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Abstract: Via national lockdowns, the COVID-19 pandemic disrupted the production and distribution
of foodstuffs worldwide, including rice (Oryza sativa L.) production, affecting the prices in India’s
agroecosystems and markets. The present study was performed to assess the impact of the COVID-19
national lockdown on rice prices in India, and to develop statistical machine learning models to
forecast price changes under similar crisis scenarios. To estimate the rice prices under COVID-19,
the general time series models, such as the autoregressive integrated moving average (ARIMA)
model, the artificial neural network (ANN) model, and the extreme learning machine (ELM) model,
were applied. The results obtained using the ARIMA intervention model revealed that during the
COVID-19 lockdown in India, rice prices increased by INR 0.92/kg. In addition, the ELM intervention
model was faster, with less computation time, and provided better results vs other models because
it detects the nonlinear pattern in time series data, along with the intervention variable, which was
considered an exogenous variable. The use of forecasting models can be a useful tool in supporting
decision makers, especially under unpredictable crises. The study results are of great importance
for the national agri-food sector, as they can bolster authorities and policymakers in planning and
designing more sustainable interventions in the food market during (inter)national crisis situations.

Keywords: COVID-19; lockdown; rice; price; ARIMA; ANN; ELM; time series intervention analysis

1. Introduction

Following the outbreak of the COVID-19 pandemic, which was declared in almost
every country in March 2020, attempts were made to contain the virus and minimize
the consequences of the health crisis through various measures, including national lock-
downs [1]. However, the mandated lockdowns had a significant impact on the agri-sector,
delaying the delivery of most inputs (e.g., fertilizers and other agrochemicals), as well as
foodstuff on the markets, and imposing significant fluctuations in both their supply and
prices [2].

Rice (Oryza sativa L.) is one of the most important agricultural commodities in the agri-
cultural supply chain. More people are fed directly by rice than by any other crop, making
rice the most significant global food crop. Asia produces >90% of the world’s milled rice,
while for the majority of the population in Southeast Asia, rice is a primary source of nutri-
tion. India boasts the largest rice-growing area in the world, with 43.82 million hectares,
producing 112 million tons of rice [3]. In addition, India has the largest area under paddy
cultivation among paddy-growing countries, yet it lags behind China in terms of output
volume. However, India’s productivity is substantially lower than that of Egypt, Japan,
China, Vietnam, the USA, and Indonesia, and is even lower than the global average [4–6].
Thus, any disturbance in India’s rice agroecosystems, as well as the supply chain and
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market, can trigger rice price fluctuation, not only on a national but also on an international
and even global scale.

Price forecasting and modeling support the formulation of policies required for long-
term and comprehensive economic development, as well as decision making and efficient
scheduling for the national economy. Based on the past time series data under consideration,
time series models are used to develop effective forecasting approaches. The autoregressive
integrated moving average (ARIMA) model is widely used, due to its statistical capabilities
and the well-known Box–Jenkins model-construction process [7]. In many studies, ARIMA
models have been successfully applied to forecast the time series of various consump-
tions and requirements [8], including the production and exports of different agricultural
commodities [9–13]. In addition, an ARIMA genetic algorithm was recently employed to
estimate maize yield [14] and oilseed production [15] in India’s agroecosystems.

Intervention with the ARIMA time series model developed by Box and Tiao [16] is
the most popular method for modeling interrupted time series data. Bianchi and col-
leagues [17] used the ARIMA intervention model previously for application planning
and budgeting. To forecast the cotton yield in India, ARIMA intervention models were
used by Ray et al. [18], and the ARIMA intervention model performed better than the
ARIMA model in the study conducted by Ramasubramanian and Ray [19]; to estimate
the Chinese stock prices, an ARIMA intervention model was employed by Jeffrey and
Kyner [20]. By conducting the interviews during the period from February 2020 to January
2021, Corchuelo Martnez-Aza et al. [21] evaluated the impact on agri-food business in the
Spanish province of Extremadura. A multinomial logit regression model was employed
by Di Marcantonio et al. [22] to detect the factors affecting the impact of the pandemic
(COVID-19) on food waste. The general time series models, such as ARIMA and the
ARIMA intervention models, were unable to recognize nonlinear components in a time
series, leading to weak forecasts.

