally classified using a color chart. However, this
method may be influenced by several factors, such as light source, resolution of color chart,
and subjective assessment of farmers, and there is a possibility that the oriental melon
will be harvested with insufficient sugar content [9]. It is known that the changes of sugar
content and moisture content are related to the maturity stages of the oriental melons; for
example, the sugar content of oriental melons increases with the ripening progress [10]. For
this reason, to accurately classify the maturity stages of oriental melons in the pre-harvest
stage, it is necessary to non-destructively classify the maturity stages based on the sugar
content and moisture content as well as the color change of the oriental melon.

Hyperspectral imaging technology can provide a significant amount of information in
both the spectral and spatial domains, and is used in various fields, such as agriculture, food,
environmental management, and urban planning [11–14]. In particular, it is widely used in
various agricultural fields, such as the non-destructive analysis of the internal quality in
agricultural products. Hyperspectral imaging is divided into four categories: ultraviolet
(UV: 200–400 nm), visible/near-infrared (VIS/NIR: 400–1000 nm), short wave infrared
(SWIR: 1.0–2.5 µm), and middle wave infrared (MWIR: 2.5–7 µm), according to the spectrum
range [15,16]. VIS and NIR are typically used for internal quality analysis in agricultural
products [17–19]. The data acquisition types of hyperspectral imaging systems are classified
into spatial scanning and spectral scanning. First, the line-scanning method based on the
spatial scanning simultaneously measures a certain spectral region, and it continuously
obtains y-axis data with the movement of a single line sensor. Second, a snapshot method
based on spectrum scanning simultaneously measures multiple spectral areas through
various multispectral filters [15]. Line-scanning method-based hyperspectral imaging has
commonly been used in food and agricultural applications for the past 20 years [12,20].
However, it is difficult to handle the line-scanning method-based systems because there
are more than 100 spectral bands, and the device is large and expensive. Meanwhile,
the snapshot method-based systems have several advantages, such as low power, the
acquisition of hyperspectral images at video rate, ultra-portability, and easy handling,
and a small number of spectral bands. Thus, it is considered that the snapshot-type
hyperspectral camera is suitable for application to an automated monitoring robot in a
hydroponic greenhouse [21].

Recently, machine learning algorithms have been used to analyze hyperspectral imag-
ing data. In particular, several studies have used hyperspectral imaging with machine
learning models to predict the internal quality in agricultural products. Gao et al. [8] and
Zhang et al. [22] used hyperspectral imaging with a support vector machine (SVM) model
to predict the sugar content of strawberries and Dangshan pear, respectively. Osco et al. [23]
used various machine learning models, such as SVM, K-nearest neighbor regression (K-
NNR), lasso regression (LR), ridge regression (RR), and random forest (RF) to predict the
nutritional components in Valencia-orange leaves. As above, there are many studies that
used several machine learning models, such as SVM, K-NNR, RR, and RF, to develop
internal quality prediction models, and they reported that these models are a very powerful
tool for predicting the internal quality in crops. However, there are only a few studies that
have used hyperspectral imaging with machine learning models to predict the internal
quality of the oriental melon. Kim et al. [24] developed a solid solutions concentration (SSC)
prediction model of the oriental melon with hyperspectral data using machine learning
models and reported that the developed models can be potentially used for both static
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calibration in a laboratory and for a real-time online sorter in an agricultural products
processing center (APC). However, they used the semi-penetration measurement method
to obtain VIS and NIR hyperspectral data of the oriental melons, and it is difficult to apply
the semi-penetration measurement method to a real-time maturity monitoring system for
oriental melons in a hydroponic greenhouse. For this reason, hyperspectral technology that
can be applied in a hydroponic greenhouse and other agricultural fields is required, and a
snapshot-type hyperspectral method could be a useful method for that.

