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Abstract: A series-parallel hybrid banana-harvesting robot was previously developed to pick bananas,
with inverse kinematics intractable to an address. This paper investigates a deep reinforcement
learning-based inverse kinematics solution to guide the banana-harvesting robot toward a specified
target. Because deep reinforcement learning algorithms always struggle to explore huge robot
workspaces, a practical technique called automatic goal generation is first developed. This draws
random targets from a dynamic uniform distribution with increasing randomness to facilitate deep
reinforcement learning algorithms to explore the entire robot workspace. Then, automatic goal
generation is applied to a state-of-the-art deep reinforcement learning algorithm, the twin-delayed
deep deterministic policy gradient, to learn an effective inverse kinematics solution. Simulation
experiments show that with automatic goal generation, the twin-delayed deep deterministic policy
gradient solved the inverse kinematics problem with a success rate of 96.1% and an average running
time of 23.8 milliseconds; without automatic goal generation, the success rate was just 81.2%. Field
experiments show that the proposed method successfully guided the robot to approach all targets.
These demonstrate that automatic goal generation enables deep reinforcement learning to effectively
explore the robot workspace and to learn a robust and efficient inverse kinematics policy, which can,
therefore, be applied to the developed series-parallel hybrid banana-harvesting robot.

Keywords: banana-harvesting robot; series-parallel hybrid robot; inverse kinematics; deep
reinforcement learning; twin-delayed deep deterministic policy gradient

1. Introduction

According to statistics from the Statistics Bureau of Guangdong [1], the planted area
of bananas in Guangdong Province reached 0.11 million hectares, and the output was
up to 4.7873 million tons. These bananas are typically picked by the agricultural labor
force. Labor shortages and workforce aging are increasing the cost of bananas. Hence,
developing a banana-harvesting robot is of great importance to reduce harvesting cost [2].
Each banana cluster has 50 to 150 individual fruits, making the cluster extra heavy. To this
end, a series-parallel hybrid robot was developed in our previous work that is capable of
clamping the banana stalk. However, the inverse kinematics (IK) problem of this robot
is that it is intractable to an address, which is one of the primary challenges facing fruit
harvesting robots.

In the agricultural robotics field, the IK problem has been extensively studied. Van
Henten et al. [3] designed a seven-degree-of-freedom (DOF) cucumber-harvesting robot
and applied a mixed analytic-numerical approach to solve the IK problem. Furthermore,
Van Henten et al. [4] reformulated the IK problem as a nonlinear optimization problem
and used a genetic algorithm to solve it. Nevertheless, the approach was found to be too
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slow for online implementation. Bac et al. [5] developed a nine-DOF sweet pepper-picking
robot and calculated the IK using the Gauss—-Newton method and Jacobian transpose.
Baur et al. [6] derived a closed form solution to the IK for redundant agricultural robots
using a local optimization technique, which was utilized by Bac et al. [7] to pick sweet
peppers. Silwal et al. [8] applied a dual optimization technique to determine the IK of
an apple-harvesting robot. Luo et al. [9] adopted an inverse transformation method to
solve the IK of a six-DOF grape-harvesting robot. Lehnert et al. [10] and Arad et al. [11]
used an open-source IK library TRAC-IK to address the IK for their sweet pepper-picking
robots. Birrell et al. [12] directly employed a built-in IK solution in the robot to move
the robot’s end-effector to the targets. Most of the methods found in the literature are
primarily designed to solve the IK problem of serial robots, and it is unclear whether they
are applicable to series-parallel hybrid robots.