Numerous parametric nonlinear models have been developed to handle the chal-
lenge of time series data having nonlinear components when the process of creating
the data is highly heterogeneous, nonlinear, complicated, and chaotic in character. The
most popular methods for modeling and forecasting time series data over the years have
been artificial neural networks (ANN), which have been successfully applied in different
conditions [22–27].

The ability of artificial intelligence (AI) to model nonlinear data, difficult data, and
unclear data, without the need for the precise model specification, is its key benefit. Based
on the historical time series data, traditional AI algorithms were used to forecast the
data, and intervention AI models were used to model the time series data, with the
intervention variable considered as an exogeneous variable [24,27]. However, in general,
ANN requires a long time to tweak the model parameters; to overcome this issue, we
have developed the extreme learning machine (ELM) model and the ELM intervention
model, which was trained at a much faster rate. ELM models are capable of achieving
good generalization performance, as well as learning thousands of times quicker than
the backpropagation networks proposed by Huang and others [28]. Furthermore, it was
confirmed that these models outperform support vector machines in classification and
regression applications [29–31].

To determine the impact of agricultural plans or unforeseen changes, prominent
classical time series models, such as ARIMA and its intervention models, were used. These
models are not capable of detecting nonlinear time series data; thus, they have been altered.
To address this issue, we established ANN and ELM-based intervention models. In the
input layer of the process, this model contains only one intervention variable that functions
as an exogenous variable. This study set out to determine how the COVID-19 lockdown
affected rice prices, as well as to evaluate the effect of the COVID-19 related shutdown on
rice prices. The recent lockdown imposed by the government of India due to the COVID-19
pandemic had an abrupt impact on the prices of agricultural commodities. This study made
an effort to assess the effect of the COVID-19 outbreak on Indian rice prices. Statistical and
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machine learning time series intervention was used to forecast future prices. We believe
that the study outcomes can be exploited by national and international authorities and
policymakers in shaping more resistant and proactive measures and plans regarding future
similar crises in the agricultural sector.

2. Materials and Methods
2.1. Data Source

The input data for the time series analysis on daily rice prices (INR/kg) from January–
June 2020 were obtained from the Ministry of Consumer Affairs of the Indian government.
Since the Indian government declared a national lockdown on 25 March, this date was
regarded as the date of intervention. Rice prices from 1 January to 24 March 2020 were
considered part of the pre-intervention period, while prices from 25 March to 30 June 2020
were considered as part of the post-intervention period. In addition, data from 1 January to
23 June were considered as a training set, and from 24 to 30 June 2020 were considered as a
validation set.

2.2. ARIMA Model

The most popular methodology employed in linear time series analysis is the Box–Jenkins
procedure of model building using the ARIMA model. The model is written in the form
ARIMA (p, d, q), where p is the auto regressive process order, d is the data stationary process
order, and q is the moving average process order for a time series Yt, as follows;

ϕ(B)(1− B)dYt = θ(B)εt (1)

where, ϕ is the autoregressive parameter, θ is the moving average parameter, d is the
degree of differencing parameter, B is the backshift operator, and εt is white noise. The
steps in ARIMA model building are: (1) model order identification using ACF (auto-
correlation function), PACF (partial autocorrelation function), AIC (Akaike information
criterion), and BIC (Bayesian information criterion); (2) model estimation using maximum
likelihood estimation (MLE); (3) diagnostic checking of residuals; and (4) forecasting of
out-of-sample values.

2.3. ARIMA Intervention Model

Intervention analysis using the ARIMA Box and Tiao [16] methods established a time
series analysis technique that incorporates the effects of external forces, which are called
interventions, through modeling methods. An intervention model is a time series model
that is used to investigate the impact of external factors on the series. Intervention models
are subsets of transfer function modeling, in which the exogenous variable is a categorical
variable. As a result, the intervention model using the seasonal ARIMA process can be
written as

yt=
ω(B)
δ(B)

Bb It +
θ(B)Θ(B)
φ(B)Φ(B)

εt (2)

where, δ(B) = (1 − δ1B −, . . . , − ϕr Br) and ω(B) = (ω0 − ω1B −, . . . , − ωs Bs); It= dummy
variable. The term ω(B)

δ(B) is known as an intervention component; this model can extend to
include multiple intervention components, accounting for various types of interventions
that influence the process.