As above, it is necessary that the system can monitor the quality indices or maturity
stages of the oriental melons in fields. Therefore, here we examine a technology that could
non-destructively monitor oriental melons in a hydroponic greenhouse and develop two
models for predicting solid solutions concentration (SSC) and moisture content (MC) in
the oriental melons with snapshot-type hyperspectral images using machine learning algo-
rithms. We obtain hyperspectral images of the oriental melons at a laboratory level, and the
standard normal variate (SNV) method is applied for the pre-processing of hyperspectral
data. Variable importance in projection (VIP) score is used to select the bands related to the
SSC and MC of oriental melons. In addition, we use several machine learning models to
train the SSC and MC prediction models and compare the prediction performance of them.

2. Materials and Methods
2.1. Sampling

“Ohbokggul” variety oriental melons (Cucumis melo L.) cultivated in a hydroponic
greenhouse, Republic of Korea (National Institute of Agricultural Sciences) were used
as a sample. An image of the hydroponic greenhouse is shown in Figure 1. A total of
91 oriental melons without any damages were harvested from March to April of 2022. The
average weight and length of harvested fruits were 447.5 ± 77.6 g and 117.4 ± 9.0 mm,
respectively. Fruits of similar weight and size were harvested in this study, because the
fruit weight may affect the internal quality [10]. In addition, we selected various maturities
of oriental melons, because hyperspectral data and internal quality may be changed by
maturity stages. However, there is no maturity standard for the oriental melons. Thus, we
harvested the oriental melons in three maturity stages (unripe, turning, and ripe), and the
maturity stages were determined based on L*a*b* value, as shown in Table 1. The L*a*b*
value was determined using a portable colorimeter (CR-20, KONICA MINOLTA, Tokyo,
Japan).
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Table 1. Maturity stages of oriental melon fruits.

Maturity Description L* Value a* Value b* Value
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2.2. Hyperspectral Imaging System

Figure 2 shows a schematic diagram of the hyperspectral imaging system, and the
specifications of the hyperspectral camera used in this study are shown in Table 2. Two
snapshot-type hyperspectral cameras (SM4× 4-VIS3, IMEC, Leuven, Belgium; SM4X4-RN2,
IMEC, Leuven, Belgium) were used to take hyperspectral images of the oriental melons,
and they were fixed at a vertical distance of 400 mm above the bottom of the supporting
frame. Four halogen lamps (20 W, 12 V) were used to provide diffuse, well-distributed
illumination, and were fixed at 300 mm above the bottom. In addition, HIS Mosaic software
(Ver. 5.0.2, IMEC, Leuven, Belgium) was used to control the hyperspectral imaging system.
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Table 2. The specifications of VIS and Red-NIR hyperspectral cameras.

Variable
Specification

VIS Red-NIR

Sensor AMS/CMOSIS CMV2000 mono
Resolution 2048 × 1088, 2.2 MPixel
Pixel size 5.5 µm

Sensor size/diagonal 11.3 × 6.0 mm
Optical size 2/3′′

FPS 170 (USB3.0)
Focal length 12.5 mm

Exposure time 2.0 ms 1.3 ms
Wavelength range 460–600 nm 600–860 nm
Number of bands 16 bands 15 bands

Band: peak central
wavelengths (nm)

464, 472, 480, 489, 499, 508,
516, 526, 534, 544, 552, 561,

571, 580, 588, 597

609, 625, 648, 666, 683, 700,
718, 736, 754, 770, 786, 802,

818, 833, 849

2.3. Hyperspectral Data Extraction and Pre-Processing

White and dark reference images were obtained to correct the raw images from several
effects, such as the noise generated by the device and the effect of uneven light source
intensities [25]. The white reference was obtained using a white board with 95% reflectance
(SG3151-U, IMEC, Leuven, Belgium), and the dark reference was obtained with the camera
lens completely covered with a lens cap and the light source turned off. Hyperspectral
data on the fruit surface were then extracted from corrected images with white and dark
reference images, and ENVI software (Ver. 5.3, Exelis Visual Information Solutions Inc.,
Boulder, CO, USA) was used to process the images and extract the hyperspectral data.
The fruit surface was separated from the background using the threshold method. The
588 nm and 700 nm bands were applied to separate the fruit surface from the background
for VIS and Red-NIR images, respectively. In addition, the region-of-interest (ROI) from
the segmented image were manually selected and the hyperspectral data were extracted.
The extracted hyperspectral data were averaged for each band within the entire ROI of
each fruit.

