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Abstract: The greenhouse industry achieves stable agricultural production worldwide. Various
information and communication technology techniques to model and control the environment have
been applied as data from environmental sensors and actuators in greenhouses are monitored in
real time. The current study designed data-based, deep learning models for evapotranspiration (ET)
and humidity in tomato greenhouses. Using time-series data and applying long short-term memory
(LSTM) modeling, an ET prediction model was developed and validated in comparison with the
Stanghellini model. Training with 20-day and testing with 3-day data resulted in RMSEs of 0.00317
and 0.00356 kgm−2 s−1, respectively. The standard error of prediction indicated errors of 5.76 and
6.45% in training and testing, respectively. Variables were used to produce a feature map using a
two-dimensional convolution layer which was transferred to a subsequent layer and finally connected
with the LSTM structure for modeling. The RMSE in humidity prediction using the test dataset was
2.87, indicating a performance better than conventional RNN-LSTM models. Irrigation plans and
humidity control may be more accurately conducted in greenhouse cultivation using this model.

Keywords: intelligent modeling for crops and their environment; multi-factor control for greenhouse
environment; deep learning in agriculture

1. Introduction

Greenhouses are one of the main cultivation systems in which the environment is
artificially manipulated to be favorable to plants. Maintaining adequate temperature,
humidity, and carbon dioxide concentrations, in particular, has been a major concern in the
management of the greenhouse environment as these environmental factors can improve
the development, quality, and production of plants. Among the various environmental
factors, moisture management inside the greenhouse is very important. It increases the
probability of disease and pest occurrence by causing basic physiological disorders of crops.
Furthermore, low or high humidity may lead to the mass death of plants.

Predicting humidity inside a greenhouse is much more challenging than predicting
temperature. [1]. The greenhouse climate system is considered a very complex and non-
linear system [2,3] in which variables are highly dependent on external environmental
conditions and on the greenhouse design; these climatic conditions cannot be controlled
independently. In the greenhouse environment of temperature, humidity, and carbon
dioxide, humidity modeling is reportedly the most challenging because humidity prediction
is the most complex and the influence of the other environmental factors is significant [1,4,5].

The basis of the most widely studied method in greenhouse moisture environmental
modeling is to incorporate the physical properties of the greenhouse using an equation
based on the law of conservation of energy or mass conservation [6,7]. The developed
models have been used as important data in the design and construction of greenhouse
structures and actuators through simulation. However, since each environmental factor is
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not independently expressed inside the greenhouse system, factors such as the influence of
the external environment, temperature change, humidity, airflow, and gas concentration
form dynamic relationships [8,9]. There are many difficulties in implementing sophisticated
and simple models. In particular, when a model that reflects radiant heat through specific
geothermal heat or the characteristics of crops is implemented, and when measurement
is impossible or assumptions must be used, the accuracy and reliability of the model are
greatly reduced.

Evapotranspiration (ET) is recognized by many researchers as a key factor in crop-
related moisture modeling, and many researches have been conducted based on the
Penman–Monteith method (FAO-56 PM) which is widely used as the standard [10,11].
In principle, the aerodynamics and stomatal bulk conductivity should be known of each
plant species and possibly of each variety, because aerodynamic conductivity depends
on the air speed around and within the crop canopy, while crop stomatal conductivity is
affected by climate and water availability [12]. Stanghellini [13] revised the PM evapotran-
spiration model to represent the conditions in the greenhouse, in which air speed is at less
than 1.0 m/s [14]. The model also contains more complex equations for calculating internal
and external resistances. Radiation absorption by multi-layer canopies is also taken into
account by applying the leaf area index (LAI). Yan et al. [15] applied the Stanghellini model
to estimate the transpiration of cucumber plants in the greenhouse and identified the ap-
propriate height conditions from microclimatic observations. Villarreal-Guerrero et al. [16]
reported that the Stanghellini model showed the smallest error between the calculated and
the measured ET in tomato plants in a greenhouse. As the amount of ET rate is highly
related with the humidity in the greenhouse [17–19], considering the trend or change of
ET of crops, it can be assumed that improved results can be obtained in predicting water
changes in greenhouses.

