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Abstract: Iron (Fe) deficiency exists as a widespread nutritional disorder in alkaline and calcareous
soils; therefore, Fe-enriching strategies may be used to overcome this issue. Field experiments were
conducted with a randomized complete design with three replicates for evaluating the effectiveness
of iron oxide nanoparticles (Fe-NPs) against traditional Fe compounds (sulfate or chelate), which have
various shortcomings on Rose-scented geranium (RSG) herb in terms of plant growth, phytophar-
maceuticales, essential oil (EO), and its constituents. Supplementation of Fe-sources considerably
improved RSG plant growth and EO yield in the 1st and 2nd cut throughout the two seasons over
non-treated control plants. A total of 11 compounds of RSG-EO were identified; the main constituents
were citronellol, geraniol, and eugenol. The results indicate that EO composition was significantly
affected by Fe-sources. Amendments of Fe-sources considerably augmented photosynthetic pigments,
total carbohydrates, nitrogen, phosphorous, potassium, iron, manganese, zinc, phenols, flavonoids,
and anthocyanin. Commonly, Fe-NPs with humic acid (Fe-NPs-HA) supplementation was supe-
rior to that of traditional sources. The highest values were recorded with spraying Fe-NPs-HA at
10 mg L−1 followed by 5 mg L−1, meanwhile, the lowest values were recorded in untreated control
plants. Current findings support the effectiveness of nanoparticle treatment over Fe-sources for
improving growth and yield while also being environmentally preferred in alkaline soil. These
modifications possibly will be applicable to EO quality and its utilization in definite food and in
medical applications.

Keywords: chlorophyll; essential oil; nano-iron; phytopharmaceutical; rose-scented geranium; yield

1. Introduction

Rose-scented geranium (RSG, Pelargonium graveolens L. Her. ex Ait. ‘Synonym Praso-
phyllum roseum Willd.’; Geraniaceae) is a highly valued perennial aromatic shrub world-
wide [1]. The chief RSG production takes place in China and the Middle East, i.e., Egypt [2].
Its EO is extensively used in the perfumery, cosmetic, and aromatherapy industries [1,3,4].
Additionally, they are becoming increasingly popular for several human disorders, i.e.,
relieving dysentery, cancer, sterility, urinary stones, and liver complications [5,6]. The
main constituents of RSG-EO are citronellol (19.28–40.23%), geraniol (6.45–18.40%), linalool
(3.96–12.90%), iso-menthone (5.20–7.20%), citronellyl formate (1.92–7.55%), Guaia-6,9-diene
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(0.15–4.40%), and bits of more than 100 constituents [1,4]. Accordingly, EO composition is
strongly affected by environmental factors and micronutrients including iron [7,8].

Iron (Fe) represents the 4th supreme plentiful element in the earth’s crust, which
participates in several species’ physio-biochemical pathways [9,10]. It is a co-factor for
approximately 140 enzymes elaborated in photosynthesis, gas exchange, nitrogen fixa-
tion, and nucleic acid assimilation [11,12]. It is also involved in chlorophyll biosynthesis,
chloroplast development, and electron transport systems [13,14]. Iron deficiency (FDS) is a
widespread threat affecting 30–50% of cultivated alkaline soils in dry regions, i.e., Egyptian
soil [15,16]. Considering the soil–plant–animal–human food chain FDS not only affects
plant growth and development but can also accelerate anemia in animals and humans [1].
Therefore, usage of the proper amount and forms of Fe is a prerequisite to extra studies, to
lessen FDS, and to increase nutrient-use efficiency. Presently, several products were applied
to overcome FDS. The EU Directive No. 2003/2003 [17,18] comprises chelates i.e., ethylene
diaminetetraacetic acid (Fe-EDTA) and ethylenediamine-N, N′-biso-hydroxyphenyl acetic
acid (Fe-o,o-EDDHA) complexes; and inorganic salts as a promising method for improving
Fe uptake and lessens Fe-chlorosis. The effectiveness of inorganic and chelated Fe fertilizers
in mitigating FDS is exceedingly variable depending on their solubility, constancy, infil-
tration capacity via leaf cuticle and translocation into the plant tissues [19,20]. The usage
of Fe chelates does not represent a viable approach for agronomists to avoid Fe chlorosis
as a result of the excessive cost and ecological hazards [21]. Furthermore, most of these
chelates are recalcitrant products in soils and waters, and there has been developing anxiety
recently about the ecological threat of their amendment to soils [22].

Recently, there has been a thrust to develop innovative nanoparticle (NP) fertilizer
formulations including iron nano-oxide (Fe-NPs), for reducing the quantity of conventional
fertilizers owing to (1) their unique physical and chemical attributes (small size, huge
surface area, pureness, and steadiness), and (2) the interface amongst nanoparticles and
biomolecules possibly will provoke metabolic pathways in treated plants [8,18,23]. The
stimulating impact of Fe-NPs on the growth and economic yield of different herbs has
been reported previously [8,23,24]. In this regard, El-Khateeb et al. [8] on sweet marjoram
found that Fe-NPs foliar spraying augmented plant growth, chlorophyll concentration,
carbohydrates, EO %, and yield as well as their constituents. Nejad et al. [25] found that
Fe-spraying increased the photosynthetic pigments, phenols, and EO % of RSG plants.
Gutierrez-Ruelas et al. [18] recorded that Fe-NPs spraying increased green bean plant
biomass, total chlorophyll, and Fe content as well as nitrate reductase activity.

However, it is unclear how Fe-NP supplementation affects RSG plant development
and some biochemical characteristics when used in place of conventional Fe-sources. As a
result, the main goal of the current study is to determine the effects of Fe-sources (chelate,
sulfur, and nano) on the growth of RSG, EO content, and their constituents, as well as
their phytochemicals. We hypothesized that various Fe sources have varying effects on
plant growth, EO yield, and composition as well as phytopharmaceuticals production.
As a novel Fe source, Fe-NPs were also very successful in eliciting the accumulation of
phytopharmaceuticals, as well as boosting EO yield and plant antioxidant activity.

2. Materials and Methods
2.1. Assimilation of Fe-NPs

The synthesis of magnetic iron oxide nanoparticles (Fe-NPs) was created with an
eco-friendly adapted scheme [26]. The co-precipitation method synthesized the Fe-NPs in
situ, which is a classical method for Fe3O4 generation. Concisely, 6.1 g of ferric chloride
was dissolved in 100 mL of distilled water, subsequently, the addition of an aliquot of
concentrated HCl to evade Fe(OH)3 precipitation, afterward 4.2 g of FeSO4·7H2O were
dissolved in a mix, and heated to 90 ◦C, then 10 mL of NH4OH (25%) was poured quickly,
and pH of the solution was sustained at 10. The mixture was stirred at 90 ◦C for 30 min
and then cooled to lab temperature. The black substance was collected via centrifugation at
600× g, and then washed with ethanol and distilled water.
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2.2. Characterization of Fe-NPs

The dimension and shape of Fe-NPs were detected by transmission electron mi-
croscopy (TEM, JEOL Ltd. Tokyo, Japan). The TEM samples were prepared via dropping
solution on a carbon-coated copper grid and then exposed to the infra-light for 30 min
(Okenshoji Co., Ltd., Tokyo, Japan microgrid B). The micrograph was examined by JEOL-
JEM 6510 at 70 kV in the RCMB, Mansoura University, Egypt.

2.3. Experimental Location, Climate Data, and Soil Properties

Two field experiments were done at a private farm in El-Serw City (31◦14′19.21′′ N,
31◦39′13.64′′ E; 16 m ASL), Damietta, Egypt, during the 2018 and 2019 seasons for as-
sessing the response of RSG plant growth, yield, and EO content to foliar applications of
Fe-sources. Physical-chemical examination of the soil surface (0–60 cm) was employed
before transplanting [27]. The soil texture was clay, and its properties were recorded in
Table 1. Diurnal experimental site ecological information involved temperature, solar
radiation, relative humidity, and wind speed of the 1st and 2nd seasons as presented in
Supplementary Materials Table S1.

Table 1. Physical and chemical analyses of the experimental soil in two seasons.