Meanwhile, the hyperspectral data contain several noises and spectral variations
generated by the device, or by other factors. Therefore, it is necessary to pre-process
the hyperspectral data before analysis. There are several methods for the pre-processing,
such as normalization, multiplicative scatter correction, standard normal variate (SNV),
and others [26]. The SNV was designed to remove at least some of the large amount of
variability from the reflectance spectra that may be caused by various effects, and it has
been used very successfully in spectroscopy [25]. Thus, in this study, SNV was applicable
to pre-process the hyperspectral data.

2.4. Measurements

Soluble solids concentration (SSC) and moisture content (MC) were used to assess the
quality and maturity stage of the oriental melons after acquiring the hyperspectral images.
Oriental melons were peeled, and seeds were removed. The pulp portions of each fruit
were used to measure the SSC and MC [27]. To measure SSC, the juice was extracted from
the pulp of each fruit using a juice extractor. SSC was determined using a refractometer
(RX-5000a, ATAGO, Tokyo, Japan) and was expressed as % Brix [28]. MC was determined
by drying at 105 °C for 72 h using a dry oven (ON-22GW, JEIO TECH, Daejeon, Korea), and
an electronic scale (FX-3000i, AND, Tokyo, Japan) was used to measure the weight before
and after the drying of fruit pulp [29]. The MC was expressed in percent wet basis (% w.b.).

3. Data Analysis

In this study, the variable importance in projection (VIP) score was used to select
the important bands for SSC and MC of the oriental melons. Several machine learning
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models were used to analyze the hyperspectral data that were selected by VIP score and
were implemented using the Scikit-learn machine learning library in the Python program.
Figure 3 shows the flowchart for predicting the SSC and MC in the oriental melons using
the snapshot-type hyperspectral image and machine learning models.
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3.1. Variable Importance in Projection

Variable importance in projection (VIP) is one of the most frequently used methods
for variable selection in chemometrics, and the VIP scores selection method has been
extensively used in various agricultural fields [24,30]. It summarizes the influence of
individual x variables on the partial least squares (PLS) model and provides a measure that
is useful for selecting x variables that contribute most to the y variance explanation [31]. In
addition, VIP scores close to 1.0 or higher can be considered important in the given model,
while VIP scores of significantly less than 1.0 are less important and might be excluded
from the model. In this study, therefore, the VIP scores method was used to select the
hyperspectral data that related to the quality factors of oriental melons and was defined as
Formula (1) [31].

VIPj =

√
∑F

f=1 w2
j f × SSYf × J

SSYtotal × F
(1)

where VIPj is a measure of the contribution of each variable according to the variance
explained by each PLS component. F is the total number of components and wj f is the
weight value for the j variable and f component. SSYf is the sum of squares of explained
variance for the J number of x variables and the jth component, and SSYtotal is the total
sum of squares explained of the dependent variable.

3.2. Support Vector Regression

Support vector regression (SVR) can efficiently perform non-linear regression using
the kernel trick, and it is able to handle high-dimensional data [32]. In this study, SVR
with a Gaussian radial basis function (rbf) kernel was considered to analyze the collected
hyperspectral data of the oriental melon. The rbf kernel is a nonlinear function and is
used in strategy solving for regression problems. The grid search method was applied to
select the optimal hyperparameters, such as C and gamma. It is an optimization algorithm
that automates the trial-and-error method and is used in machine learning to obtain
the parameters at which the model gives the best accuracy. Parameter C determines
the regularization strength, and parameter gamma controls the rbf kernel shape in SVR
formulation [33].
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3.3. Ridge Regression

Ridge regression (RR) is a regularized version of linear regression, and it is the method
used for the analysis of multicollinearity in multiple regression data [34]. The RR shrinks
model weights to the smallest possible size via L2 regularization, to limit the model and
avoid overfitting. The grid search method was applied to select the optimal α, which
controls how much to regularize a model [35].