In order to use the ET model for humidity prediction, a new data-fusion technique is
required to reflect the value of ET rather than changing the model equation, because the
ET model itself also uses the humidity-related, vapor-pressure deficit (VPD) value [20,21].
Therefore, data-based modeling of a new structure is required rather than fusion between
equations in which environmental factors are coupled, and data fusion research through
artificial neural network-based machine learning technology is being attempted [22,23].
Zou et al. [24] presents a novel temperature and humidity prediction model based on a con-
vex, bidirectional extreme learning machine. He and Ma [1] proposed a back propagation
neural network (BPNN) for modeling the humidity in a greenhouse in the winter season
at North China. Ge et al. [25] proposed XGBoost regression as a tomato ET model and
showed better performance compared to the other seven common regression models. In
our previous study [4], a time series-based algorithm was applied to predict the humidity
in the greenhouse, and the humidity prediction indicated that if factors such as irrigation
history and soil moisture inside the greenhouse were added, higher performance would
be achieved.

We intended to improve the performance of humidity prediction by adding ET infor-
mation to a data-based convolutional neural network (CNN) model in this study. Many
studies and trials have been conducted on the prediction of ET in plant growing green-
houses as an important variable for irrigation strategies and crop management [26,27].

The aim of this research was to develop a deep learning model that predicts relative
humidity using greenhouse environmental data, crop ET data, and soil moisture history in
actual tomato cultivation. The specific objectives were as follows:

• Development and field application of a precision measurement system for the ET
modeling of crops using the Stanghellini model;

• Building deep learning models capable of the fusion of environmental data and ET
data of crops for a humidity prediction model in a greenhouse; and

• Improved performance evaluation and comparison of convolutional neural network–
long short-term memory (CNN-LSTM) models including various environmental data,
ET information, and soil moisture content in the root-zone.
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2. Materials and Methods
2.1. Greenhouse and Sensor Description

The experiment was carried out in a Venlo-type multi-greenhouse located in an ex-
perimental horticulture field in Gangneung, South Korea. The greenhouse structure had
four consecutive Venlo-type sections to constitute a total area of 800 m2, of which the
cultivated soil of 200 m2 was set as the experimental area in this study. In this area, tomato
(Athene cultivar) was cultivated. The system for the collection of data used in this study
is illustrated in Figure 1. A climate sensor module (SH-VT260, SOHA-tech, Seoul, Korea)
inside the greenhouse for the temperature, humidity, and CO2 and an infrared temperature
sensor for measuring the leaf surface temperature located at the height of growing point
of the tomato plant were installed. An external sensor module to monitor the climatic
conditions outside the greenhouse (Vantage Pro2, Avis Instruments, CA, USA) was set up
to collect temperature, humidity, wind direction and velocity data outside the greenhouse.
To measure the soil moisture, a 5TE sensor (5TE, Decagon Devices Inc., Pullman, WA, USA)
was installed. Two sensors were installed at depths of 5–10 cm and 15–20 cm, horizontal
to the crop (Figure 1). These sensors were vertically aligned with the dripper point where
the nutrient solution was irrigated to ensure the changes in soil water content could be
rapidly incorporated.
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Figure 1. All monitoring sensors in the greenhouse used for data acquisition. Figure 1. All monitoring sensors in the greenhouse used for data acquisition.

As the history of operation of the actuators that modulate the environment inside the
greenhouse is a critical factor, the respective data were also collected for use in developing
the prediction model. Table 1 presents the information regarding the applied sensor and
actuator signals. This study was conducted from 15 May to 22 June by collecting data, and
data from 1 June to 22 June was used for model training and validation.

Table 1. Input variable, unit, and range used to develop ET prediction model.

Input Variables (Unit) Min–Max

Outside temperature (◦C) 15.5–29.9
Outside humidity (%) 41.5–100
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Table 1. Cont.