Soil Properties
Values

1st Season 2nd Season

Particle size distribution (%) Sand (%) 21.00 21.19

Silt (%) 35.92 34.82

Clay (%) 43.08 44.08

Some physical and chemical trials Electrical conductivity (dSm−1) 4.070 4.060

pH (soil paste) 7.630 7.700

Calcium carbonate (%) 3.730 3.810

Nitrogen (mg kg−1 soil) 20.32 21.03

Phosphorus (mg kg−1 soil) 16.72 17.63

Cations (meq 100 g−1 soil) Calcium 2.000 4.000

Magnesium 11.33 12.12

Sodium 2.740 2.720

potassium 2.060 2.090

Anions (meq 100 g−1 soil) Carbonate 0.000 0.000

Bicarbonate 0.370 0.360

Chloride 4.690 4.650

sulfate 5.630 5.690

2.4. Experimental Layout

The experimental soil was mechanically plowed twice prior to transplantation until
the soil surface was steady and established in the plots. Uniform seedlings of 25–30 cm
length (from the Dept. of Medicinal and Aromatic Plants, Ministry of Agric., Egypt) were
individually transplanted on 1st March, during the 2018 and 2019 seasons, in 3 × 3.5 m
plots, rows with 60 cm apart and 60 cm amongst the seedlings. In both seasons, the
plants were received the recommended doses of mineral fertilizers (ammonium sulfate
‘20.5%’, calcium superphosphate ‘15.5%’, and potassium sulfate ‘52%’ at 200, 100, and
55 kg/fed. ‘4200 m2′, correspondingly) before planting and once first cut in both seasons.
Entirely agricultural practices of plants were carried out following the endorsements of the
Ministry of Agriculture, Egypt. The design of the experiment was completely randomized
that contained 11 treatments at three replicates, and they are displayed in Table 2. The
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preliminary study provided the basis for choosing this concentration. The Fe-forms were
sprayed directly on the plants four times at 45 and 60 days (for the 1st cut), and 135 and
150 days (for the 2nd cut) from transplanting (15 days prior to flowering and at the start of
the flowering stage in both cuts).

Table 2. The experimental treatments and their identifications.

No. Treatments Abbreviation

1 Control (Spraying with tap water) T1

2 Spraying with 5 mg L−1 Fe-NPs T2

3 Spraying with 10 mg L−1 Fe-NPs T3

4 Spraying with 5 mg L−1 Fe-NPs with humic (Fe-NPs-HA) T4

5 Spraying with 10 mg L−1 Fe-NPs with humic (Fe-NPs-HA) T5

6 Spraying with 100 mg L−1 ferric sulfate T6

7 Spraying with 200 mg L−1 ferric sulfate T7

8 Spraying with 100 mg L−1 EDDHA T8

9 Spraying with 200 mg L−1 EDDHA T9

10 Spraying with 100 mg L−1 EDTA T10

11 Spraying with 200 mg L−1 EDTA T11

2.5. Measurements and Data Collection

Plants were harvested (cuts) 10 cm above the soil two times at full bloom (after 90
and 180 days from transplanting) in each season for determining growth characteristics
(plant height ‘cm’, branches number/plant, shoot fresh and dry weights ‘g/plant’) and
EO (%, yield/plant, yield/fed.), meanwhile both cuts in the second season was used for
determining photosynthetic pigments, ions, phytopharmaceuticals, and EO composition.

2.6. Determination of Essential Oil

Using a modified Clevenger apparatus for three hours, the EO was hydro-distilled
from the air-dried plants that had been in the shade for 48 h [28]. After distillation, the
EO was dried by a glass separator, filtered two times, kept in the fridge at 4 ◦C, and
preserved in dark closed bottles for preventing light and oxygen exposure. EO % = (EO
volume/shoot fresh weight) × 100. The EO yield (mL/plant) was calculated following the
current equation; EO yield = shoot fresh weight (g) × EO%.

The EO components were recognized, with a Varian Chrompack CP-3800 gas chro-
matograph (Varian Company, California, USA) with a mass detector (4000 GC-MS/MS).
Helium served as the gas carrier at a flow rate of 2 mL min−1 with a linear velocity of
32 cm s−1. The flame ionization detector temperature was 265 ◦C and the injector tem-
perature was 250 ◦C. Detection of the constituents was dependent on a judgment of their
mass spectra with those of a computer library or with realistic composites and validation
of compound individualities was also gained via Retention index (RI) assessed regarding a
homologous series of C5–C24 (n-alkanes) as designated by Adams [29].

2.7. Ion Concentration

Nitrogen (N), and phosphorus (P) were extracted and estimated [30] from the plant
dry shoot. Roughly 0.2 g shoot dry mass was cautiously moved to a digestion flask with
5 mL of concentrated H2SO4, at 100 ◦C for 2 h; then, the combinations were cool for 15 min
in lab temperature. An aliquot of H2SO4/HClO3 mix was poured dropwise. Total N was
assessed with the micro-Kjeldahl scheme. The outline of Cooper [31] was followed for the
assessment of P alongside the phosphate standard curve. In the meantime, the potassium
(K), Fe, manganese (Mn), and zinc (Zn) were extracted by acid digestion (70% nitric acid
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and 35% hydrochloric acid) in a Milestone MLA 1200 Mega microwave digestion device,
then estimated using iCAPTM 7000 Plus Series ICP-OES (Thermo ScientificTM, Boston, MA,
USA, Boston) following Bettinelli et al. [32] protocol.

2.8. Photosynthetic Pigment

Chlorophylls and carotenoids were assessed by Lichtenthaler and Wellburn [33] proce-
dure. Generally, 0.2 g FW from the 4th upper leaves was extracted overnight in pre-cooled
methanol (96%) accompanied by 0.05% sodium bicarbonate. The optical density (OD) was
read at 470, 653, and 666 nm spectrophotometrically (T60 UV–Visible spectrophotometer,
Leicestershire, UK). Pheophytin (Pheo) and Chlorophyllide (Chlide) were assessed in the
4th upper leaves according to Radojevic and Bashkin [34] and Harpaz-Saad et al. [35],
respectively. On the other hand, the protocol described by Sarropoulou et al. [36] was
applied for the estimation of protoporphyrin (Proto), Mg-protoporphyrin (Mg-Proto), and
protochlorophyllide (Pchlide).

2.9. Total Carbohydrates

The colorimetric technique designated by Zhang et al. [37] was used to estimate total
carbohydrate concentrations in plant shoots using 3, 5-dinitrosalicylic acid (DNS), after
extraction with hot ethanol (80%). An aliquot of shoot extract (3 mL) was mixed with 3 mL
DNS reagent in a test tube, then heated in a boiling water bath for 5 min. Consequently,
40% Rochelle salt solution (1 mL) was quickly added, to the mix, and placed in a water
bath at lab temperature for about 25 min., subsequently; the OD at 510 nm is recorded with
a spectrophotometer (T60 UV–Visible spectrophotometer, Leicestershire, UK).

2.10. Total Phenolic Compounds, Total Flavonoids, and Total Anthocyanin

The Folin–Ciacolteu procedure was utilized spectrophotometrically (T60 UV–Visible
spectrophotometer, Leicestershire, UK) to estimate the total phenolic concentration [38].
Concisely, the ethanolic plant extract was added to the Folin–Ciocalteu reagent and sodium
carbonate solution (20%), homogenized, and incubated in the dark for 30 min. The OD was
then measured at 650 nm. A calibration curve for gallic acid was used to estimate their
concentration (mg gallic g−1 DW).

The technique established by Meda et al. [38] was employed to assess the total con-
centration of flavonoids (mg quercetin g−1 DW) using the aluminum chloride colorimetric
scheme. An aliquot of ethanolic extract, 0.1 mL of aluminum chloride, 0.1 mL of sodium
acetate, and 2.8 mL of distilled water was combined and stirred. The mixture’s OD was
deliberate spectrophotometrically (T60 UV–Visible spectrophotometer, Leicestershire, UK)
at a wavelength of 415 nm.

Total anthocyanin concentration was determined according to the method of Abdel-
Aal and Hucl [39], in which the OD of each pre-chilled acidified methanolic extract was
assessed spectrophotometrically (T60 UV–Visible spectrophotometer, UK) at 530 nm. The
concentration (mg 100 g−1 FW) was expressed as cyaniding-3-glucoside using a molar
extinction coefficient of 27.900.

2.11. Statistical Analysis

The similarity of variables error variance was performed earlier in the analysis of
variance (ANOVA). The outputs demonstrated that all data satisfied the uniformity to
accomplish further ANOVA checks. The data acquired were exposed to one way-ANOVA at
a 95% confidence level by CoHort Software, 2008 statistical package (CoHort software, 2006;
Raleigh, NC, USA). The mean values of treatments were compared via Tukey’s HSD-MRT
test at p ≤ 0.05. Values attended by diverse letters were significantly different at p ≤ 0.05.
The data presented are mean values ± standard error (SE). The levels of significance were
denoted by * p < 0.05, ** at p < 0.01, *** p < 0.001 and NS, no significant.
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3. Results
3.1. Magnetite Nanoparticles Characterization

By using TEM imaging, the physicochemical properties of Fe-NPs were considered
(Figure 1). The images of synthesized magnetite nanoparticles with an average particle size
of 9–14 nm and a large number of diffraction rings characteristic of crystalline spherical
Fe-NPs. The nanoparticles used in this study have a mean diameter of 12.6 nm, suggesting
that the particles can cross bio-membranes.
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Figure 1. TEM imaging of the prepared magnetite nanoparticles revealed spherical shape of particles,
with an average size of 9–14 nm.