3.4. K-Nearest Neighbors Regression

K-nearest neighbors regression (K-NNR) is a non-parametric method that approx-
imates the continuities between independent variables and the continuous outcome by
averaging the observations in the same neighbors [36]. In addition, it uses the Euclidean
distance method to organize the searching and filtering of input data and the hyperparame-
ter k to control the number of neighbors. In this study, the optimal k was selected through
grid search [37].

3.5. Random Forest Regression

Random forest regression (RFR) is an ensemble learning algorithm that consist of a
combination of tree predictors, where each tree is generated using a random vector sampled
independently from the input vector [38]. It has several hyperparameters. In this study, the
number of regression trees (number of estimators; NE) and the number of input variables
per node (number of max depth; ND) were considered to optimize the prediction model.
The grid search was used to select the optimal parameters [39].

3.6. Model Evaluation

The entire dataset containing a total of 91 hyperspectral data was randomly divided
into two datasets, as the training set (80%, 72 data) and the testing set (20%, 19 data).
The leave-one-out cross-validation method is appropriate when a dataset is small (less
than 100) [26]. It uses only one sample as a validation set, while the rest are used to train
the machine learning model. This means that more data can be used in each iteration to
train the machine learning models. Thus, in this study, it was applied to select the best
model among SVR, RR, K-NNR, and RFR. In addition, the performance of the developed
prediction models was evaluated by two actions, the root mean squared error (RMSE)
and the coefficient of determination (R2), and these were defined using Formulas 2 and 3,
respectively. The lower the RMSE, the better a model fits a dataset. The R2 indicates the
goodness of fit of the model, and values ranging from 0.0 to 1.0 could be attained, with 1.0
revealing the perfect linear relationship between measured and predicted values.

RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2 (2)

R2 = 1− ∑n
i=1(yi − yi)

2

∑n
i=1
(
y2

i
)2 (3)

where y is the predicted value and y is the measured value.

3.7. Statistical Analysis

An SPSS statistical package (IBM SPSS Statistics 20.0, IBM, Armonk, NY, USA) was
used to analyze the data by one-way ANOVA. In addition, the results were statistically
analyzed using the Tukey–Kramer multiple range test, with significance level p < 0.05.

4. Results and Discussion
4.1. Quality Indices

The changes in SSC and MC according to the maturity stages are shown in Figure 4.
The SSC is one of the important factors relative to the quality of the oriental melons, and it
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determines the sweetness and flavor of the oriental melon. The SSC of the oriental melons
gradually increased as the fruits ripened, and it showed a similar trend as that shown
in a previous study [40]. These changes were probably caused by the starch and sucrose
metabolism-related enzymes. It is known that sucrose synthetase and sucrose phosphate
are closely related to sugar accumulation, fruit quality, ripeness, and senescence [41]. The
MC decreased as the fruits ripened, and this is considered to be due to the decrease in fruit
density [40]. It is known that there is a positive linear relationship between the density and
moisture content of fruits [42]. In addition, there is a high correlation between SSC and
moisture content; thus, it is considered that the MC decreased as the SSC increased [43]. As
in the above results, the SSC and MC are closely related to the maturity stage of the oriental
melons; thus, it is considered that the SSC and MC can be used to predict the quality or
maturity of oriental melons.
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Error bars indicate the standard deviation. Means with different letters (a–c) above the bars indicate
significant differences based on the Tukey–Kramer multiple range test (p < 0.05).

4.2. Hyperspectral Data and VIP

The reflectance spectrum of oriental melons in the spectral range of 460–850 nm
are shown in Figure 5. The raw spectral data extracted from hyperspectral images were
processed with the SNV method, as shown in Figure 5B. The reflectance spectrum of
648–683 nm increased during the maturity process of the oriental melons, while the re-
flectance spectrum of 770–818 nm decreased. It is known that a reflectance spectrum of
approximately 670 and 800 nm is related to the chlorophyll absorption of crops [44,45].
Thus, these changes are considered to be due to the progressive change in the color of the
oriental melons from green to yellow.