Input Variables (Unit) Min–Max

Outside CO2 concentration (ppm) 355.2–443.0
Radiation (W/m2) 0–1355.4
Wind speed (m/s) 0–3.81
Shade curtain (%) 0–100
Circulating Fan 0 or 1
Heating valve (%) 0–100
Fogging 0 or 1
CO2 injection 0 or 1
Heat retention curtain (%) 55–100
Soil temperature (◦C) 14.6–30.1
Left and right window openness (%) 0–100
Wind direction (◦) 0–359
Inside humidity (%) 36.1–99.1
Inside CO2 concentration (ppm) 351.2–1124.6
Inside temperature (◦C) 19.6–35.1
Leaf temperature (◦C) 16.5–33.6
Volumetric water contents of soil (%) 5.53–38.5

2.2. Development of an ET Prediction Model
2.2.1. A Prediction Model for ET in a Tomato Greenhouse

The Stanghellini [13] model was extended to the whole plant, focusing on energy
exchange from the leaves in order to apply the model in a greenhouse environment. By
applying LAI, an attempt was made to consider the radiation absorption of the multi-
layered canopy. Individual leaf length and maximum width were manually measured
weekly on 10 randomly selected plants. LAI was determined by multiplying the maximum
width and leaf length and a reduction coefficient of 0.64 [28,29]. LAI started measuring
after the first flowering flower cluster was created, and the data set used in this study
was carried out at the harvest time of the third flower cluster, about 12 to 15 weeks after
planting. Table 2 shows the constant values and definitions of the variables of the applied
Stanghellini model.

LE ∼=
2·LAI·ρacp

γ·(ri + re)
(VPD) (1)

Here, Equation (1) can be converted to

LE ∼=
2·LAI·ρacp

1 + δ
γ + ri

re

[
0.07

δ

γ

Is

ρacp
+ 0.16

δ

γ

Th − To

rR
+

1
re

e∗a − ea

γ

]
(2)

Table 2. Symbol and unit for the various variables used to calculate the evapotranspiration rate of
the Stanghellini model [14].

Symbol Variables Unit

E Evapotranspiration rate Kg/s ·m2·canopy area

Tair Ambient air temperature ◦C

To Temperature at the leaf surface ◦C

RH Relative humidity %

Is Shortwave irradiance W/m2

LAI Leaf area index; the ratio of the total leaf area (one side) to the canopy
area, 2.5–3.5 in this study m2/m2

L Latent heat of the vaporization of water,
2,502,535.239–2385.76 · Tair

J/kg
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Table 2. Cont.

Symbol Variables Unit

ρa Air density, 100,000/287·(Tair + 273.16) Kg/m3

cp Air specific heat at constant pressure, 1013 J/kg/◦C

δ
Slope of the saturation vapor pressure–temperature curve,
41.45 exp(0.06088 · Tair)

Pa/◦C

γ Psychometric constant, cp
L

Patm
0.6216 Pa/◦C

Patm Atmospheric pressure, 101,325
(

293−0.0065 ·h
293

)5.26 Pa

h Elevation above sea level, 70 m

ri

Internal resistance of the canopy to vapor transfer
ri =

Is+4.30
Is+0.54 [1 + 2.3·10−2(T0 − 24.5)2]·r̃i(CO2)·r̃i(e∗a − ea)

r̃i(CO2)
= 1, Is = 0 W·m−2

= 1 + 6.1·10−7(CO2 − 200)2, CO2 < 1100 ppm
= 1, CO2 ≥ 1100 ppm

r̃i
(
e*

a − ea
) = 1 + 4.3·

(
e*

a − ea
)2, e*

a − ea < 0.8 kPa
= 3.8, e*

a − ea ≥ 0.8 kPa

S/m

re

External resistance of the canopy to sensible heat transfer, u is the
friction velocity (m·s−1)
re =

1174 l0.5

(l|T0−Ta |+207 u2)0.25

Th
Apparent temperature of the ambient environment as determined by
the pipe, floor, and cladding temperature, Tair

rR
Linearization factor of the radiation heat flux equation,

ρacp

4·σ·(Ta+273.15)3

[
s m−1]

σ Stefan–Boltzmann constant, 5.669 × 10−8 J/K4/m2/s

ea
* Saturation vapor pressure at mean air temperature,

610.78·exp
(

17.269·Tair
237.3+Tair

)
[Pa]

Pa

ea Vapor pressure at air temperature, e∗a
RH
100 [Pa] Pa

2.2.2. An LSTM-Based ET Prediction Model

The LSTM model suggested in a previous study [4] as a suitable algorithm to predict
the environment inside the greenhouse was applied in this study for comparison with
the prediction model for ET. The overall structure of the RNN-based prediction model is
shown in Figure 2a, while Figure 2b shows the detailed structure of the LSTM device used
in this study.

