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Abstract: Rice is the main staple food worldwide, yet paddy fields are a primary source of artificial
methane (CH4) emissions. Phosphorus (P) is a key element in the growth of plants and microbes,
and P fertilizer input is a conventional agricultural practice adopted to improve rice yield. However,
the impact of long-term P fertilizer addition on CH4 emissions in rice paddies is still unclear. To
test this impact, a 36-yr field experiment with and without P fertilizer application treatments under
a double-rice cropping system was used in this study to explore how continuous P application
affects CH4 emissions and related plant and soil properties. The cumulative CH4 emissions were
21.2% and 28.6% higher without P fertilizer application treatment than with P fertilizer application
treatment during the early and late season, respectively. Long-term P fertilizer application increased
the rice aboveground biomass by 14.7–85.1% and increased grain yield by 24.5–138.7%. However,
it reduced the ratio of root biomass to aboveground biomass. Long-term P fertilizer input reduced
the soil NH4

+ concentrations in both rice seasons but increased the soil DOC concentrations in the
late season. The soil methanogenic abundance and CH4 production potential were similar without
and with P fertilizer application treatments; however, the methanotrophic abundance and soil CH4

oxidation potential with P fertilizer application treatment were significantly higher than without P
fertilizer application treatment. Our findings indicate that long-term P fertilizer input reduces CH4

emissions in rice fields, mainly by improving CH4 oxidation, which highlights the need for judicious
P management to increase rice yield while reducing CH4 emissions.

Keywords: CH4 emissions; phosphorus; long-term; methanogens; methanotrophs; paddy soil

1. Introduction

Methane (CH4) is the second most important greenhouse gas after CO2, and the
atmospheric CH4 concentrations increased by 156%, from 729.3 ppb to 1866.3 ppb, in
2019 [1]. Paddy fields are a major source of CH4 emissions, accounting for 9% of human-
caused CH4 emissions [1]. Meanwhile, rice is a staple crop of importance to humans, and
rice yields need to increase by ~28% from 2007 to 2050 to fulfill the growing global food
demand [2]. However, due to soil fertility depletion (e.g., decreased nutrient availability and
lower soil acidification) across 35% of global rice-growing areas, yields either collapse, or
stagnate [3–5]. Therefore, it is urgent to increase soil fertility while reducing CH4 emissions.
Because phosphorus (P) is a key component for plants and a widespread lack of P occurs in
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paddy fields, the application of P fertilizer exerts an important role in the improvement of
rice yields [6,7]. Yet, the impact of P fertilizer management on CH4 emissions from paddy
fields is still unclear.

CH4 emissions from paddy soils were determined by the net impact of the CH4 pro-
duction and consumption processes [8]. CH4 is mainly produced by methanogenic archaea
in flooded paddy soil, and this procedure has been greatly influenced by the soil C sup-
ply [9,10]. In flooded rice fields, CH4 was consumed mainly by aerobic methanotrophic
bacteria, and the growth of methanotrophs was influenced by soil-available nutrients (e.g.,
N and P) [11–13]. Indeed, the soil-available P concentration can directly affect CH4 produc-
tion and oxidation [14]. Microcosm incubation studies have indicated that the negative
correlation between CH4 formation, oxidation and available P concentrations [15–17] is
because a high concentration of available P can restrain CH4 production via acetoclastic
methanogenesis [18]. Moreover, P fertilizer application can indirectly affect CH4 emissions
through rice-plant growth and soil properties. For example, P fertilizer amendment often
enhances rice-plant growth, which may provide more substrates for methanogens and
more oxygen for methanotrophs [19,20]. The P fertilizer application can stimulate carbon
mineralization that affects soil C availability [21]. Taken together, these findings suggest
that P fertilizer application may largely affect CH4 emission.