In recent years, deep reinforcement learning (DRL) has been widely used in robotics
to solve dexterous manipulation tasks, such as reaching random targets and avoiding
obstacles. Lillicrap et al. [13] developed a deep deterministic policy gradient (DDPG) to
learn policies in continuous action spaces. DDPG showed impressive results in dexter-
ous manipulation. Popov et al. [14] introduced an asynchronous version of DDPG that
distributes policy training and data collection across several workers and enables a robot
to stack blocks. Our previous work extended DDPG with a recurrent neural network
to learn an obstacle avoidance policy for fruit-harvesting robots [15]. Because the value
function of DDPG tends to be overestimated, Fujimoto et al. [16] borrowed the idea of
double Q-learning and developed a twin-delayed deep deterministic policy gradient (TD3)
to limit overestimation. Experiments showed that TD3 greatly outperformed DDPG. DRL
learns control policies from exploration, but the amount of exploration required limits
its efficiency. To this effect, Vecerik et al. [17] combined DDPG, prioritizing experience
replays and expert demonstrations to reduce the exploration problem. Analogously, Nair
et al. [18] enhanced DDPG with hindsight experience replay and demonstrations to handle
exploration challenges. Schoettler et al. [19] extended TD3 with residual reinforcement
learning and demonstrations to improve exploration efficiency. Unfortunately, demon-
stration data are difficult to obtain by noncooperative robots that do not allow humans
to guide the robot to a desired position. Akkaya et al. [20] proposed a novel technique
called automatic domain randomization (ADR), which automatically generates random-
ized environment parameters of increasing difficulty. ADR allowed policies to be trained
in simple environments and then improved in difficult ones, thus greatly alleviating the
exploration problem.

In short, DRL has great potential for solving the IK problem of the developed series-
parallel hybrid banana-harvesting robot. However, the huge workspace of banana harvest-
ing robots may make DRL exploration inefficient. Inspired by ADR, a technique called
automatic goal generation (AGG) is developed to generate random targets that are progres-
sively distributed throughout the robot workspace. AGG is combined with a state of the
art in DRL, TD3, to learn a robust and efficient IK solution. The main contributions of this
work are as follows:

(a) A practical technique called AGG is developed to enable DRL algorithms to explore
the robot workspace efficiently.

(b) TD3 is extended with AGG to learn a robust and efficient IK solution for the series-
parallel hybrid banana-harvesting robot.

(c) TD3 + AGG achieves impressive results. More specifically, TD3 + AGG greatly
outperforms TD3 and obtains a success rate of 96.1% and an average running time of
23.8 milliseconds.

2. Materials and Methods

This section proposes a DRL algorithm called TD3 + AGG to learn an IK policy for
the series-parallel hybrid banana-harvesting robot that can predict the robot’s joint values,
given a target. The forward kinematics and workspace of the robot used in the DRL
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exploration phase to make the robot perform actions are analyzed in Section 2.1. Section 2.2
illustrates the details of TD3 + AGG. The flowchart of TD3 + AGG is shown in Figure 1,
which also shows the relationship between the forward kinematics, robot workspace and
TD3 + AGG.
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Figure 1. Flowchart of TD3 + AGG. TD3 alternately collects transitions through exploration in
the robot environment and uses a subset of transitions to optimize the IK policy. Meanwhile,
AGG generates random targets for the environment to encourage TD3 to explore the entire robot
workspace progressively.

2.1. Forward Kinematics and Robot Workspace Analysis

A series-parallel hybrid banana-harvesting robot was previously developed and con-
sists of a waist, a wrist and a manipulator, as shown in Figure 2a. There is one revolute
joint at the waist and one revolute joint at the wrist. The manipulator comprises several
parallelogram linkage mechanisms, which can not only move the end-effector to the target
position but also keep it horizontal. Since banana stalks are usually perpendicular to the
ground, a horizontal end-effector would clamp the stalks better. The manipulator has two
prismatic joints. Therefore, the robot has four joints and four DOFs. Table 1 lists the joint
parameters. Figure 2b shows the kinematic sketch of the robot, where xy-Op-z( represents
the robot base coordinate system (BCS), and x;,x-Ouux-Zaux represents an auxiliary coordi-
nate system that is fixed on the waist and rotates with the manipulator. The link length is
given in Table 2.

(b) Kinematic sketch

2 o
(a) Prototype

Figure 2. Series-parallel hybrid banana-harvesting robot.
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Table 1. Joint type and its value range.