An advantage of LSTM is its strength relative to long-term memory loss. Hence, it
was adopted in this study as the input data in model training for humidity prediction
exhibiting a time-series structure. The interior of LSTM comprises a forget gate, an input
gate, a sigmoid output gate and a cell state; the details of the computation are described in
Hochreiter and Schmidhuber [30]. The LSTM model as a result constituted a multivariate
model with the 19 sensor and actuator signals (Table 1). The output was the ET data from
the Stanghellini model that was used for the training. The data used in training were
collected in 5 min intervals, and multi-step prediction was applied. The training model
consisted of two layers; a rectified linear unit (ReLu layer and an LSTM layer, while the
linear function was applied in the activated unit. The mean absolute error (MAE) was used
in loss function, and Adam was applied in optimization. The training was performed for
20 epochs. The prediction performance was compared independently for the training and
the test sets.
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2.3. A CNN-LSTM-Based Humidity Prediction Model

The goal of the humidity prediction model was to predict the change in humidity
within 30 min of the current humidity. For humidity prediction, the model was based on
the CNN structure to which the input data were fed. Three versions of the CNN model
were used in the training using the data of 20 days between 1 June and 19 June. The
model was validated using the subsequent 4-day environmental data. Table 3 describes
the classification of data fed to the three CNN models. First, for Model-1, the sensor data
including the environmental data used in conventional humidity prediction and the signal
data of the greenhouse actuator operation were used. For Model-2, the data of ET from
the previously developed Stanghellini model were added to the data used for Model-1.
For Model-3, further data from the root-zone sensing and leaf temperature sensing were
added. Soil volumetric water content (VWC) and soil temperature were measured with a
root zone sensor. In addition, the dew point values were determined through the humidity
sensor near the crop and the leaf temperature sensor. During the experiment, the dew
points ranged from 8.4 to 20.1 ◦C. In testing each model with respect to the prediction of
the humidity inside the greenhouse, the conventional environmental data and the data
from the greenhouse actuators were compared, and the ET or respective root-zone and crop
monitoring sensing parts were comparatively analyzed based on model outcomes regarding
their importance as a factor related to humidity variation. An additional comparison was
made with the RNN-LSTM model proposed in a previous study [4]. The set of input
variables was identical to the case of Model-1. The model training was conducted through
further tuning of the previously trained model.

Table 3. The datasets used for the humidity prediction model.

CNN Models Input Data

Model-1 Micro-climate sensor of inside the greenhouse, external weather
information, and operation signals of actuators inside the greenhouse.

Model-2 A dataset with evapotranspiration information added to the dataset
of Model-1.

Model-3 A dataset with tomato leaf temperature sensor and soil moisture sensor,
leaf vapor-pressure deficit, and dew points added to Model-1.
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The environmental and control history data collected in the greenhouse were used to
develop a model using the CNN structure and LSTM device in the deep learning-based
prediction technologies. A CNN consists of an input and an output layer, as well as
multiple hidden layers (Figure 3). The hidden layers of a CNN typically consist of a series
of convolutional layers that interact with a multiplication or another dot product. For
building a CNN model, a value without a filter feature becomes a value close to 0, and
since this value comes out as a numerical value, it must be changed to a non-linear value of
0 or 1. This is called the activation function, and the ReLu function is commonly used in
deep learning models. A method of artificially reducing the feature map generated through
the activation function is called pooling, and in this study, max pooling was applied. A
fully connected layer was placed on processing the feature values obtained from multiple
convolutional layers with an artificial neural network (Figure 3).
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(CNN–LSTM)-based environmental prediction model.

A deep learning model with a CNN with LSTM was used as the basic structure of
the environmental model in this study. Figure 3 presents the overall structure of the
model. About 30 consecutive data points were used as input data, and the array was a
two-dimensional (2D) [14]. The kernel size was (1,3), and a total of 4 composite layers
were used for the 2D convolutional layer. The max pooling size for each layer was (1,2),
(2,2), and (1,2). A total of 15 nodes in the dense layer was used, and ReLu was chosen as
the active function. Model training was performed with 100 epochs and 5 batch sizes [14].
The default value of AdaDelta was set to the optimization function, which is widely used
as a stochastic gradient descent method. Each floor was given a dropout rate of 25% to
contribute to the learning rate. LSTM architecture is an efficient way to eliminate memory
loss in continuous time series data.