Since the 1990s, several studies have been performed to clarify the impact of P fertilizer
addition on CH4 emissions in rice fields. Adhya et al. (1998) [22] showed that P amendment
decreased CH4 emissions from paddy fields. Yang et al. (2010) [23] indicated that P addition
had no influence on CH4 emissions in rice fields. Datta et al. (2013) [24] found that P
addition could result in higher CH4 emissions during the wet season. The high variation
of results across individual experiments suggests that more experiments are needed to
investigate the influence of P fertilizer application under different conditions. Furthermore,
because the effect of P fertilizer input on soil traits operates at different time scales [23,25],
it is urgent to focus on the impact of long-term P fertilizer amendment on CH4 emissions.
However, the effect of long-term P fertilizer addition on CH4 emissions in paddies is
rarely evaluated. Furthermore, an exploration of how P fertilizer application affects CH4
emissions through changing CH4 production and CH4 oxidation is needed.

China is the largest rice-producing country, contributing to 21.9% of global paddies’
CH4 emissions [26]. Rice yields from the double-rice system account for 33.3% of China’s
total rice production [27]. Furthermore, the double-rice cropping system has the highest
area-scaled and yield-scaled CH4 emissions among China’s rice cropping systems [28].
Therefore, based on a 36-yr field experiment, we investigated the CH4 emissions, plant
growth, and soils microbes involved in CH4 emissions without and with P fertilizer appli-
cation treatments in a double-rice system. The purposes of this study were: (1) to determine
the effect of continuous P fertilizer application on CH4 emissions; and (2) to learn the
underlying mechanisms of continuous P fertilizer addition effects on CH4 emissions. We
hypothesized that long-term P fertilizer application would affect soil P availability and
soil microbes relative to CH4 production and oxidation, and thus change CH4 emissions in
paddy field.

2. Materials and Methods
2.1. Site Description

The long-term field experiment began in 1984 at Nanchang (28◦06′ N, 115◦09′ E),
Jiangxi province, China. The local climate is characterized by a subtropical monsoonal
humid climate. Meteorological data, including the average daily temperature and rainfall
during double-rice-growing periods in 2021, are shown in Figure 1. The early rice was
transplanted on 30 April and harvested on 16 July; the late rice was transplanted on 26 July
and harvested on 17 October in 2021. The soil of the experimental site is classified as red
clay soil. The initial soil (0–20 cm) characteristics were pH (H2O) 6.5, soil organic matter
25.6 g kg−1, total nitrogen (N) 1.36 g kg−1, available N 81.6 mg kg−1, Olsen P 20.8 mg kg−1,
and exchangeable potassium (K) 35.0 mg kg−1.
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Figure 1. The average daily air temperature and precipitation in early and late rice seasons in 2021 at
the experimental site.

2.2. Experiment Design

A randomized block design with three replicates was conducted, including two long-
term P fertilizer treatments, unit plots of 33.3 m2 size, and fertilizer treatments as follows:
N, P, and K fertilizers applied simultaneously (NPK), and only N and K fertilizers applied
(NK). In the NPK treatment, the N application rate was 150 kg N ha−1 in the early season
and 180 kg N ha−1 in the late season: the same amount of P (60 kg P2O5 ha−1) and K
(150 kg K2O ha−1) fertilizers were applied in both the early and late rice seasons. The
amount of N and K fertilizers were kept the same between the NPK and NK treatments.
Urea (46.7% N) for N fertilizer, calcium superphosphate (12.5% P2O5) for P fertilizer, and
potassium chloride (60.0% K2O) for K fertilizer were used throughout the experiments.
After rice transplanting, each plot was flooded with 3–5 cm water until midseason drainage
at the jointing stage. Afterwards, all plots were flooded before the anthesis stage, and were
then intermittently flooded until harvest. Herbicides and pesticides were applied according
to standard commercial practice.