3.2. Morphological Characterization

Data in Table 3 shows that application of Fe-sources significantly increased the growth
parameters in both the 1st and 2nd cut in both seasons over control plants. The highest
morphological values were significantly associated with RSG treated with Fe-NPs HA at
10 mg L−1, followed by 5 mg L−1 Fe-NPs HA, correspondingly, and mostly, they produced
equivalent effects in both seasons. Meanwhile, the lowest values were usually detected in a
non-treated plant, with statistical significance.

Table 3. Effect of iron (nano, sulfate, and chelated) foliar spray on some vegetative growth parameters
of Sweet Scented geranium during the 2018 and 2019 experimental seasons. Means of three replicates
are presented with ± SE.

First Season

Treatments

Cut 1 Cut 2

Plant Height
(cm)

Branches
No/Plant

Shoot Fresh
Weight (g)

Shoot Dry
Weight (g)

Plant Height
(cm)

Branches
No/Plant

Shoot Fresh
Weight (g)

Shoot Dry
Weight (g)

T1 34.6 ± 0.88 h 13.0 ± 0.57 h 617.6 ± 5.48 k 108.5 ± 0.94 k 43.3 ± 0.88 h 18.0 ± 0.57 g 838.3 ± 6.64 k 164.0 ± 1.36 k

T2 66.3 ± 0.88 c 30.6 ± 0.88 c 1179 ± 8.50 d 238.5 ± 1.72 d 75.6 ± 1.20 c 43.0 ± 1.15 c 1852 ± 7.53 d 438.61.78 d

T3 71.3 ± 0.88 b 33.3 ± 0.88 bc 1261 ± 4.61 c 258.1 ± 0.94 c 81.0 ± 1.15 b 46.0 ± 0.57 bc 2024 ± 7.83 c 483.6 ± 1.87 c

T4 75.0 ± 0.57 ab 35.0 ± 0.57 ab 1433 ± 8.14 b 303.6 ± 1.72 b 84.3 ± 1.20 ab 48.0 ± 1.15 ab 2262 ± 8.14 b 545.5 ± 1.96 b

T5 78.3 ± 0.88 a 38.0 ± 0.57 a 1560 ± 6.35 a 341.1 ± 1.39 a 89.0 ± 1.15 a 51.3 ± 0.88 a 2469 ± 6.08 a 616.0 ± 1.51 a

T6 42.6 ± 0.88 fg 17.0 ± 0.57 fg 719.3 ± 7.51 i 125.2 ± 1.30 i 49.6 ± 0.88 fg 20.6 ± 0.88 fg 1020 ± 7.83 i 217.5 ± 1.67 i

T7 39.6 ± 0.88 g 15.0 ± 0.57 gh 665.0 ± 6.08 j 116.5 ± 0.68 j 45.6 ± 0.88 gh 19.0 ± 0.57 fg 965.0 ± 4.72 j 198.5 ± 1.00 j

T8 46.3 ± 0.88 f 20.0 ± 0.57 ef 783.6± 6.93 h 137.6± 1.21 gh 53.6 ± 0.88 ef 23.0 ± 0.57 f 1123 ± 6.11 h 243.2 ± 1.32 h

T9 51.3 ± 0.88 e 23.0 ± 0.57 de 834.3± 6.11 g 148.3 ± 1.08 g 58.3 ± 0.88 e 28.6 ± 0.88 e 1332 ± 11.4 g 291.2 ± 2.49 g

T10 57.6 ± 0.88 d 24.0 ± 0.57 d 928.3 ± 5.78 f 174.1 ± 1.08 f 65.60.88 d 32.3 ± 0.88 de 1483 ± 7.93 f 336.2 ± 1.79 f

T11 61.3 ± 0.88 d 26.0 ± 0.57 d 990.3 ± 4.33 e 187.2 ± 0.81 e 72.0 ± 1.15 c 36.0 ± 0.57 d 1597 ± 7.05 e 365.8 ± 1.61 e

ANOVA p *** *** *** *** *** *** *** ***
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Table 3. Cont.

Second season

Treatments

Cut 1 Cut2

Plant Height
(cm)

Branches
No/Plant

Shoot fresh
weight (g)

Shoot dry
weight (g)

Plant Height
(cm)

Branches
No/Plant

Shoot fresh
weight (g)

Shoot dry
weight (g)

T1 36.6 ± 0.88 h 15.0 ± 0.57 f 648.6± 5.23 k 114.0 ± 0.90 k 44.6 ± 0.88 g 19.0 ± 0.57 f 851.3± 4.94 k 166.8 ± 1.00 k

T2 67.6 ± 0.88 c 32.6 ± 0.88 b 1192 ± 4.33 d 241.4 ± 0.87 d 77.0 ± 0.57 c 44.6 ± 0.88 b 1886 ± 6.93 d 447.3 ± 1.64 d

T3 72.3 ± 0.88 b 34.3 ± 0.88 ab 1283 ± 3.60 c 263.0 ± 0.73 c 82.3 ± 0.88 b 47.6 ± 0.88 ab 2052 ± 6.38 c 491.0 ± 1.52 c

T4 75.6 ± 0.88 b 37.0 ± 1.15 ab 1457 ± 3.84 b 309.1± 0.812 b 86.6 ± 0.88 ab 50.0 ± 1.15 a 2282 ± 6.08 b 551.3 ± 1.46 b

T5 81.3 ± 0.88 a 39.0 ± 1.15 a 1583 ± 4.05 a 346.6 ± 0.88 a 91.0 ± 1.15 a 51.6 ± 1.20 a 2489 ± 6.42 a 621.7 ± 1.60 a

T6 44.6 ± 0.88 fg 18.6 ± 1.20 ef 734.6 ± 4.91 e 128.0 ± 0.85 i 52.6 ± 0.88 f 23.0 ± 0.57 ef 1055 ± 6.80 i 225.2 ± 1.45 i

T7 41.6 ± 0.88 g 16.0 ± 0.57 ef 688.0 ± 3.78 j 120.3 ± 0.66 j 47.6 ± 0.88 g 20.0 ± 0.57 f 890.3 ± 4.97 j 186.2 ± 1.06 j

T8 47.3 ± 0.88 f 20.3 ± 1.20 de 810.0± 4.35 h 142.5 ± 0.76 h 55.6 ± 0.88 f 25.3 ± 0.88 e 1154 ± 4.35 h 250.1 ± 0.94 h

T9 52.3 ± 0.88 e 24.0 ± 1.15 cd 849.3± 6.11 g 151.3 ± 1.09 g 61.3 ± 0.88 e 31.0 ± 1.15 d 1377 ± 7.00 g 301.4 ± 1.53 g

T10 60.3 ± 0.88 d 25.3 ± 0.88 c 952.0 ± 5.50 f 178.8 ± 1.03 f 67.6 ± 0.88 d 34.3 ± 0.88 cd 1509 ± 5.50 f 342.4 ± 1.24 f

T11 63.3± 0.88 cd 27.6 ± 0.88 c 1019 ± 4.91 e 193.0 ± 0.93 e 72.6 ± 0.88 c 37.6 ± 0.88 c 1624 ± 6.35 e 372.3 ± 1.45 e

ANOVA p *** *** *** *** *** *** *** ***

Levels of significance are represented by *** p < 0.001. For each parameter in the year, different letters within the
column show significant differences between the treatments and control according to Tukey’s HSD test at p < 0.05.
T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs
HA, 10 mg L−1 Fe-NPs HA, 100 mg L−1 FeSO4, 200 mg L−1 FeSO4, 100 mg L−1 EDDHA, 200 mg L−1 EDDHA,
100 mg L−1 EDTA, and 200 mg L−1 EDTA, respectively.