Joint i Type
Initialization Range
1 Revolute 0 —n/2tom/2
2 Revolute 0 —n/2tom/2
3 Prismatic —270 —330to 0
4 Prismatic 360 228 to 456
Table 2. Link length.
Link Length (mm) Link Length (mm)
lap 270 Ier, ik 2080
Igc, IpE 360 Ier 64
lBD/ lHI/ lCE 1260 lLM 192
ler, e, e, Ixr 240 Imn 129
Iy 354 Inp 364

The objective of forward kinematics is to compute the end-effector pose, given the
robot’s joint values. Let §; and 6, denote the rotation angles of the two revolute joints,
respectively, and let 83 and 0, denote the movement amounts of the two prismatic joints.
The forward kinematics equation is derived according to Zhang et al. [21] as follows:

X = cos01(04 + Igp cosa + Igp cos B+ Ipp cosy + Ipy — dy) + cos(61 + 62)Inp
y = sin6, (94 + Ippcosa + Igpcos B+ Ipp cosy + Ipp — dx) + sin(01 + 92)11\]13
z = lgpsina — lEFSil‘l,B + lpp siny — Iyn + dz

g =01+6

)

where P = (x,y,z) and @ are the end-effector position and angle, respectively; d, (364 mm)
and d, (657 mm) are the horizontal and vertical distances between xy-Ogp-zp and
Xaux-Onux-Zaux, respectively; intermediate variables a, B, and < are computed as
follows, respectively:

2145/ 032+642 V0524642
15> +03°+6,%—Ipc? 04 (1A32+13c2*932*942>
= 7T — arccos| -—-———=——=— | — arcCos| —=———= | — arccos| ———=r————-— 2
P < 21z /0324642 V0324042 2l plpc @)

2.7 2.5 2
_ 17 L+l =1y
Y= 5T arCCOS(zz,El]E

It is worth noting that (a) the forward kinematic model is not established based on the
Denavit-Hartenberg convention but on trigonometry and algebra [21], and (b) the mobile
platform of the robot is omitted in the proposed model.

The robot workspace is approximated by uniformly sampling the joint space of the
robot and solving the forward kinematics equation, as shown in Figure 3. Obviously, the
boundaries of the workspace can be represented by the following equation:

Wp = {(x,y,2)|—-360 < x < 3100, —3180 < y < 3180,
290 < z <2200,1480 < y/x2 +y* < 3180} (©)]
This workspace is sufficient for the robot to pick bananas. The usual row spacing for
banana plants in China is 2300 mm to 2500 mm. So, the robot workspace in the y-axis is

larger than it needs to be and is limited to the range of [-2000, 2000] mm, which is enough
for the robot to pick bananas.
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Figure 3. Banana—harvesting robot workspace: (a) three—dimensional workspace; (b) workspace in
the x—y plane; (c) workspace in the x—z plane. Each blue point is obtained by sampling the joint space
of the robot randomly and solving the forward kinematics equation. Black lines form the boundaries
of the workspace.

2.2. Inverse Kinematics Analysis

Equation (1) is a complex nonlinear equation, and thus the analytical solution of the
joint values is difficult to derive. Nonlinear programming methods can solve Equation (1)
but at the cost of a heavy calculation burden [4]. In pursuit of better speed without
loss of accuracy, a DRL-based IK algorithm, called TD3 + AGG, is investigated in this
subsection. Section 2.2.1 depicts the background of TD3. Section 2.2.2 introduces a practical
AGG technique that enables TD3 to efficiently explore the robot workspace. Section 2.2.3
describes the reward, action and reward components of TD3. The network architecture and
learning strategy of TD3 + AGG are detailed in Section 2.2.4.