2.3. Sampling and Measurement Methods

The CH4 flux was measured once every 5–7 days using the static closed chamber gas
chromatography method during both rice-growing periods in 2021. The PVC chamber
with a size of 50 × 50 × 15 cm was fixed into each plot before rice transplanting. The gas
samples were taken at five minute intervals between 09:00 and 11:00 AM and measured
by gas chromatography (Agilent 7890B, Santa Clara, CA, USA). The CH4 fluxes (F) were
calculated by the following equation:

F = ∆C/∆T × V/A (1)

where ∆C/∆T is the increase rate of CH4 concentration (mg m−3 h−1) in the chamber, V is
the volume of the chamber (m3), and A indicates the enclosed area of the chamber (m2).
Only measurements for which R2 > 0.90 were used to calculate ∆C/∆T. We discarded
approximately 4% of the measurements. Accumulative CH4 emissions during rice-growing
seasons were calculated by linear interpolation.

Topsoil (0–15 cm) samples were randomly taken from each plot before early rice
transplanting in 2021. Soil organic carbon (SOC) content was measured following the
method of vitriol acid potassium dichromate oxidation [29]. Soil total N and P were
determined following Black (1965) [30] and Murphy and Riley (1962) [31], respectively.
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We also investigated the concentrations of available N [30], available P [32], and available
K [33].

Fresh soil was also collected at the jointing stage in the early and late rice seasons, when
CH4 flux reached a peak during the rice-growing season. CH4 potential production and ox-
idation rates were determined following the method of Zhu et al. (2016) [34]. Briefly, about
15 g soils (dry weight) and 15 mL of deionized sterile water were transferred into a 150 mL
serum bottle. Then, some bottles were purged with N2 gas for 10 min to clear O2 and cul-
tured in the dark at 25 ◦C for two days. Other bottles were cultured with 10,000 ppmv CH4
at 25 ◦C for 24 h and 120 r.p.m shaking condition. Gas samples in headspace were collected
every 2 h (five time points in total). CH4 concentration in headspace was determined by
gas chromatography. Potential CH4 production and oxidation rates of each soil sample
were calculated as the slope of the changes in CH4 concentration during the incubation
time. A continuous-flow injection analyzer (SKALAR SansPlus Systems, The Netherlands)
was used to measure the concentrations of soil dissolved ammonium nitrogen (NH4

+-N)
and nitrate nitrogen (NO3

−-N) concentrations. Additionally, soil dissolved organic carbon
(DOC) concentration was analyzed using an organic carbon analyzer (multi N/C UV, Ana-
lytik Jena AG, JenaGermany). A real-time quantitative polymerase chain reaction (PCR)
was used to quantify the copies of the mcrA gene (abundances of methanogens) and pmoA
gene (abundances of methanotrophs). Soil DNA was extracted using Power soil DNA
Isolation Kit (MoBio, Vancouver, BC, Canada). The detailed information of primer pairs
used for PCR amplification of the mcrA genes and pmoA genes was shown in Holmes et al.
(1995) [35] and Luton et al. (2002) [36], respectively.

At the maturity stage, we determined rice yield by aboveground and root biomass.
All hills in each chamber were manually weighed and corrected to a moisture of 14%. At
the same time, root samples were collected from 0–20 cm soil depth using a square frame
(20 × 15 × 20 cm). The aboveground and root samples were placed in an oven at a constant
temperature of 70 ◦C for 72 h until they reached a constant weight. The root/shoot ratio
was calculated by aboveground biomass to root biomass.

2.4. Statistical Analysis

A two-way ANOVA (the P fertilizer management and growing season) was performed
to analyze plant traits, the seasonal CH4 emissions, and soil microbes. If ANOVA showed
interactive effects at a significance level of p <0.05, the method of multiple comparisons us-
ing the least significant difference (LSD) test was performed. We also used an independent
sample t-test to examine the influence of long-term P fertilizer amendment on soil chemical
properties. We used the statistical package SPSS 19.0 to perform all analyses.