3.3. Essential Oil Yield

Data presented in Figure 2A–F indicate that Fe-sources supplementation significantly
raised EO %, accompanied by increasing EO yield per plant and per fed. in both cuts
relative to control plants (water spraying plants). The highest EO %, EO yield per plant,
and EO yield per fed. were recorded by spraying Fe-NPs-HA at 10 mg L−1 followed by
5 mg L−1, meanwhile, the lowest values were recorded in control plants. In this regard,
EO% of the 1st cut ranged from 0.132 to 0.293% based on air-dry weight, meanwhile it
was 0.101 to 0.192% in the 2nd cut in the first season. On the other hand, it was from 0.137
to 0.295% in the 1st cut and from 0.103 to 0.209% in the second cut, respectively, in the
second season.

Regarding EO yield per plant and per fed., the results showed that Fe-sources spraying
had a significant impact on EO yield at both harvests in the first and second seasons. In
most cases, the yield was slightly higher in the 1st cut than in the 2nd cut in both seasons.
In the first season, the EO yield per plant and fed. in the first cut was 0.819–4.577 mL/plant
and 13.374–74.737 L/fed. meanwhile the 2nd cut recorded 0.849–4.740 mL/plant and
13.869–77.396 L/fed. respectively (Figure 2). Additionally, in the second season, the EO
yield/plant recorded 0.888–4.676 mL/plant in the first cut and 0.876–5.201 mL/plant in the
second cut. Meanwhile, the EO yield/fed. was 14.510–76.354 and 14.313–84.924 in the 1st
and 2nd cut, respectively. The highest EO yield per plant and per fed. In the 1st and 2nd
cut throughout both seasons was obtained in plants sprayed with 10 mg L−1 Fe-NPs-Ha
and the lowest values were detected in untreated plants.
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Figure 2. Effect of iron (nano, sulfate, and chelated) foliar spray on EO oil yield of Sweet Scented
geranium during experimental seasons. (A) EO % in two cuts of the 1st season, (B) EO % in two cuts
of the 2nd season, (C) EO yield (mL/plant) in two cuts of the 1st season, (D) EO yield (mL/plant) in
two cuts of the 2nd season, (E) EO yield (L/fed.) in two cuts of the 1st season, (F) EO yield (L/fed.)
in two cuts of the 2nd season. Means of three replicates are presented with ± SE. For each parameter
in the year, different letters within the column show significant differences between the treatments
and control according to Tukey’s HSD test at p < 0.05. T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and
T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs HA, 10 mg L−1 Fe-NPs
HA, 100 mg L−1 FeSO4, 200 mg L−1 FeSO4, 100 mg L−1 EDDHA, 200 mg L−1 EDDHA, 100 mg L−1

EDTA, and 200 mg L−1 EDTA, respectively.

3.4. Chemical Composition of Essential Oils

Rose-scented geranium EO was slightly light green with a 0.889 g/mL density. The
data belonging to qualitative and quantitative constituents of EO, collected from the 1st
and 2nd cuts during the 2019 season of RSG herbs subjected to Fe-sources foliar application
were identified (Tables 4 and 5). In total, 11 constituents were detected in EO accounting
for 86.04% and 91.55% of the total EO in the 1st and 2nd cut respectively. A comparison of
the entire set of EO analytical data showed significant variations in the EO’s qualitative
and quantitative composition as a result of the use of Fe-sources.
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Table 4. Effect of iron (nano, sulfate, and chelated) foliar spray on essential oil active constituent’s retention time (RT) and percentage (area %) of Sweet Scented
geranium in the first cut during the 2019 experimental season. Means of three replicates are presented with ± SE.
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RT Area% RT Area% RT Area% RT Area% RT Area% RT Area% RT Area% RT Area% RT Area% RT Area% RT Area% Area%

T1 2.10 0.36 3.81 1.46 5.12 4.29 5.34 4.21 6.06 7.92 6.83 8.00 7.48 21.43 8.22 21.02 8.50 1.66 10.50 13.23 11.43 2.46 13.96 0.933

T2 2.03 0.35 3.72 0.82 5.01 3.99 5.25 5.98 5.93 5.91 6.70 5.33 7.33 22.42 8.07 19.09 8.35 9.23 10.31 8.26 10.95 4.20 14.42 0.817

T3 2.18 0.54 3.89 0.73 5.20 5.99 5.41 5.21 6.12 8.75 6.87 7.78 7.50 25.29 8.23 23.79 8.50 1.75 10.48 10.51 11.09 1.38 8.28 1.005

T4 1.80 0.53 3.45 1.04 4.71 6.60 4.95 8.01 5.62 9.11 6.37 7.04 6.98 25.58 7.71 23.05 7.98 1.15 9.90 6.21 10.33 1.49 10.19 1.107

T5 2.77 1.37 4.20 1.28 5.36 4.00 5.57 5.09 6.29 5.59 7.07 7.41 7.71 24.93 8.47 27.58 8.98 1.70 10.70 10.01 11.30 2.25 3.48 0.814

T6 2.24 0.87 3.99 0.36 5.33 4.72 5.55 6.38 6.25 5.58 7.03 5.48 7.63 18.29 8.42 30.21 8.67 2.57 10.69 8.61 11.32 2.75 14.18 0.621

T7 2.24 0.59 4.19 0.54 5.32 4.20 5.54 6.01 6.26 6.15 7.04 7.55 7.64 19.15 8.41 26.66 8.68 3.07 10.70 11.56 11.33 5.01 9.51 0.678

T8 2.13 0.13 3.53 0.60 4.62 5.50 4.88 5.41 5.58 8.72 6.34 7.54 7.00 22.53 7.75 26.87 7.99 1.53 9.91 8.67 10.52 2.58 9.92 0.882

T9 1.73 0.50 3.34 0.45 4.64 4.94 4.90 5.94 5.60 7.87 6.36 5.88 7.02 20.54 7.80 29.54 8.03 1.64 9.93 9.79 10.50 1.99 10.92 0.766

T10 2.06 0.30 3.83 0.12 5.16 3.36 5.41 6.03 6.15 7.09 6.93 9.14 7.59 23.89 8.37 27.73 8.87 2.35 10.61 10.82 11.55 1.90 7.27 0.787

T11 2.05 0.72 3.49 0.19 5.12 4.90 5.36 6.55 6.06 5.43 6.84 6.17 7.46 21.71 8.25 36.88 8.74 0.43 10.47 6.47 11.08 1.43 9.12 0.624

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs HA, 10 mg L−1 Fe-NPs HA, 100 mg L−1 FeSO4, 200 mg L−1 FeSO4,
100 mg L−1 EDDHA, 200 mg L−1 EDDHA, 100 mg L−1 EDTA, and 200 mg L−1 EDTA, respectively.
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Table 5. Effect of iron (nano, sulfate, and chelated) foliar spray on essential oil active constituent’s retention time (RT) and percentage (area %) of Sweet Scented
geranium in the second cut during the 2019 experimental season. Means of three replicates are presented with ± SE.
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% RT Area
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T1 2.06 0.62 3.80 1.09 5.19 6.20 5.40 5.11 6.15 9.35 6.87 4.34 7.63 35.55 8.30 17.28 8.79 0.85 10.52 8.36 11.08 2.85 8.45 2.029

T2 2.11 0.48 3.88 0.77 5.22 6.66 5.44 6.31 6.16 8.75 6.91 6.27 7.55 26.07 8.28 24.41 8.54 1.83 10.50 5.25 11.11 0.76 12.44 1.071

T3 2.05 0.38 3.75 0.35 4.93 4.33 5.19 12.78 5.86 6.99 6.63 2.76 7.27 28.93 8.02 22.63 8.51 2.02 10.22 5.20 10.86 1.17 12.46 1.307

T4 2.03 0.34 4.12 0.73 5.52 5.36 5.72 5.53 6.46 8.56 7.23 5.63 7.92 34.46 8.63 17.55 8.92 2.81 10.95 9.63 11.60 3.27 6.13 2.809

T5 2.27 1.31 4.07 1.22 5.48 5.59 5.67 3.47 6.44 8.53 7.20 3.19 7.93 32.19 8.62 14.06 8.91 2.15 10.97 10.24 11.61 2.92 15.13 2.098

T6 2.26 0.42 3.99 1.03 5.39 4.20 5.56 2.69 6.35 7.31 7.07 3.09 7.86 32.94 8.51 12.50 8.81 3.61 10.85 13.33 11.43 2.46 16.42 2.096

T7 2.35 0.32 4.08 0.95 5.42 4.53 5.58 3.33 6.37 8.51 7.04 3.55 7.81 36.27 8.47 14.96 8.75 2.56 10.72 11.41 11.28 3.30 10.31 2.125

T8 2.15 0.30 3.87 0.79 5.22 4.98 5.39 2.48 6.14 7.63 6.85 3.22 7.61 34.50 8.23 11.28 8.54 2.95 10.53 13.23 11.44 4.23 14.41 2.478