2.2.1. Preliminaries

The standard Markov decision process is used to model the IK problem. Specifically,
at each time-step t in an episode, an agent observes a state x;, takes an action a;, receives a
reward r;, and the state evolves into a new state x;,1 according to environment transition
dynamics. In this study, the episode is equivalent to the IK process of the robot, and the
action at the episode end is considered to be a solution to the IK problem. The goal of
DRL is to learn a policy a; ~ 7y(x¢), with parameters 6, to maximize the expected return

J=E {Z{il 'ytrt} , where H is the episode length and 7 is a discount factor. The objective |
can be maximized by TD3, a state-of-the art-in DRL.
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2.2.2. Automatic Goal Generation

TD3 requires exploring the entire robot workspace to collect a large number of transi-
tions (x¢, at, 11, x¢4+1) to improve the objective J. As the robot workspace is too large, the robot
with random exploration rarely obtains a positive reward and always obtains low-quality
transitions. The exploration process is therefore inefficient. To this end, a technology called
AGG is developed to improve the exploration efficiency. The basic idea of AGG is to
train a policy with targets that are progressively distributed throughout the entire robot
workspace. AGG is similar to ADR [20], but not exactly the same. AGG only improves
target randomness, while ADR increases environmental randomness, such as lighting,
friction and gravity. AGG is detailed as follows.

During training, a target is sampled at the beginning of each episode and fixed
throughout the whole episode. Specifically, let G° € R? be the initial pose of the end-
effector of the robot and G € RY be a random target. Target G is sampled form a uniform
distribution G; ~ LI(Q? — i, Qlo +1;), i =1,---,d, where §; determines the degree of
randomness. Obviously, the larger the value of ;, the more random G becomes. To make
TD3 focus on hard tasks, AGG also randomly selects a dimension k and resamples Gy
near its left boundary [GY — ¢, G — ¥ + Aq] or right boundary [G? + 9 — A1, GY + ],
each with a probability of 0.5. Here, A; > 0 is a constant. Then, policy performance is
evaluated and appended to a buffer after an episode is finished. Once a training epoch is
accomplished, these performances are averaged and compared with a fixed threshold .
If the average policy performance is greater than t, y is increased by A,; otherwise, it is
decreased by A, where A, > 0 is a step size. As seen, TD3 dynamically enlarges the value
of ;i =1,---,d, so that the robot can explore its workspace progressively and efficiently.

AGG parameters are updated based on the policy performance. In this work, two
kinds of policy performance indicators are investigated, as follows:

(a) Negative L, distance between the target position and the end-effector position at the
episode end, which is defined as —||Lp(G) — P||, where function Lp(G) returns the
position component of target G.

(b) Negatively bounded L, distance between the target position and the end-effector
position at the episode end, which is defined as —tanh?(w1||Lp(G) — P||), where w;
was set to 0.005 in the experiments.

The pseudocode of AGG is outlined in Algorithm 1. It should be noted that AGG is
performed at the beginning of each episode and is only used to generate task targets; A
and A, were set to 15 and 30 in experiments, respectively.

Algorithm 1 AGG

Initialize: threshold f step size A; and A, buffer D = &, robot initial pose G% k=1, and
sampling randomness ¢;,i =1, - ,d.
Repeat:
If an episode is finished:
Calculate policy performance and append it to D
G ~U(G =, GO +y),i=1,...,d
xp ~U(0,1), xp ~U(0,1)
If x1>0.5:
If x,>0.5:
Gr ~ U(QE — lﬁk,g,? — P+ Al)

Else:
Gr ~ U(G) + o — A1, G + )
If a training epoch is finished:
If Mean(D)>t:
Pk = Pr+ A2
Else:
Yk =Yk — A2
D=g, k~U{1,...,d}
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2.2.3. State, Action and Reward

Formally, a state is a set of information observed by the robot. In this study, each state
consists of four joint values, the end-effector pose, the target pose, and the relative distance
of the end-effector pose to the target pose. These attributes have different value ranges, so
they are normalized by subtracting their means and dividing by their standard deviations.

The actions taken by the policy correspond to the robot joint values, since the goal
of this study is to solve the IK problem. There are two ways to represent the joint values,
as absolute representation or incremental representation. The former has a wide range of
variation, so a small network noise would make the robot move too much and therefore
destabilizes policy training. For this reason, the incremental representation is used. In our
experiments, the range of the incremental values of the revolute joints was set to [—2",2"]
and that of the prismatic joints was set to [—2 mm, 2 mm].