An optimal comparison of prediction models was achieved on the coefficient of
determination (R2) that identifies the correlation between the actual measured data and
the prediction data. For measures of dispersion, the standard error of prediction (%SEP)
and the root mean squared error (RMSE) were compared (Equations (4) and (5)). The
comparison was used in determining the method that provides an adequate explanation
for the total dispersion of data by the model.

R2 = 1− SSE
SSTO

= 1− ∑n
i=1(Xobs,i − Xmodel,i)

2

∑n
i=1
(
Xobs,i − Xobs,i

)2 (3)
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RMSE =

√
1
N ∑n

i=1 (Xobs,i − Xmodel,i)
2 (4)

SEP (%) =
100

Xobs,i

√
1
N ∑n

i=1 (Xobs,i − Xmodel,i)
2 (5)

3. Results
3.1. Comparison of ET Prediction Model Outcomes

The ET prediction model outcomes were obtained after the training of the LSTM
model (using an approximately 20-day dataset) and the testing (using an approximately
3-day dataset) for the comparison of prediction accuracy. The ET prediction model for
actual values was the Stanghellini model for the internal ET in tomato greenhouses. The
RMSE between the actual and the predicted values of the LSTM model used in training was
0.00317 kgm−2 s−1, and the RSME for the predicted values after applying the model to the
test set was 0.00356 kgm−2 s−1. Through conversion to % SEP for comparison, the respective
errors were 5.76 and 6.45%. This verified the possibility of the deep learning model
interpretation of ET using the sensors and the environmental control data in greenhouses
and an additional device for the crop leaf temperature monitoring. Figure 4 shows the
results of the training data set and the test data set of the two models.
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and the Stanghellini model.

3.2. Comparison of Humidity Prediction Model Outcomes

For the humidity prediction model, the data of 20 days between 1 June and 19 June
were used in training, after which a 1:1 comparison with actual values was conducted
(Figure 5). In the training stage, all three models produced an R2 of more than 0.90 (Figure 5),
with the highest observed for Model-3 (0.98). Model-2, including ET data, showed the
best performance with an RMSE of 1.99 in the test set. Overall, the standard error of
prediction (SEP) improved from 5.59% in Model-1 to 3.26 and 2.67% for Models-2 and -3,
respectively (Figure 5). The values from the prediction model and the measured values
for the displacement between the actual change in humidity and the current humidity
were compared (Figure 6). As the goal in this study was to ultimately identify the change
in humidity 30 min into the future, the final model performance can be accounted for
by Figure 6. The difference between the actual measured humidity and the humidity
measured after 30 min was calculated, which was taken as the X-axis for a 1:1 comparison
with the humidity after 30 min as predicted by the model. Consequently, the coefficient of
determination for Model-1 was 0.58, while that for Model-2 was 0.76 and that for Model-3
was 0.84. In the prediction of humidity, therefore, the data from Model-2 and Model-3
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were better. Based on these results, it can be seen that the humidity in the greenhouse is
closely linked to the ET rate. The more moisture-related information a greenhouse could
help to develop, the more precise the humidity prediction model. In addition, the hybrid
deep-learning model considered along with the physical model could help more precise
model development.
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Figure 6. Comparison of changed relative humidity for predictive performance after 30 min
((a) Model-1; (b) Model-2; (c) Model-3).

The performances of the final three models developed in this study were compared
using the test set data. The actual and predicted values of changes in humidity between
20 June and 24 June, the time set apart as the test set, were compared (Figure 7). In addition,
the RNN-LSTM model from a previous study [4] was used on the test set for humidity
prediction, where the set of input variables was identical to the case of Model-1. The
prediction performance of the test set was higher than in the training set in terms of RMSE.
Notably, the RMSE was 4.22 for the CNN Model-1 using the environmental data only,
whereas the RMSEs for Model-2 and Model-3 were 3.02 and 2.87, respectively. As with
training outcomes, the CNN Model-3 displayed the highest prediction performance. The
comparison with the RNN-LSTM model was possible for the CNN Model-1 using the same
input data, and the CNN model was shown to be slightly higher in predictive performance.
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4. Discussion