T9 2.16 0.68 3.88 1.31 5.21 5.71 5.40 3.09 6.12 7.69 6.86 3.18 7.53 31.44 8.21 15.28 8.51 2.13 10.50 12.21 11.09 4.48 12.8 1.896

T10 2.04 1.07 3.47 1.41 4.62 6.98 4.86 2.76 5.55 8.04 6.29 4.91 6.96 36.97 7.63 11.89 7.92 1.88 9.85 7.78 10.80 2.49 13.82 2.409

T11 2.17 0.52 3.81 0.43 5.10 4.51 5.30 3.87 6.02 7.69 6.73 4.50 7.42 26.53 8.14 22.78 8.39 2.66 10.31 10.64 11.17 2.56 13.31 1.142

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs HA, 10 mg L−1 Fe-NPs HA, 100 mg L−1 FeSO4, 200 mg L−1 FeSO4,
100 mg L−1 EDDHA, 200 mg L−1 EDDHA, 100 mg L−1 EDTA, and 200 mg L−1 EDTA, respectively.
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Citronellol and geraniol were the main ingredients of RSG-EO with treatments in the
1st cut, accounting for 18.29–25.58% and 19.09–36.88% of the total. There were also mod-
erate amounts of eugenol (6.21–13.23%), geranyl formate (5.33–9.14%), citronelyl formate
(5.43–9.11%), linalool (4.21–8.01%), and isomenthone (3.36–6.60%), as well as very variable
amounts of α-pinene (0.13–1.37%), myrcene (0.12–1.46%), geranyl butyrate (0.43–9.23%),
and β-caryophyllene (1.38–5.01%). According to Table 4’s findings, 5 mg L−1 Fe-NPs-HA
was used to produce the maximum levels of citronellol, citronely formate, linalool, and
isomenthone. Meanwhile, the application of 10 mg L−1 Fe-NPs-HA, 100 mg L−1 EDTA,
200 mg L−1 EDTA, and 200 mg L−1 FeSO4 correspondingly resulted in the greater amount
of α–pinene, geranyl formate, geraniol, and β–caryophyllene.

Citronellol (26.07–36.97%) and geraniol (11.28–24.41%) made up the majority of RSG-
EO in the second cut with all treatments (Table 5). There were also moderate amounts
of eugenol (5.20–13.33%), geranyl formate (2.76–6.27%), citronelyl formate (6.99–9.35%),
linalool (2.48–12.78%), isomenthone (4.20–6.98%), and very variable amounts of α-pinene
(0.30–1.31%), myrcene (0.35–1.41%), geranyl butyrate (0.85–3.61%), and β-caryophyllene
(0.76–4.48%). The results in Table 4 demonstrate that 5 mg L−1 Fe-NPs were necessary
to produce the greatest amount of geranyl formate and geraniol. Meanwhile, myrcene,
isomenthone, citronellol (100 mg L−1 EDTA), geranyl butyrate, eugenol (100 mg L−1 FeSO4),
and β-caryophyllene (200 mg L−1 EDDHA) are present in larger concentrations.

Citronellol (C), geraniol (G), and their esters are the quality features in RSG-EO.
Different C/G ratio was established in RSG herbs at the 1st and 2nd cut (Tables 4 and 5). In
the 1st cut, the C/G ratio (from 0.621 to 1.107), additionally, the maximum C/G ratio (1.107)
was recorded in T4 after that T3 (1.005) as compared with T1 (0.933). Similarly, in the 2nd
cut, the C/G ratio varied from 1.071 to 2.809, with the maximum C/G ratio documented in
T4 (2.809) followed by T8 (2.478) relative to T1 (2.029).

3.5. Measurement of Chlorophyll and Its Assimilation and Chlorophyll Precursor

Foliar spraying of Fe-forms significantly improved total chlorophyll and carotenoid
concentrations in RSG leaves above the control plants. It is observed from the data also that
Fe-NPs in special with humic acid were most effective than other Fe-forms. The greatest
chlorophyll and carotenoid concentrations were obtained after 10 mg L−1 Fe-NPs-HA
spraying, which increased by 136 and 70% in the first cut and by 118 and 98% in the second
cut respectively, over control plants (Table 6).

Table 6 shows that application of Fe-sources especially 10 mg L−1 Fe-NPs-HA signifi-
cantly increased Pheo, Achl a, Chl a/Chlide, and Chl b/Chlide comparative to non-treated
herbs. Additionally, Table 6 designates that porphyrin intermediate assimilation (Mg-proto,
proto, and Pchlide) was considerably decreased by Fe-sources supplementation.

3.6. Measurement of Ion Levels

Data existing in Table 7 display that Fe sources supplementation significantly amplified
the level of ions in plant shoots in both cuts over untreated control plants. Additionally, the
data also indicate that the usage of nano-forms of iron was superior to traditional sources
in increasing the ion level on plant shoots. The greatest values of nitrogen (3.33 and 3.97%),
phosphorous (0.222 and 0.222%), potassium (2.07 and 2.45%), iron (443 and 534 mg g−1),
manganese (89.7 and 43 mg g−1), and zinc (87 and 89.7 mg g−1) in the first cut and second
cut, respectively, were recorded when plant sprayed twice with 10 mg L−1 Fe-NPs-HA
relative to other treatments or control plants.
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Table 6. Effect of iron (nano, sulfate, and chelated) foliar spray on chlorophyll of Sweet Scented Geranium in the first and second cuts during the 2019 experimental
season. Means of three replicates are presented with ± SE.

Treatments

First Cut

Total Chlorophyll
(mg g−1 FW)

Total Carotenoids
(mg g−1 FW)

Chl A
(mg g−1 FW)

Pheo A
(mg g−1 FW) Chl a/Child Chl b/Child Mg Proto

(µg g−1 FW)
Proto

(µg g−1 FW)
Pchilde

(mg g−1 FW)

T1 0.862 ± 0.031 g 0.190 ± 0.006 f 0.530 ± 0.079 e 0.317 ± 0.014 b 0.940 ± 0.023 f 0.895 ± 0.036 c 0.274 ± 0.015 a 0.461 ± 0.004 a 0.977 ± 0.005 a

T2 1.679 ± 0.038 cd 0.313 ± 0.010 a–c 1.148 ± 0.027 ab 0.476 ± 0.034 a 1.926 ± 0.062 c 1.677 ± 0.066 b 0.209 ± 0.001 bc 0.293 ± 0.001 f 0.542 ± 0.033 e

T3 1.810 ± 0.052 bc 0.317 ± 0.008 ab 1.204 ± 0.022 a 0.481 ± 0.004 a 2.281 ± 0.020 b 2.226 ± 0.092 a 0.188 ± 0.002 cd 0.265 ± 0.001 g 0.538 ± 0.009 e

T4 1.955 ± 0.055 ab 0.319 ± 0.008 ab 1.217 ± 0.075 a 0.508 ± 0.021 a 2.428 ± 0.039 ab 2.328 ± 0.127 a 0.175 ± 0.002 cd 0.244 ± 0.001 h 0.530 ± 0.008 e

T5 2.038 ± 0.008 a 0.323 ± 0.001 a 1.248 ± 0.091 a 0.538 ± 0.016 a 2.577 ± 0.014 a 2.355 ± 0.068 a 0.160 ± 0.001 e 0.226 ± 0.001 i 0.503 ± 0.018 e

T6 1.116 ± 0.008 f 0.237 ± 0.031 d–f 0.830 ± 0.016 cd 0.436 ± 0.035 ab 0.987 ± 0.026 ef 0.923 ± 0.041 c 0.223 ± 0.002 b 0.314 ± 0.001 c 0.785 ± 0.027 bc

T7 0.957 ± 0.005 g 0.214 ± 0.005 ef 0.767 ± 0.010 de 0.429 ± 0.035 ab 0.975 ± 0.035 f 0.878 ± 0.082 c 0.253 ± 0.002 a 0.354 ± 0.001 b 0.815 ± 0.035 b

T8 1.256 ± 0.025 f 0.255 ± 0.011 c–e 0.892 ± 0.053 b–d 0.435 ± 0.017 ab 1.157 ± 0.037 e 1.028 ± 0.045 c 0.217 ± 0.001 b 0.303 ± 0.001 de 0.686 ± 0.028 cd

T9 1.261 ± 0.015 f 0.263 ± 0.004 be 0.936 ± 0.010 b–d 0.453 ± 0.032 a 1.698 ± 0.037 d 1.544 ± 0.046 b 0.216 ± 0.002 b 0.305 ± 0.001 d 0.580 ± 0.036 de