The rewards are used to measure the returns of state—action pairs. Sparse reward
requires little domain-specific knowledge and is easy to specify, while dense reward requires
domain-specific knowledge to encourage the robot to accomplish its target and is slightly
intractable to define. These two kinds of reward are investigated here.

(a) Sparse reward: the robot receives a positive reward if the target is reached and a
negative reward otherwise.

T’(S,ﬂ) — { 1 lf ||£P(g) 7P|| <e (4)

-1 otherwise

where € was set to 20 mm.

(b) Dense reward: this reward comprises a position-based reward [14], an angle-based
reward, and a bonus when the target is reached.

r(s,a) = —tanh*(wy | Lp(G) — P||) + wa(cos(Lz(G) — @) = 1) + Izp(0)-pj<e) )

where function £5(G) returns the angle component of target G; Iy £,,(g)—p||<¢} iS an indica-
tor function that returns 1 if ||£p(G) — P|| < ¢, and 0 otherwise; weights w; and w, were
set to 0.005 and 0.02, respectively.

2.2.4. Learning Inverse Kinematics Policy
Network Architecture

The policy is trained with TD3, which requires the training of the following two
networks: a policy network, which maps a state to an action, and a value network, which
predicts a discounted sum of future rewards for a state—action pair. Both networks consist
of a normalization layer and two fully connected hidden layers with 100 units each. Each
hidden layer is activated by the ReLU6 function. The layer weights are initialized using a
random orthogonal initialization method [22], and there is no layer sharing between the
two networks. For the policy network, the output is activated by the softsign activation
function and scaled to the range of the incremental joint value. The network architectures
are shown in Figure 4.
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Figure 4. Policy network (left) and value network (right).

Training Strategy

The two network parameters are learned by the Adam optimizer [23] with a learning
rate of 1073. A total of 1500 epochs with 200 steps each are used. The discount factor, mini-
batch size, episode length and replay buffer size are set to 0.95, 200, 200 and 10°, respectively.
To stabilize network learning, L, regularization on the two network parameters is added
to the objective of TD3. For the exploration process, Gaussian noise with a mean of 0 and
a standard deviation of 0.5 are added to the actions. All the transitions are gathered in a
simulation environment, which only contains the series-parallel hybrid banana harvesting
robot and the targets. Figure 5 shows the environment developed by using the Python
library pyglet.

P Harvestor - X

Target angle

e

Target position

Figure 5. Simulation environment.

2.3. Experimental Setups

Simulation and field experiments are performed to evaluate the performance of the
learned IK policy of TD3 + AGG. TD3 + AGG and the image processing algorithm are pro-
grammed using TensorFlow2 and Opencv3, and the comparison algorithm is programmed
by MATLAB R2021a. All the codes are run on a computer with a Windows 10 system,
32 GB of RAM, and an Intel i7-10700K CPU.
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2.3.1. Simulation Experiments

The objective of the simulation experiments is to answer the following questions:
can AGG improve the exploration efficiency and enable TD3 to solve the IK problem
for the series-parallel hybrid robot? Can TD3 + AGG outperform a traditional nonlinear
programming approach? Three experiments are performed and detailed below.

(a) Exploration with AGG. It is unclear whether the AGG can enable TD3 to explore the
entire robot workspace effectively. In addition, the AGG parameters are updated
based on the policy performance, and it is not clear which performance indicator is the
best. To this end, this experiment uses the original TD3 as a baseline and evaluates the
success rates of TD3 + AGG with different performance indicators on one thousand
random targets generated in the robot workspace. It should be noted that an IK
solution is considered successful only if the distance between the end-effector and
the target is below a threshold, which was set to 20 mm in the experiments; and the
success rate is calculated as the ratio of the number of successful solutions to the total
number of targets.

(b) Learning from different rewards. Two reward functions are studied: sparse reward
and dense reward. The experiment uses TD3 + AGG with the two rewards as the
learning algorithms, performs one thousand picking attempts in the robot workspace,
and then analyses their success rates.