Figure 6 shows the VIP scores for SSC and MC. The VIP scores of 1.0 or over indi-
cate the important wavelength bands, and a higher VIP score indicates more significant
variables [46]. Ten bands containing 609, 736, 561, 849, 818, 489, 754, 526, 683, and 597 nm
were VIP scores of more than 1.0 for the SSC, and this result showed a similar trend to that
shown in a previous study [24]. For the MC of the oriental melons, six bands were selected:
609, 736, 561, 818, 849, and 489 nm. Based on these results, the reflectance spectrum of ten
and six bands were used to develop the prediction model for SSC and MC, respectively.
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4.3. Prediction Model

In this study, the optimal parameters for each model were selected using the grid
search method, and the grid search was performed using several factors, such as the
hyperparameters for each model and the number of bands. Table 3 shows the selected
optimal parameters for each model, and each model was trained based on the selected
parameters. In addition, the performance of each model is shown in Table 4, and Figure 6
shows the match between the measured and predicted values in the best models. As
shown in Table 4 and Figure 7, the SVR model predicts the SSC and MC of the oriental
melons well, with R2 values of 0.86 and 0.74 and RMSE values of 1.06% Brix and 1.05%
for SSC and MC, respectively. The K-NNR and RFR models showed over-fitting during
the training process, and this is considered to be due to several effect, such as insufficient
data, incompatibility between the model and selected data, and so on. Meanwhile, Kim
et al. [24] developed an SSC prediction model of the oriental melon in laboratory and
APC and used a VIS/NIR spectroscopy with several regression models, such as the PLSR
multivariate regression analysis method, ANN-based technique, and deep learning-based
CNN technique. They obtained VIS and NIR hyperspectral data of the oriental melons by
using the semi-penetration measurement method and reported that the PLS-ANN model
could achieve an SSC prediction accuracy with R2 of 0.83 and RMSE of 0.63. Compared
with our model, the RMSE value of their model was slightly lower. However, it is difficult
to apply the semi-penetration measurement method to a real-time maturity monitoring
system for oriental melons in a hydroponic greenhouse. Meanwhile, it is considered that the
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prediction accuracy of our model could be improved with more data collection. Therefore,
our study demonstrated that a snapshot-type hyperspectral camera has the potential to be
used as a tool to predict the SSC and MC of oriental melons. In addition, in the testing set,
we confirmed that the SVR model based on non-linear regression performed better than the
other models, such as the linear, nearest neighbor, and ensemble models, which means that
a non-linear model may be more suitable for predicting the SSC and MC of oriental melons.
Nevertheless, it will be necessary to carry out more experiments with various maturities of
fruits to achieve a more comprehensive prediction in the future.

Table 3. The optimal parameters for each prediction model.

Model SVR RR K-NNR RFR

SSC
NB 8 NB 10 NB 7 NB 3
C 200 α 0 k 6 NE 20

gamma 2.9 ND 15

MC
NB 4 NB 6 NB 2 NB 4
C 400 α 0 K 11 NE 10

gamma 2.9 ND 10
NB: number of bands, NE: number of estimators, ND: number of max depth.

Table 4. The performance for each prediction model.

Factor Model
Training Set Validation Set Testing Set

R2 RMSE R2 RMSE R2 RMSE

SSC

SVR 0.88 0.88% Brix 0.87 0.95% Brix 0.86 1.06% Brix
RR 0.75 1.27% Brix 0.72 1.32% Brix 0.71 1.43% Brix

K-NNR 0.74 1.31% Brix 0.68 1.50% Brix 0.62 1.64% Brix
RFR 0.95 0.60% Brix 0.69 1.48% Brix 0.66 1.55% Brix

MC

SVR 0.83 0.76% 0.79 0.99% 0.74 1.05%
RR 0.72 0.97% 0.68 1.03% 0.64 1.21%

K-NNR 0.70 1.01% 0.61 1.19% 0.57 1.30%
RFR 0.97 0.33% 0.75 1.05% 0.70 1.11%

Agronomy 2022, 12, 2236 11 of 13 
 

 

  
(A) (B) 

Figure 7. Match between measured and predicted values for (A) SSC and (B) MC obtained from the 

best prediction models. 