T10 1.448 ± 0.003 e 0.288 ± 0.005 a–d 1.017 ± 0.055 a–d 0.476 ± 0.018 a 1.725 ± 0.028 d 1.552 ± 0.051 b 0.213 ± 0.002 bc 0.299 ± 0.001 d–f 0.562 ± 0.011 e

T11 1.562 ± 0.007 de 0.298 ± 0.004 a–c 1.086 ± 0.032 a–d 0.469 ± 0.030 a 1.773 ± 0.024 cd 1.618 ± 0.054 b 0.211 ± 0.002 bc 0.296 ± 0.001 ef 0.556 ± 0.007 e

ANOVA p *** *** *** *** *** *** *** *** ***

Second Cut

Treatments Total Chlorophyll
(mg g−1 FW)

Total Carotenoids
(mg g−1 FW)

Chl A
(mg g−1 FW)

Pheo A
(mg g−1 FW) Chl a/Child Chl b/Child Mg Proto

(µg g−1 FW)
Proto

(µg g−1 FW)
Pchilde

(mg g−1 FW)

T1 0.883 ± 0.011 h 0.144 ± 0.002 g 0.430 ± 0.000 f 0.333 ± 0.011 f 0.706 ± 0.019 g 0.645 ± 0.026 h 0.298 ± 0.002 a 0.415 ± 0.001 a 0.913 ± 0.019 a

T2 1.650 ± 0.008 c 0.263 ± 0.004 ab 1.054 ± 0.053 ab 0.561 ± 0.026 bc 2.213 ± 0.065 c 2.032 ± 0.085 cd 0.198 ± 0.002 d 0.278 ± 0.001 e 0.567 ± 0.018 c

T3 1.813 ± 0.030 b 0.274 ± 0.004 ab 1.148 ± 0.043 a 0.573 ± 0.025 ab 2.404 ± 0.057 bc 2.237 ± 0.106 bc 0.193 ± 0.001 d 0.269 ± 0.001 f 0.562 ± 0.011 c

T4 1.802 ± 0.010 b 0.283 ± 0.001 a 1.167 ± 0.022 a 0.676 ± 0.021 a 2.526 ± 0.002 b 2.400 ± 0.054 b 0.149 ± 0.001 e 0.209 ± 0.001 g 0.426 ± 0.017 d

T5 1.933 ± 0.010 a 0.286 ± 0.001 a 1.210 ± 0.068 a 0.676 ± 0.018 a 3.671 ± 0.069 a 3.399 ± 0.126 a 0.100 ± 0.001 f 0.140 ± 0.001 h 0.424 ± 0.004 d

T6 1.132 ± 0.024 g 0.179 ± 0.005 f 0.674 ± 0.032 e 0.444 ± 0.033 e 1.087 ± 0.038 ef 1.012 ± 0.052 fg 0.248 ± 0.003 b 0.349 ± 0.001 b 0.749 ± 0.009 b

T7 1.096 ± 0.013 g 0.163 ± 0.012 fg 0.667 ± 0.016 e 0.437 ± 0.018 ef 0.917 ± 0.022 fg 0.845 ± 0.037 gh 0.250 ± 0.002 b 0.348 ± 0.001 b 0.887 ± 0.004 a

T8 1.272 ± 0.012 f 0.193 ± 0.001 ef 0.767 ± 0.010 de 0.455 ± 0.009 de 1.142 ± 0.034 ef 1.032 ± 0.037 fg 0.248 ± 0.002 b 0.346 ± 0.001 b 0.624 ± 0.015 c

T9 1.398 ± 0.040 e 0.210 ± 0.008 de 0.861 ± 0.043 cd 0.458 ± 0.024 c–e 1.302 ± 0.021 e 1.214 ± 0.039 ef 0.243 ± 0.001 b 0.338 ± 0.001 c 0.606 ± 0.005 c
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Table 6. Cont.

Second Cut

Treatments Total Chlorophyll
(mg g−1 FW)

Total Carotenoids
(mg g−1 FW)

Chl A
(mg g−1 FW)

Pheo A
(mg g−1 FW) Chl a/Child Chl b/Child Mg Proto

(µg g−1 FW)
Proto

(µg g−1 FW)
Pchilde

(mg g−1 FW)

T10 1.495 ± 0.023 de 0.230 ± 0.004 cd 0.955 ± 0.010 bc 0.556 ± 0.018 b–d 1.560 ± 0.046 d 1.399 ± 0.060 e 0.219 ± 0.001 c 0.309 ± 0.001 d 0.575 ± 0.005 c

T11 1.539 ± 0.006 d 0.249 ± 0.007 bc 1.086 ± 0.032 ab 0.569 ± 0.002 b 2.186 ± 0.067 c 1.852 ± 0.071 d 0.202 ± 0.002 d 0.280 ± 0.001 e 0.573 ± 0.014 c

ANOVA p *** *** *** *** *** *** *** *** ***

Levels of significance are represented by *** p < 0.001. For each parameter in the year, different letters within the column show significant differences between the treatments and control
according to Tukey’s HSD test at p < 0.05. T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs HA, 10 mg L−1 Fe-NPs HA,
100 mg L−1 FeSO4, 200 mg L−1 FeSO4, 100 mg L−1 EDDHA, 200 mg L−1 EDDHA, 100 mg L−1 EDTA, and 200 mg L−1 EDTA, respectively.

Table 7. Effect of iron (nano, sulfate, and chelated) foliar spray on nutrients content of Sweet Scented Geranium in the first and second cut during the 2019
experimental season. Means of three replicates are presented with ± SE.

Treatments

Cut 1 Cut2

N% P% K% Fe
(mg L−1)

Mn
(mg L−1)

Zn
(mg L−1) N% P% K% Fe

(mg L−1)
Mn

(mg L−1)
Zn

(mg L−1)

T1 1.98 ± 0.026 e 0.150 ± 0.001 g 1.13 ± 0.014 g 144 ± 0.352 k 21.7 ± 0.161 k 21.0 ± 0.282 k 2.35 ± 0.014 f 0.150 ± 0.001 g 1.59 ± 0.011 e 152 ± 1.00 k 17.5 ± 0.178 i 35.6 ± 0.294 i

T2 2.83 ± 0.017 b 0.179 ± 0.001 c 1.65 ± 0.017 c 275 ± 0.889 d 43.0 ± 0.280 d 41.7 ± 0.115 d 3.37 ± 0.011 b 0.179 ± 0.001 c 2.28 ± 0.015 b 451 ± 0.542 d 25.4 ± 0.121 d 52.3 ± 0.161 d

T3 2.87 ± 0.017 b 0.180 ± 0.001 c 1.72 ± 0.014 b 400 ± 1.39 c 48.5 ± 0.060 c 47.1 ± 0.282 c 3.42 ± 0.014 b 0.180 ± 0.001 c 2.43 ± 0.011 a 458 ± 0.069 c 28.6 ± 0.103 c 58.9 ± 0.219 c

T4 2.89 ± 0.026 b 0.205 ± 0.001 b 2.03 ± 0.012 a 411 ± 0.987 b 77.5 ± 0.092 b 75.3 ± 0.057 b 3.43 ± 0.014 b 0.205 ± 0.001 b 2.44 ± 0.020 a 524 ± 0.744 b 36.7 ± 0.127 b 75.9 ± 0.173 b

T5 3.33 ± 0.014 a 0.222 ± 0.001 a 2.07 ± 0.014 a 443 ± 1.40 a 89.7 ± 0.083 a 87.0 ± 0.271 a 3.97 ± 0.017 a 0.222 ± 0.001 a 2.45 ± 0.014 a 534 ± 0.600 a 43.0 ± 0.196 a 89.7 ± 0.132 a

T6 2.18 ± 0.020 d 0.168 ± 0.001 e 1.22 ± 0.014 f 184 ± 0.606 i 26.0 ± 0.190 i 25.3 ± 0.127 i 2.60 ± 0.011 de 0.168 ± 0.001 e 2.04 ± 0.014 c 176 ± 0.519 i 19.4 ± 0.063 h 39.6 ± 0.132 h

T7 2.14 ± 0.017 d 0.161 ± 0.001 f 1.19 ± 0.011 fg 157 ± 0.467 j 23.2 ± 0.176 j 22.5 ± 0.161 j 2.54 ± 0.020 e 0.161 ± 0.001 f 1.78 ± 0.018 d 161 ± 0.404 j 17.8 ± 0.109 i 36.6 ± 0.225 i