(¢) Comparison with a nonlinear programming approach. The IK problem is reformulated
as a nonlinear optimization problem, as formulated in Equation (6) [4], which is
minimized by using the fmincon function from MATLAB R2021a to find a solution.
The experiment generates one thousand random targets in the robot workspace,
implements the nonlinear programming approach and TD3 + AGG to solve the IK for
each target, and then analyzes the pose errors, running times and success rates.

C(6) = [1Lp(9) = PO +1l[La(F) — 2(0)]] (6)

where 0 represents the joint values of the robot and # is a balance factor, which was set to
20 in the experiments.

2.3.2. Field Experiment
Experimental Setup

The objective of the field experiment is to evaluate IK policy performance. The field
experiment was conducted in a commercial banana orchard in Guangzhou, China, on
21 and 22 September 2021. An end-effector is customized to grip and cut the banana stalk,
which has relatively large tolerances in its width and depth directions, as shown in Figure 6.
The end-effector works as follows: it first grips the stalk using its fingers at a moving
speed of 5 mm/s, and then cuts the stalk using a swing chainsaw whose swing speed is
somewhat slow for avoiding vibration. Because our previous experiments found that each
banana cluster weighed 40~60 kg and required a force of 848~1322 N for a stable grip, the
maximum griping force was used to grip the stalk in the experiments to avoid sliding.
Great details about the end-effector can be found in our patent (CN211406875U). In the
experiment, the robot automatically moves along the path and scans the stalk. Once a stalk
is detected, the robot stops moving, uses the IK policy to calculate the joint values, and then
approaches the stalk. A total of 50 picking attempts were performed, and the positioning
error of the end-effector center with respect to the stalk center was measured. Figure 7
displays how the error is measured.
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Figure 6. End-effector (left) and its tolerances in the width and depth directions (right).

Figure 7. Example showing how to measure the errors of the end-effector relative to the stalk center
in the end-effector width (left), depth (middle) and height (right) directions. Notably, because the
actual height of a detected stalk is unknown, the height error is determined by measuring the vertical
distance between the end-effector and the top fruit.

Image Processing Pipeline

During the field experiment, the pose of the banana stalk needs to be determined. The
methods developed in our previous studies were deployed to detect and locate banana
stalks [24,25]. Specifically, a depth filter is first used to remove distant objects in an image,
and then a fully convolutional neural network is implemented to segment the filtered
image to obtain a banana stalk region (Figure 8a). Afterward, the banana stalk region is
converted into a point cloud, and a principal component analysis-based cylinder-fitting
algorithm is performed on the point cloud to fit a cylinder (Figure 8b). The cylinder center
is regarded as the stalk position. From the robot point of view, the stalk is usually in front
of the pseudostem. Therefore, the stalk angle is simply set to 7t/2 if the y value of the stalk
is positive and —m/2 otherwise to guarantee that the end-effector can approach the stalk
without collision with the pseudostem. To enable the robot to “see” the stalk, the stalk
position is mapped from the camera coordinate system (CCS) to BCS. The relationship
between CCS and BCS is determined by a hand-eye calibration method [26]. It should
be noted that low-cost depth camera RealSense D4335i was used for image acquisition,
which can generate a pair of aligned RGB and depth images at 60 frames per second with a
resolution of 640 x 480 pixels.
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Figure 8. Example depicting the image processing pipeline. (a) Banana stalk segmentation;
(b) cylinder fitting.

3. Results and Discussion
3.1. Simulation Experiments
3.1.1. Exploration with AGG

Table 3 lists the success rates of TD3 and different variants of TD3 + AGG. With sparse
reward, TD3 was unable to learn to reach the targets, while TD3 + AGG surprisingly learned
to approach most targets. With a dense reward, TD3 + AGG had a more encouraging result
than TD3. These results demonstrate that AGG allowed TD3 to explore the robot workspace
progressively and thereby made learning effective even with a sparse reward.

Table 3. Success rates of TD3 and different variants of TD3 + AGG.