3. Results
3.1. CH4 Emissions

The NPK and NK treatments showed similar dynamics of CH4 fluxes in early and late
rice seasons (Figure 2). The CH4 fluxes peak appeared, approximately, at the first 30–40 days
(jointing stage) during both seasons. The cumulative CH4 emissions were significantly
influenced by the seasons and P fertilizer management, but there was no interaction be-
tween the season and P fertilizer management. The cumulative CH4 emissions of the early
season were 28.1% lower than that of the late season. Compared to NK, NPK reduced
cumulative CH4 emissions by 21.2% during the early season (Figure 3a) and 28.6% during
the late season (Figure 3b). The yield-scaled cumulative CH4 emissions during the early
season were 46.1% higher than that during the late season. We also found an interaction
effect of season and P fertilizer management on yield-scaled CH4 emissions. The NPK
treatment decreased yield-scaled CH4 emissions strongly during the early season (−67.8%),
in comparison to the late season (−42.3%).
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Figure 3. Cumulative CH4 emissions (a) and yield-scaled CH4 emissions (b) under different long-
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application; NK: long-term N and K fertilizers application. Error bars represent S.E. (n = 3).

3.2. Soil Properties

Total phosphorus, Olsen phosphorus, available potassium, and pH were significantly
influenced by P fertilizer application (Table 1). The NPK treatment increased total phos-
phorus and Olsen phosphorus concentrations by 139.3% and 1177.8% relative to NK,
respectively, but decreased available potassium concentration and pH by 28.7% and 4.1%,
respectively. Soil organic C, total N, and available N concentrations were similar between
the two P fertilizer treatments.

Table 1. Influences of long-term P fertilizer amendment on soil properties.

Treatment Soil Organic C
(g kg−1)

Total N
(g N kg−1)

Total P
(g P kg−1)

Available N
(mg N kg−1)

Available P
(mg P kg−1)

Available K
(mg K kg−1) pH

NPK 22.9 ± 1.4 2.2 ± 0.1 1.1 ± 0.0 210.0 ± 9.0 63.4 ± 5.0 88.9 ± 6.5 * 6.1 ± 0.1 *
NK 21.3 ± 0.9 2.0 ± 0.1 0.5 ± 0.0 * 192.3 ± 12.7 5.0 ± 0.4 * 124.8 ± 11.1 6.4 ± 0.0

Notes. Mean ± SD (n = 3). NPK: long-term N, P, and K fertilizers application; NK: long-term N and K fertilizers
application. * represents significant differences within P fertilizer treatments (p < 0.05).

The soil DOC concentrations during the early season were lower than that during the
late season (Table 2). We found that the interaction effect of season and P fertilizer manage-
ment on soil DOC concentrations by NPK increased soil DOC concentration by 34.0% in the
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late season but did not have an effect in the early season. The soil NH4
+ concentration was

not affected by season or the interaction of season and P fertilizer management (Table 2).
Compared to NK, NPK increased soil NH4

+ concentration by 33.3% during the early season
and by 39.3% during the late season. The soil NO3

− concentration during the early season
was higher than that during the late season (Table 2). We also detected the interaction effect
of season and P fertilizer management on soil NO3

− concentrations by the NPK-stimulated
soil NO3

− concentrations by 165.5% during the early season, but this had no influence
during the late season.

Table 2. The effect of long-term P addition on soil DOC, NH4
+, and NO3

− concentrations during
early and late rice seasons.

Early Season Late Season ANOVA (p Value)

NPK NK NPK NK P Fertilizer
(P) Season (S) P × S

Dissolved organic C
(mg L−1) 32.4 ± 0.8 34.6 ± 2.8 76.8 ± 4.2 54.9 ± 5.1 * 0.025 <0.001 0.01

Ammonium nitrogen
(NH4

+, mg kg−1) 12.0 ± 0.4 16.6 ± 0.4 12.8 ± 1.3 21.0 ± 2.4 0.001 0.06 0.36

Nitrate nitrogen
(NO3

−, mg kg−1) 2.9 ± 0.6 * 7.7 ± 1.1 1.8 ± 0.1 2.0 ± 0.1 0.001 0.004 0.008

Notes. Mean ± S.E. (n = 3). NPK: long-term N, P, and K fertilizers amendment; NK: long-term N and K fertilizers
amendment. * represents significant differences within P fertilizer treatments (p < 0.05).