Out of the three types of interventions, the COVID-19 pandemic falls under step
intervention, which occurs at a specific point in time and across countries, its impact may
be endless over time, and it may increase or decrease. The codes or indicator variables for
this type of intervention are: before the pandemic, 0, and during the pandemic, 1.

2.4. Artificial Neural Network

Over the last three decades, the ANN has been the most frequently used AI technique
for time series modeling and forecasting. For the time series regression problem, the ANN
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model takes time lags in AR and MA as parameters. The ANN mimics the intelligence
behavior of human, in which the information is processed in three layers, e.g., input, hidden,
and output layers. The neural network in a time series framework follows feed forward
architecture, as the input moves in a forward direction. The general expression of ANN is
given as follows;

yt = a0 + ∑q
j=1 ajg

(
boj + ∑p

i=1 bijyt−P

)
+ εt (3)

where aj and bij are the synopsis weights, p is the input node represented in terms of number
of lags, q is the number of hidden nodes, and g is the activation function. The difference
between expected and actual values was treated as an error function, which was reduced
through the ANNs training stage, expressed as follows;

E =
1
N ∑N

t=1(et)
2 =

1
N ∑N

t=1

(
xt −

(
ω0 +

(
∑Q

J=1 wJ g
(

w0 j + ∑P
i=1 ωijxt−i

))))2
(4)

The number of error phrases was represented by N. To modify the neural network
parameters, a change was made in the term ∆wij as ∆wij = −η ∂E

∂wij
; η gives the learning

rate of the model. Most commonly, the logistic transfer function is used as an activation
function from the first (input) to the hidden layer, and the linear activation function is used
from the hidden to the last (output) layer. This provides a more balanced output to estimate
the problem, with continuous target values [24,27].

2.5. ELM Model

The extreme learning (ELM) algorithm is a single-layer feed-forward neural network;
the training procedure of ELM is slightly different than for the regular neural network. The
weights are assigned randomly in the input layers, and weights are estimated using the
generalized inverse of the hidden layer output matrix [28] in the output layer, leading to
fast and accurate training in the model building procedure.

The output layer of ELM is given as;

yi = ∑h
i=1 βig

(
wixj + bi

)
j = 1, 2, . . . , N (5)

The number of hidden neurons was represented by h, the activation function was
represented by g, the vector input layer weight connected with the ith hidden neuron
was represented by wi, and jth input vector was represented by xj; the ith bias term was
represented by bi, and the output layer weight connected with the jth hidden neuron was
represented by βi; the number of input samples were represented by N.

The general steps of the ELM algorithm computation [32] are presented as follows:

(i) Assign the weights from the input to the hidden layer randomly.
(ii) Determine the weighted input layer output matrix.
(iii) Determine the output weight βi.

ELM has two phases; in the first phase, ELM initializes the hidden layer, in which
the mapping of input data to the feature space is completed, and then the Moore–Penrose
inversion [32] is used to compute the solution of (linear parameters) in the second phase.

2.6. Machine Learning Intervention Models

The conventional ML approaches allow for forecasting solely based on the predicted
variable’s prior values. The model assumes that a variable’s previous values, as well as
the past values of external influences, determine its future values. The machine learning
intervention model is a modified method of the standard machine learning model, which
takes added independent variables as an intervention component [33]. Each detected value
is naturally supposed to be an unknown nonlinear function in machine learning forecasting
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models. For a specified univariate time series Xp, where p = 1, 2, . . . , n, and Xp ∈ R, the
nonlinear function F of m lags p1, p2, . . . , pm.

xp = F (xp−p1, xp−p2, . . . , xp-pm) + εp (6)

The zero-mean error is referred to by εp. Assume ‘i’ interventions were looked at
across q1, q2, . . . , qi time periods; then, depending on the type of unexpected changes
(interventions), we define ‘i’ secondary variables Φ1

p, Φ2
p, . . . , Φi

p. Finally, the model with
m lags can be written as

Xp = F (xp−p1, xp−p2, . . . , xp-pm, Φ1
p, Φ2

p, . . . , Φi
p) + εp (7)

In this study, the instrumental variable is added in the input layer of two models,
namely, in the ANN and ELM models, hereafter called the ANN intervention and ELM
intervention models. Similarly, the ELM intervention works on the same principle; with a
smaller difference in the ELM model, the LASSO function is used from the hidden to the
output layer. The two intervention models—the artificial neural network with intervention
and the extreme learning machine with intervention—were explained in this section using
the intervention concept.