AGG Reward Function
Algorithm Negative L, Negative- Sparse Dense Success Rate
K Bounded L,
Distance . Reward Reward
Distance
TD3 v 0.1%
TD3 v 81.2%
TD3 v v 80.0%
TD3 v v 92.9%
TD3 v v 83.9%
TD3 v v 96.1%

AGG performance is affected by the policy performance indicator. Table 3 shows that
the negative-bounded L, distance was superior to the negative L, distance in terms of
success rate.

3.1.2. Learning from Different Rewards

As described in Table 3, the variants of TD3 + AGG with dense reward greatly outper-
formed those with sparse reward. This indicates that a dense reward was more suitable for
guiding the robot to learn to solve the IK problem. The dense reward investigated in this
work may not be optimal, and hence, a better dense reward can be shaped to further boost
the performance of TD3 + AGG in future work.

Notably, because the negative-bounded L, distance and dense reward improved the
performance of TD3 + AGG the most, the following simulation and field experiments use
TD3 + AGG with negative-bounded L, distance and dense reward as the IK solver.
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3.1.3. Comparison with a Nonlinear Programming Approach

Table 4 shows the success rates and running times of TD3 + AGG and a nonlinear
programming approach. TD3 + AGG slightly outperformed the nonlinear programming
approach in terms of success rate. Additionally, TD3 + AGG was computationally more
efficient, likely because TD3 + AGG used a tiny neural network with only two fully
connected layers for inference, while the nonlinear programming approach required many
iterations to converge to a reasonable solution. The result makes clear that TD3 + AGG was
able to address the IK problem for the series-parallel hybrid robots.

Table 4. Success rates and running times of TD3 + AGG and a nonlinear programming approach.

Running Time (Milliseconds)

Algorithm Success Rate
Mean Standard Deviation
TD3 + AGG 96.1% 23.8 19.8
Comparison algorithm 95.0% 38.0 13.3

The mean and standard deviation of the pose errors between the end-effector and
targets for the two algorithms were also analyzed, as depicted in Table 5. The mean and
standard deviation errors in the x, y, z, and angle axis of TD3 + AGG were slightly larger
than those of the nonlinear programming approach. Even so, these errors were far less
than the end-effector tolerances (see Figure 6). Therefore, the accuracy of TD3 + AGG was
sufficient for our series-parallel hybrid robot.

Table 5. Mean and standard deviation of pose errors between end-effector and targets.

Mean Standard Deviation
Algorithm x (mm) (mm) z (mm) Angle x (mm) (mm) z (mm) Angle
y (Radian) y (Radian)
TD3 + AGG 0.32 -1.93 6.26 —0.01 11.48 11.52 8.01 0.73
Comparison algorithm 0.97 —0.21 0.11 —0.01 7.39 7.24 2.01 0.36

The target positions not reached by the robot were plotted, as shown in Figure 9.
Both algorithms struggled to reach the boundary of the robot workspace. Therefore, if a
banana stalk is close to the boundary, the robot can be moved forward or backward so
that the banana stalk is in the middle of the robot workspace. Furthermore, TD3 + AGG
failed to approach a few targets that were not near the boundary. This problem reveals a
shortcoming of TD3 + AGG, that the learned IK policy might have little uncertainty.

3000 ! — ]
* TD3+AGG 2500 #* TD3+AGG 1
* _ Comparison algorithm * _ Comparison algorithm
R ¥ *
2000 o ¥ * ¥ «; *] N\
2000 * * 4 * **
#* ¥ *
1000 1 i ¥
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£ * £ * * F¥
£ 0 £ * * * * ¥
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1000 B
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500 * e TA
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(a) x-y plane (b) x-z plane

Figure 9. Positions of the targets that are not reached by the robot.
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3.1.4. Discussion

Sparse reward is attractive because it is easy to specify, but exploration with sparse
reward is extremely difficult. Experiments showed that AGG could promote TD3 to explore
the robot workspace with sparse reward and yielded an encouraging result. Nonethe-
less, there is still much room for AGG to improve DRL with sparse reward. Hindsight
experience replay and demonstration have been successfully used for accelerating explo-
ration in environments with sparse reward [18,27], which could be combined with AGG in
future work.