The CH4 production and oxidation potential during the early season were lower
than that of the late season (Figure 4). CH4 production potential was not affected by P
fertilizer management (Figure 4a). Yet, CH4 oxidation potential was significantly affected
by P fertilizer management (Figure 4b). Compared to NK, NPK increased CH4 oxidation
potential by 19.5% during the early season and 32.7% during the late season. The interaction
effect of season and P fertilizer management on CH4 production and oxidation potential
was not significant.
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Both season and P fertilizer treatment had no significant influence on the abundance
of methanogens (Figure 5a). Methanotrophic abundance was unaffected by seasons, but it
was significantly increased by P fertilizer amendment (Figure 5b). Compared to NK, NPK
increased methanotrophic abundance by 144.2% during the early season and 82.9% during
the late season. Methanogenic activity of the early season was lower than that of the late
season (Figure 5c), but it was not affected by P fertilizer management. Methanotrophic
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activity was not affected by seasons, but it was significantly decreased by P fertilizer
application (Figure 5d). Compared to NK, NPK reduced methanotrophic activity by
58.6% during the early season and 52.1% during the late season. The interaction effect
of season and P fertilizer treatment on the abundance and activity of methanogens and
methanotrophs was not significant.
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3.3. Plant Traits

Rice grain yield of the early season averaged 38.2% lower than that of the late season
(Figure 6a). We observed a season × P fertilizer application interaction, whereby NPK
improved grain yield strongly during the early season (138.7%) in comparison to the late
season (24.5%). The effects of season and P fertilizer management on aboveground biomass
were similar to those on grain yield (Figure 6b). The root biomass of the early season
was lower than that of the late season, but the root biomass was unaffected by P fertilizer
amendment (Figure 6c). The root–shoot ratio was not affected by the seasons (Figure 6d).
However, we found the interaction effect of season and P fertilizer management on the
root–shoot ratio. NPK decreased the root–shoot ratio more strongly during the early season
(37.4%) than during late season (9.9%).
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4. Discussion

Our results showed that long-term P addition reduced CH4 emissions in rice fields
during both the early and late rice seasons, agreeing with previous studies [24,37]. On the
contrary, Shang et al. (2011) [25] and Sheng et al. (2016) [38] found that long-term P addition
did not affect or even increase CH4 emissions. This can be interpreted by the variations
in soil pH and the water regime between our study and those studies. Soil pH is the key
factor of methanogenic and methanotrophic growth [39], but the soil pH curves in CH4
production and CH4 oxidation are varied [40,41]. The optimum pH for methanogens is less
than that of methanotrophs [42]. The low soil pH (i.e., 5.1–5.3) may have limited the growth
of methanotrophs in those studies [41]. Furthermore, the water regime (i.e., continuous
flooding) in those studies was different from our study (intermittently irrigation), and the
positive influence of P application on methanotrophic growth may be limited by low O2
availability in soil under continuous flooding [43].