T8 2.20 ± 0.023 d 0.172 ± 0.001 de 1.23 ± 0.011 f 191 ± 0.623 h 28.2 ± 0.242 h 27.4 ± 0.167 h 2.62 ± 0.014 de 0.172 ± 0.001 de 2.06 ± 0.020 c 198 ± 0.877 h 20.3 ± 0.161 g 41.7 ± 0.305 g

T9 2.23 ± 0.017 d 0.173 ± 0.001 de 1.24 ± 0.011 f 222 ± 0.207 g 30.6 ± 0.383 g 29.7 ± 0.063 g 2.64 ± 0.020 d 0.173 ± 0.001 de 2.08 ± 0.068 c 229 ± 0.831 g 21.9 ± 0.167 f 45.2 ± 0.254 f

T10 2.43 ± 0.014 c 0.177 ± 0.001 cd 1.35 ± 0.014 e 253 ± 0.900 f 33.5 ± 0.228 f 32.5 ± 0.242 f 2.90 ± 0.017 c 0.177 ± 0.001 cd 2.11 ± 0.014 c 388 ± 0.906 f 24.5 ± 0.225 e 50.6 ± 0.155 e

T11 2.49 ± 0.023 c 0.178 ± 0.001 c 1.49 ± 0.012 d 268 ± 1.03 e 40.5 ± 0.167 e 39.3 ± 0.150 e 2.97 ± 0.020 c 0.178 ± 0.001 c 2.26 ± 0.014 b 444 ± 0.456 e 24.7 ± 0.103 de 50.8 ± 0.069 e

ANOVA p *** *** *** *** *** *** *** *** *** *** *** ***

Levels of significance are represented by *** p < 0.001. For each parameter in the year, different letters within the column show significant differences between the treatments and control
according to Tukey’s HSD test at p < 0.05. T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs HA, 10 mg L−1 Fe-NPs HA,
100 mg L−1 FeSO4, 200 mg L−1 FeSO4, 100 mg L−1 EDDHA, 200 mg L−1 EDDHA, 100 mg L−1 EDTA, and 200 mg L−1 EDTA, respectively.
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3.7. Total Carbohydrate

Data in Table 8 displayed that, in general, the spraying of Fe sources increased signifi-
cantly total carbohydrate concentration in the plant shoot over untreated control plants.
The highest carbohydrate concentration was documented under the treatment of foliar
application with 10 mg L−1 Fe-NPs-HA as compared with other treatments or untreated
control plants.

Table 8. Effect of iron (nano, sulfate, and chelated) foliar spray on carbohydrates and phytopharma-
ceuticals of Rose Scented Geranium in the first and second cut during the second season. Means of
three replicates are presented with ± SE.

Treat-
ments

Carbohydrates
(mg g−1 FW)

Phenol
(mg gallic acid g−1 DW)

Flavonoids
(mg quercetine g−1 DW)

Anthocyanin
(mg 100 g−1 FW)

Cut 1 Cut 2 Cut 1 Cut 2 Cut 1 Cut 2 Cut 1 Cut 2

T1 3.041 ± 0.439 b 3.295 ± 0.124 e 8.084 ± 0.157 g 10.91 ± 0.199 d 0.989 ± 0.007 d 0.998 ± 0.008 g 2.156 ± 0.028 c 2.167 ± 0.012 f

T2 5.091 ± 0.143 a 5.143 ± 0.081 a–c 12.99 ± 0.199 a–c 13.82 ± 0.124 ab 2.690 ± 0.067 a 2.719 ± 0.054 b–d 3.815 ± 0.047 ab 3.959 ± 0.009 b–d

T3 5.424 ± 0.097 a 5.532 ± 0.016 ab 13.73 ± 0.264 ab 13.98 ± 0.356 ab 2.690 ± 0.044 a 2.787 ± 0.040 bc 4.114 ± 0.053 a 4.339 ± 0.049 a–c

T4 5.557 ± 0.025 a 5.604 ± 0.047 ab 13.98 ± 0.242 a 14.43 ± 0.227 a 2.736 ± 0.033 a 2.851 ± 0.041 ab 4.146 ± 0.024 a 4.828 ± 0.115 ab

T5 5.965 ± 0.416 a 5.971 ± 0.020 a 14.27 ± 0.264 a 14.83 ± 0.530 a 2.762 ± 0.047 a 3.007 ± 0.012 a 4.238 ± 0.224 a 5.183 ± 0.023 a

T6 4.369 ± 0.136 ab 4.104 ± 0.261 de 10.95 ± 0.318 ef 12.61 ± 0.264 bc 1.658 ± 0.073 b 2.478 ± 0.022 e 3.318 ± 0.113 b 2.954 ± 0.026 ef

T7 4.315 ± 0.063 ab 3.978 ± 0.060 de 10.37 ± 0.446 f 11.89 ± 0.448 cd 1.425 ± 0.042 c 1.429 ± 0.040 f 3.250 ± 0.018 b 2.786 ± 0.032 ef

T8 4.529 ± 0.079 ab 4.184 ± 0.052 c–e 11.31 ± 0.246 d–f 12.70 ± 0.338 bc 1.840 ± 0.038 b 2.559 ± 0.023 de 3.361 ± 0.292 b 3.249 ± 0.079 de

T9 4.645 ± 0.929 ab 4.441 ± 0.351 cd 11.60 ± 0.369 d–f 13.33 ± 0.136 a–c 2.550 ± 0.007 a 2.584 ± 0.011 de 3.557 ± 0.248 ab 3.475 ± 0.263 c–e

T10 4.749 ± 0.073 ab 4.737 ± 0.356 b–d 11.96 ± 0.102 c–e 13.66 ± 0.408 ab 2.593 ± 0.025 a 2.669 ± 0.042 cd 3.674 ± 0.008 ab 3.462 ± 0.044 c–e

T11 4.883 ± 0.033 a 4.785 ± 0.323 b–d 12.59 ± 0.213 b–d 13.69 ± 0.220 ab 2.609 ± 0.015 a 2.703 ± 0.038 b–d 3.704 ± 0.063 ab 3.655 ± 0.539 c–e

ANOVA
p *** *** *** *** *** *** ***

Levels of significance are represented by *** p < 0.001. For each parameter in the year, different letters within the
column show significant differences between the treatments and control according to Tukey’s HSD test at p < 0.05.
T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, and T11 are control, 5 mg L−1 Fe-NPs, 10 mg L−1 Fe-NPs, 5 mg L−1 Fe-NPs
HA, 10 mg L−1 Fe-NPs HA, 100 mg L−1 FeSO4, 200 mg L−1 FeSO4, 100 mg L−1 EDDHA, 200 mg L−1 EDDHA,
100 mg L−1 EDTA, and 200 mg L−1 EDTA, respectively.

3.8. Phytopharmaceuticals

As shown in Table 8, the spraying of Fe-forms significantly increased the leaf phy-
topharmaceutical concentrations (phenol, flavonoid, and anthocyanin) in relation to non-
treated plants. The supreme of phenols (14.27 and 14.83 mg gallic acid g−1 DW), flavonoids
(2.762, and 3.007 mg quercetin g−1 DW), and anthocyanin (4.238, 5.183 mg 100 g−1 FW)
concentrations in both cuts were recorded in the plant shoot treated with 10 mg L−1 Fe-
NPs-HA. On the other hand, the lower levels of phytopharmaceuticals were recorded in
untreated control plants in either the 1st and 2nd cuts.

4. Discussion

Around the world, iron deficiency (FED) is a significant issue that may have the desired
effect on plant productivity in alkaline and calcareous soil. As a result, FED may be over-
come via Fe-enriching methods, which involved conventional (sulphate or chelated) and
nano-compounds supplementation. According to the results of the present investigation,
foliar application of Fe-sources modifies the composition of EO, phytopharmaceuticals, and
RSG-plant growth. It was also noted that the use of nano-sources specifically designed for
humic acid Fe-NPs-HA offered the highest values of all examined attributes and enhanced
the composition and quality of EO. Kah et al. [40] conveyed that nanofertilizers application
had up to 30% more effective than traditional products. The peculiar characteristics of
nano-particles, i.e., their large surface area, quick mass allocation, small size, high purity,
and stability may be the cause of this observation [41]. In addition to accelerating enzymatic
activities, nanoparticles also have the ability to reduce the accumulation of reactive oxygen
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species and oxidative damage that is improved plant development [23]. Moreover, it is
attributed to their functions in modifying gene expression linked to several plant metabolic
pathways [42].