5. Conclusions 

We developed two models for predicting the SSC and MC of oriental melons with a 

snapshot-type hyperspectral camera using a machine learning algorithm. To achieve this, 

several machine learning algorithms, such as SVR based on a non-linear model, RR based 

on a linear model, K-NNR based on a nearest neighbor model, and RFR based on an en-

semble model, were applied and were compared with R2 and RMSE. The SNV method 

was applied to the pre-processing of the reflectance spectrum of the oriental melons. In 

addition, the important bands for predicting the SSC and MC of the oriental melons were 

selected using VIP score, and ten (609, 736, 561, 849, 818, 489, 754, 526, 683, and 597 nm) 

and six (609, 736, 561, 818, 849, and 489 nm) bands were selected for the SSC and MC, 

respectively. Based on these, each model was trained to predict the SSC and MC, and SVR 

showed the best SSC and MC prediction performances with R2 values of 0.86 and 0.74 and 

RMSE values of 1.06% Brix 1.05% for SSC and MC, respectively. Therefore, a snapshot-

type hyperspectral camera aided by SVR would be a useful tool for predicting the SSC 

and MC of oriental melons at the laboratory level. In addition, we consider that if the 

snapshot-type hyperspectral camera using the machine learning model is installed on mo-

bile robots, it would be possible to non-destructively monitor the maturity or quality in-

dices of oriental melons in a hydroponic greenhouse. Nevertheless, it will be necessary to 

carry out more experiments under various conditions, such as differing maturities of fruits 

and varying light sources and environments, to achieve more comprehensive predictions 

and apply them to monitoring robots in the future.  

Author Contributions: B.-H.C. and K.-B.L., as the first authors, planned the experiments and wrote 

the manuscript. Y.H. helped with the experiments and the investigation of related information. K.-

C.K. led the overall research as a corresponding author and helped to revise the manuscript. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Korea Institute of Planning and Evaluation for Technol-

ogy in Food, Agriculture, and Forestry (IPET) and the Korea Smart Farm R&D Foundation through 

the Smart Farm Innovation Technology Development Program, funded by MAFRA, MSICT, and 

RDA (421031-04). 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. The data are not publicly available due to privacy reasons. 

Figure 7. Match between measured and predicted values for (A) SSC and (B) MC obtained from the
best prediction models.



Agronomy 2022, 12, 2236 11 of 13

5. Conclusions

We developed two models for predicting the SSC and MC of oriental melons with
a snapshot-type hyperspectral camera using a machine learning algorithm. To achieve
this, several machine learning algorithms, such as SVR based on a non-linear model, RR
based on a linear model, K-NNR based on a nearest neighbor model, and RFR based on an
ensemble model, were applied and were compared with R2 and RMSE. The SNV method
was applied to the pre-processing of the reflectance spectrum of the oriental melons. In
addition, the important bands for predicting the SSC and MC of the oriental melons were
selected using VIP score, and ten (609, 736, 561, 849, 818, 489, 754, 526, 683, and 597 nm)
and six (609, 736, 561, 818, 849, and 489 nm) bands were selected for the SSC and MC,
respectively. Based on these, each model was trained to predict the SSC and MC, and SVR
showed the best SSC and MC prediction performances with R2 values of 0.86 and 0.74 and
RMSE values of 1.06% Brix 1.05% for SSC and MC, respectively. Therefore, a snapshot-type
hyperspectral camera aided by SVR would be a useful tool for predicting the SSC and MC
of oriental melons at the laboratory level. In addition, we consider that if the snapshot-type
hyperspectral camera using the machine learning model is installed on mobile robots, it
would be possible to non-destructively monitor the maturity or quality indices of oriental
melons in a hydroponic greenhouse. Nevertheless, it will be necessary to carry out more
experiments under various conditions, such as differing maturities of fruits and varying
light sources and environments, to achieve more comprehensive predictions and apply
them to monitoring robots in the future.
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