Opverall, the pose accuracy of TD3 + AGG met the requirement of the series-parallel hy-
brid robot, but it was slightly low. Our previous research also reported a similar result [15].
A possible reason was that the objective of DRL was to maximize a long-term return, not
the distance between the robot and the target, which made it difficult for DRL to solve the
IK problems accurately. This problem could be alleviated by narrowing the output range of
the policy network at the cost of increased inference time.

3.2. Field Experiment

The experimental results showed that the IK policy enabled the robot to successfully
reach all banana stalks. Furthermore, the positioning errors in the end-effector width, depth
and height directions were measured, as listed in Table 6. The errors in the width and depth
directions were 5 mm £ 17 mm and 5 £ 12 mm, respectively. Because the end-effector has
tolerances of £125 mm and +45 mm in the width and depth directions, respectively, as
shown in Figure 6, the width and depth errors were within the tolerance range and thus
acceptable. The error in the height direction was 60 mm =+ 32 mm. Fortunately, the height
error was positive and thus prevented the robot from colliding with the fruits. Figure 10
shows the field experiment scenario.

Table 6. Mean and standard deviation of the positioning error of the end-effector center with respect
to the stalk center.

Direction Mean (mm) Standard Deviation (mm)
Width 5 17
Depth 5 12
Height 60 32

Figure 10. Field experiment scenario.

Discussion

The error in the end-effector height direction was determined by measuring the
vertical distance between the end-effector and the top fruit for convenience. That is, the
measurement did not reflect the actual error between the end-effector and the target. Future
research will try to measure the actual height error to evaluate the IK policy performance
more objectively.
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The angle of the banana stalk relative to its pseudostem was set to 7t/2 or —7t/2 This
setting simplified the developed image-processing algorithm. However, it was found
through experiments that there were a few cases where the robot almost collided with
the pseudostem because the actual stalk angle was not always 71/2 or —7t/2. Estimating a
reasonable fruit picking angle would reduce the likelihood of collisions, which has attracted
the attention of some researchers [28,29]. Our future work will attempt to address the
picking angle estimation problem.

4. Conclusions

This study investigated a DRL to handle the IK problem of the developed series-
parallel hybrid banana harvesting robot. It was found that the method can accomplish the
research objective. Some specific conclusions drawn from the study were given as follows:

(@) In order to encourage DRL to explore the robot workspace efficiently, a novel AGG
technique was proposed, which automatically generates random targets with in-
creasing randomness. AGG was combined with TD3 to solve the IK problem for
the banana-harvesting robot. Simulation experiments showed that TD3 + AGG
solved the IK problem with a success rate of 96.1% and an average running time of
23.8 milliseconds and outperformed a nonlinear programming approach in terms of
success rate and running time. It was found that the pose error of TD3 + AGG was
somewhat large although within the end-effector tolerance.

(b) Toimplement TD3 + AGG on the developed banana-harvesting robot, image process-
ing was introduced. It first uses a fully convolutional neural network to segment the
banana stalk and then applies a cylinder-fitting method to fit the stalk point cloud.
The center of the resulting cylinder is regarded as the banana stalk position. The angle
of the banana stalk relative to its pseudostem was set to /2 or —7t/2 for convenience,
which however did not reflect the actual stalk angle and might cause the robot to
collide with the pseudostem.

(c) A total of 50 picking attempts were performed in the fields. The experimental results
showed that the learned policy of TD3 + AGG solved the IK tasks successfully and
enabled the banana-harvesting robot to reach all the banana stalks quite accurately.

In summary, TD3 + AGG is able to solve the IK problem robustly and efficiently and
therefore can be applied to the series-parallel hybrid banana-harvesting robot. Future work
will mainly focus on improving the positioning accuracy of TD3 + AGG and estimating the
picking angle of the stalk relative to the pseudostem.
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