Compared to untreated control plants, plant growth was dramatically boosted by the
application of Fe-sources. These results were supported by previous investigations [8,18,24].
In this regard, the performance, root growth, and leaf count of sweet basil were all enhanced
by the application of Fe3O4-NPs (1, 2, and 3 mg L−1) concentration [43]. Additionally,
ryegrass and pumpkin showed improved root elongation with Fe supplementation [44].
Similar findings indicating the improved influence of Fe3O4 NPs on a shoot and root
elongation were gathered by Zahra et al. [45]. The improvement of photosynthetic processes
and nucleic acid assimilation, which is reflected in an increase in photoassimilates needed
for cell division and enlargement and improved plant development, may be the cause of
Fe-sources’ beneficial effects on plant growth [8,18,46].

It has been demonstrated that the use of Fe-sources significantly increased RSG-EO
yield. Additionally, in both cuts during the first and second seasons, Nano-Fe in particular
with HA (10 mg L−1) was the most successful treatment (Figure 2). Previous studies have
also observed an increase in EO caused by the use of Fe-sources [7,47]. On sweet marjoram,
El-Khateeb et al. [8] discovered that applying Fe-NPs boosted EO% and EO production.
According to Nejad et al. [25], applying Fe-sources significantly raised EO% when compared
to untreated RSG plants. The generation of carbohydrates and the buildup of plant EO were
positively correlated [48]. According to the results of the current study, foliar application of
Fe-sources led to a greater accumulation of total carbohydrates in the herb than the control
(Table 8). As a result, FeSO4 application enhanced the content of total carbohydrates in
coriander plants, according to Abou-Sreea et al. [7]. Fe-NPs foliar treatments considerably
boosted the photosynthetic rate and chemical contents (carbohydrate, flavonoids, crude
protein, total fatty acids, IAA), as well as oil yield, according to Abdel Wahab and Taha [49].
Additionally, El-Khateeb et al. [8] demonstrate that the total carbohydrates concentration
in plant shoots of sweet marjoram treated with Fe-NPs was markedly elevated.

Essential oils, as a secondary metabolite, are highly complex mixtures of volatile
compounds. Fe-sources applications affected not only EO yield but also EO constituents.
In the present study, 11 constituents were identified in RSG-EO and the main components
were citronellol, geraniol, and eugenol (Tables 4 and 5). A widespread study was done
on the constituents of RSG-EO, which distinguished considerable variations in their con-
stituents worldwide. In this regard, Sharopov et al. [50] in Tajikistan identified 95.1%
of RSG-EO constituents, including 79 components including citronellol (37.5%), geraniol
(6.0%), caryophyllene oxide (3.7%), menthone (3.1%), linalool (3.0%), β-bourbonene (2.7%),
isomenthone (2.1%), and geranylformate (2.0%).

Citronellol (C), geraniol (G), and their esters are the prime components in RSG-EO
as per the prerequisites of perfumery productions [1]. The C/G is the main aspect that
regulates the standard of RSG-EO for fragrance manufacturing [51]. Commonly, C/G
proportion of 1:1–3:1 is satisfactory; nonetheless, the best ratio is 1:1 [1,52]. Oil of C/G ratio
of over 3:1 is deliberated to be of deprived quality for fragrance manufacturing nonetheless
still, it can be used for the manufacture of creams, toiletries, and fragrance-based objects at a
lesser price [53,54]. The variance in the C/G ratio is probably associated with environmental
factors at the harvesting, which eventually influences the assimilation of citronellol and
geraniol. It is described that citronellol concentrations were greater in the warm season
relative to the winter season [55].

The data herein revealed that the application of Fe sources significantly raised chloro-
phyll above untreated plants. In line with the current results, several researchers recognized
that the application of Fe-NPs [24]; Fe-sulphate [18], EDDHA [18], and EDTA [56] increased
leaves chlorophyll concentration over untreated plants. The encouragement roles of Fe on
chlorophyll accumulation resulted from regulating Fe, Mg, and N uptake and increase Fe
availability (Table 7), as well as regulate Chl assimilation gene expression [57], stimulation
chlorophyll assimilation pathways [58] and encouraging the transformation of Mg-Proto
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to Pchlide and consequently Chl a and b. Moreover, Fe-sources application interferes Chl
degradation as indicated in the present study (Table 6), by Pheo production and avoids
the change of Mg-prototp Pchlide [59], as well as hastein ALA assimilation [60] due to
declining Mg-proto and proto accumulation. As indicated previously, Fe-NPs were su-
perior to other Fe sources in increasing chlorophyll concentration due to: (1) accelerating
a dramatic upregulation of photosystem marker genes [61,62] formation of a complex
with phytoferritin (leaves iron-binding protein), leading to greater involvement in chloro-
phyll assimilation [63]; (2) Improving thylakoid and chloroplast metabolic pathways that
sequentially rise photosynthetic activities and lessening of chloroplast ROS [58,64].

The most recent results showed that spraying with Fe sources significantly increases
the levels of N, P, K, Fe, Mn, and Zn in plant shoots as compared to untreated plants.
The findings of El-Sonbaty [24] for Fe-NPs, Abou-Sreea et al. [7] for FeSO4, Erdale [65]
for EDTA, and Tavallali [66] for EDDHA were in agreement with these results. In this
regard, Gutierrez-Ruelas et al. [18] found that in green bean, the application of Fe sources
(Fe-NPs, FeSO4, EDDHA) increased plant Fe concentration. Likewise, 0.2% Fe-EDDHA
application amplified Chl a and Chl b and induced a marginal rise in the plant tissue N
content [67]. Moreover, El-Sonbaty [24] found that spraying onion plants with Fe-NPs
significantly increased N, P, and K content in plant organs over control plants. The role of Fe
in increasing nutrient concentration and uptake may be due to increased energy availability
and increased deactivated absorption of anions in root cells that increased absorption of
cations as potassium [68]. Additionally, the increase in N in plant tissues by Fe sources
(Fe-NPs, FeSO4, EDDHA) application may result from the role of Fe in the enhancement of
nitrate reductase activity which is increased N uptake and accumulation [18].

Currently, the supplementation of Fe-sources improved phytopharmaceutical accu-
mulation in plant shoots, which was in accord with previous research [25,66]. Numerous
phytopharmaceuticales’ assembly was documented to be increased by elicitors includ-
ing Fe [69,70]. The mechanism of elicitation by Fe, was, nonetheless, diverse in different
herbs, and in the majority, an ‘elicitor–receptor’ complex was formed and a massive range
of physio-biochemical responses was demonstrated [71]. The existing data have ascer-
tained that Fe encouraged the extra accretion of phenolic in an RSG shoot. This might
be because producing signal transduction systems and activating the gene for phenyl
aminolyase (PAL), a secondary metabolic pathway, speed up the assimilation of phenols.
The most important bioactive molecule with a reliable antioxidant has been determined
to be phenolic chemicals. They have received more attention recently since they have
been shown to be more effective than ascorbic acid, tocopherol, and carotenoid [72,73].
According to earlier studies [74–76], they have a variety of biological functions, including
anti-inflammatory, antioxidant, antiviral, anticarcinogenic, anti-oxidant, antispasmodic,
and depressive effects. Epidemiology surveys have discovered that a substantial nutritional
intake of flavonoids and phenolics is coupled with lesser rates of cancer incidence [72]. The
antioxidant aptitudes of phenolic compounds are mediated by numerous approaches [77]:
(1) abolish ROS/reactive nitrogen species (RNS); (2) defeat ROS/RNS assembly by hinder-
ing numerous enzymes or chelating ions occupied in ROS; (3) regulate antioxidant capacity.
Like total soluble phenolic, flavonoids establish a widespread secondary metabolite with
polyphenolic structures and play an imperative function in shielding biological systems
alongside oxidation processes [78]. In humans, flavonoids can impede aldose reductase
and are occupied in diabetic difficulties i.e., neuropathy, heart disease, and retinopathy as
well as attended as antioxidant compounds that lessen the hazard of cancers [79].

5. Conclusions

In the context of sustainable agriculture, prevailing and low-cost, using pioneering
nanotechnology in agriculture is considered one of the encouraging attitudes for improving
plant productivity. The current outcomes display a solid confirmation of the high effec-
tiveness of nano fertilizer on plant productivity and product quality over conventional
Fe-sources. The study recommended that since Fe NPs with humic acid are naturally
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non-toxic, they have been utilized as Fe-enriching fertilizers to replenish Fe levels in plants,
demonstrating the significance of using Fe NPs for commercial purposes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12092164/s1, Table S1: Mean of monthly climatic data of
the experimental site throughout the experimental seasons.
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