The balance between CH4 generation and oxidation determines CH4 emissions in
paddy soil. Yet, previous studies have rarely evaluated the response of CH4 production
and oxidation to P fertilizer application and its relation to CH4 emissions in a long-term
field experiment. Our results indicate that long-term P fertilizer application had no impact
on the methanogenic abundance and activity in a double-rice system, which was similar
to several previous observations [38,44]. However, Gao et al. (2020) [45] showed that
P fertilizer addition could stimulate methanogenic growth in P deficient soil, because
P fertilizer application stimulates rice-plant growth that produces more C substrate for
methanogens. In our study, long-term P application increased soil DOC in the late season
because it stimulated the rice aboveground biomass in the early season. Indeed, aside from
C substrate, soil N availability and P availability affect CH4 production. Higher NH4

+

concentrations without P addition treatments may stimulate the straw decomposition and
provide more substrates for methanogens [46]. Moreover, lower P concentrations can
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stimulate CH4 production via acetoclastic methanogenesis [18]. Thus, the effect of NH4
+

and P concentrations may offset the effect of C. In addition, P fertilizer application can
affect the composition of root exudates, and then exert an influence on CH4 production [47].

This study shows that long-term P fertilizer amendment stimulated the methan-
otrophic abundance, which agrees with [13,45]. There are several reasons for this phe-
nomenon. First, P is the essential element for microbes, so soil P deficiency can limit the
growth of methanotrophs. Moreover, P deficiency can decrease the activity of roots and thus
lower radial oxygen loss from roots to the rhizosphere [47,48], which may restrict the aerobic
methanotrophic growth. Furthermore, soil P deficiency increased soil NH4

+ concentration
in our study, which may limit CH4 consumption by fighting for CH4 monooxygenase [49].
In contrast, Sheng et al. (2016) [38] showed that P amendment decreased the abundance
of methanotrophs, probably because the responses of diverse species of methanotrophs
exist in different experimental soils to P deficiency are different [50]. In addition, our
findings indicate that long-term P fertilizer amendment reduced methanotrophic activity,
which may be due to the change in the community of methanotrophs. Recent research has
shown that long-term P addition caused changes in the community of methanotrophs in
paddy soils, resulting in an increase in type I methanotrophic abundance and a reduction
in type II methanotrophic abundance [13]. Indeed, the CH4 oxidation capacity of type I
methanotrophs was lower than type II methanotrophs [51].

As a key element for rice-plant growth, P deficiency is widespread around the world
and P fertilizer application is widely used to improve rice production [6,7]. This study
also showed that long-term P addition promotes rice grain yield in both the early and late
rice seasons. Yet, a higher increase was observed in the early season than in late season,
which may be due to higher temperatures during the reproductive stage in the early season
(30.1 ◦C) than in the late season (27.5 ◦C). The average air temperature of 30.1 ◦C may
cause heat damage during the reproductive stage [52]. The P addition can increase rice
resistance to heat stress, resulting in a higher rice yield [53]. Our findings indicate that the
continuous P fertilizer amendment could play a more important role in rice yields in the
global warming world.

We found that long-term P amendment reduced yield-scaled CH4 emissions, indicat-
ing that P fertilizer addition can promote win–win outcomes for both food security and
greenhouse gas reduction. However, long-term P amendment can affect soil N availability
and ammonia oxidizing bacteria, which can directly affect N2O emissions [54]. P addition
also affects arbuscular mycorrhizal fungi [55], which may affect the decomposition of soil
organic matter [56,57] and soil organic C storage. Therefore, we suggest that future study
is needed to extend the impact of continuous P fertilizer amendment on net greenhouse
gas emissions.

5. Conclusions

We found that long-term P fertilizer amendment improved aboveground dry matter
accumulation and grain yield, but that it had no influence on root dry matter accumulation
and also decreased the root–shoot ratio. Continuous P fertilizer amendment decreased soil
NH4

+ concentrations during both rice seasons, and increased soil DOC concentrations only
in the late season. Long-term P fertilizer application increased methanotrophic abundance
and CH4 oxidation potential, without affecting methanogenic abundance and CH4 produc-
tion potential. Continuous P fertilizer addition reduced CH4 emissions through stimulating
CH4 oxidation, without affecting CH4 production. These findings suggest that long-term P
fertilizer application can achieve higher rice productivity while mitigating CH4 emissions
under a double-rice cropping system.
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