The moisture balance in a greenhouse is influenced by the external climatic conditions,
the plant, the soil and other environmental factors, unless it is a completely sealed system.
Thus, the balanced moisture control is known to pose critical as well as challenging tasks
alongside the control of greenhouse temperature [31–33]. In this light, the findings in this
study verified the potential use of a data-based approach for the modeling of ET in tomato
greenhouses. Notably, previous study [34] reported that using a humidity prediction model
of tomato greenhouses may allow the climatic variables, such as the set point of temperature
or ventilation, to be inferred in the process of crop cultivation to the desired level, thereby
concluding that modern greenhouse climate control should integrate various humidity
models towards the goal of overseeing the entire process of crop cultivation. In the same
way, the external and internal climatic data that may be generalized in modern greenhouses
as well as the data of commercially available devices such as the actuator operation data
were used in this study to achieve a level of precision for the ET prediction model close
to the Stanghellini model, which was a positive outcome in verifying the potential use of
such data. However, in data-based modeling, the limitation seems to be the difference
between the actual and predicted ET as the precise measurements of ET could not be used
in training.

The modeling of the humidity inside the greenhouse has been conducted in numerous
studies. Nevertheless, simple and sophisticated modeling is known to be difficult due to
the influence of various external factors [5,18,35]. With advanced processing speeds, data-
based modeling has been widely applied across fields with deep learning based on an RNN
or CNN structure, which has led to an improvement in the performance of greenhouse
environment models. Notably, a previous study [4] reporting on time-series modeling
such as NARX and RNN, showed performance to be uncertain for humidity prediction
compared to temperature or CO2 prediction. To resolve such limitations in the current
study, first, the crop ET was monitored and used as a variable. The trend of change in ET
may be regarded as a critical factor in the variation in humidity inside the greenhouse.
Without using precise ET data, the results in this study showed that the performance could
be adequately improved through the use of the data of tomato leaf temperature, root-zone
sensors, and soil water content sensors as variables. Second, such data were fed to a 2D,
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CNN input structure in the RNN-based time series modeling, and through the addition of
an LSTM device, memory function based on time series was suggested for the modeling
structure. Compared to the conventional use of RNN or LSTM alone, the structure with the
2D convolution layer for primary modeling of data patterns, followed by the time series
interpretation, is likely to have contributed to enhancing the predictive performance.

For these approaches of a data-based modeling of the greenhouse environment to
facilitate the sharing of the trained models without adjustments, there are numerous
practical issues. As the data to be used would vary according to the greenhouse or field
conditions, and the structure of the facility or the microenvironment are the key factors, it is
difficult to apply a generalized trained model through conventional micro-tuning. However,
a data-based modeling approach is anticipated to lead to modeling through training with
the continuous collection of greenhouse or agricultural field data. Such environmental
modeling appears adequate for use in a controlled engineering approach to ultimately
satisfy the optimal environment conditions in agricultural facilities or greenhouses.

5. Conclusions

This study designed data-based, deep-learning models for the modeling of crop ET
and variation in humidity in tomato greenhouses using the greenhouse environment and
actuator data. The model performance was compared, and the results are summarized
as follows:

• An ET prediction model was developed through LSTM modeling using time series
data. For this, the crop root-zone and leaf temperature sensors were additionally
installed to apply the Stanghellini model. The ET data from the Stanghellini model
were used in the training of the LSTM model. The training set contained the data
of 20 days and the test set contained the data of 3 days, for subsequent comparison
with the Stanghellini model outcomes. In training, the RMSE for the two values was
0.00317 kgm−2 s−1, and the RMSE for the predicted values after applying the model
to the test set was 0.00356 kgm−2 s−1. The errors indicated by %SEP were 5.76 and
6.45%, respectively.

• A humidity prediction model was developed to predict the current change in humidity
inside the greenhouse, i.e., the humidity 30 min into the future. The input data
included the various greenhouse environmental data, the history of actuator operation,
the ET, the soil sensor, and crop environment data, which were fed as multiple variables
to the 2D CNN structure via the convolution layer in continuous time. This was
connected to the LSTM structure to finalize the modeling. The results showed that
the RMSE for the predicted values of the test set was 2.87, confirming a better level of
performance than the conventional RNN-LSTM model.

The findings in this study are anticipated to contribute to providing optimal control of
the greenhouse internal environment; the data will be useful in the modeling and control
studies to ensure a greenhouse environment that satisfies various critical environmental
conditions including temperature, humidity, and CO2.
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