For checking the non-linearity, the Brock–Dechert–Scheinman (BDS) test was used, and
for testing the significance comparison of the different models considered in this study, the
Diebold–Mariano (DM) test was employed. The particulars of these tests were given in the
reference [34,35]. Finally, the most extensively used method for measuring the forecasting
error is the MAPE (mean absolute percentage error)

M = (1/n) ∗ Σ (|actual − forecast|/|actual|) ∗ 100 (8)

3. Results

In order to predict the prices of rice under the influence of the nationwide COVID-19
lockdown imposed by the government of India, the intervention time series and machine
learning models were developed in this study. The period from 1 January 2020 to 24 March
was considered as the pre-intervention period, and the period from 25 March to 30 June
2020 was considered as the post intervention period. Figure 1 depicts the time series plot of
rice prices in India, where the red line indicates the date of intervention (25 March) when
the government imposed the national lockdown. There was a slight increase in the price
of rice during the lockdown in India, as is clearly visible in the post-intervention section
shown in Figure 1.

Table 1 displays the descriptive statistics of the same rice price data in India, confirming
that the price series was fairly symmetrical and leptokurtic, with a coefficient of variation of
1.9, which corresponds to a diverse dataset. The overall average rice price in India during
lockdown was INR 33.79/kg, and the minimum and maximum prices were INR 31.60 and
INR 35.28 per kg, respectively.

To begin time series modeling, it is required to know the nature of the data under
consideration; hence, the BDS (Brock–Dechert–Scheinman) test was employed to examine
the rice prices in India, and the results demonstrate that the data under investigation were
non-linear, with probability values of p < 0.0001 (Table 2).
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Table 1. Descriptive Statistics.

Mean 33.79

Median 33.84

Mode 33.78

Standard Deviation 0.65

Kurtosis 0.49

Skewness −0.70

Range 3.68

Minimum 31.60

Maximum 35.28

CV(%) 1.91
CV: Coefficient of Variation.
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Table 2. BDS test for nonlinearity (eps—values of epsilon or standard deviation of sample input
variable; m—embedded dimension; p—probability).

Sample Dimension (m) Rice Price (INR/kg)

eps (1) m = 2 16.179 (p < 0.0001)
m = 3 20.1867 (p < 0.0001)

eps (2) m = 2 8.1075 (p < 0.0001)
m = 3 8.6064 (p < 0.0001)

eps (3) m = 2 5.0122 (p < 0.0001)
m = 3 4.3058 (p < 0.0001)

eps (4) m = 2 6.2164 (p < 0.0001)
m = 3 5.3165 (p < 0.0001)
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3.1. Results of ARIMA Model

The Box–Jenkins autoregressive integrated moving average (ARIMA) model is the
most widely used classical time series model in the forecasting studies. Hence, ARIMA
was employed in this study. Before determining the suitable candidate model, different
combinations of autoregressive and moving average order lags were tried, and the model
orders with the lowest AIC and BIC values were considered as the best models for the
data under consideration. For this rice price data, the model with the best autoregressive,
best moving average, and best differencing (to make the series stationary) was identified
as the best model, and is hereafter identified as ARIMA (1,1,1). The maximum likelihood
estimation method was used to estimate the model parameters, as shown in Table 3. Once
the model is estimated, the next step is to evaluate the diagnostic checking of the model.
For this, the Box–Pierce non-correlation test for residuals was used, and the residuals are
non-correlated, as the probability of significance is p = 0.59.

Table 3. Parameter estimation of the ARIMA and the ARIMA intervention model of rice prices
(INR/kg).

Model Parameters Estimation S.E. Z Value p Value Model Fitting
Box–Pierce

Non-Correlation Test

Original Residuals

ARIMA
(1,1,1)

AR1 0.14 0.093 1.4676 0.1422 Log-
likelihood −147.63

χ2 = 26.73
(p < 0.0001)

χ2 = 0.28
(p = 0.599)

MA1 0.89 0.047 −18.71 p < 0.0001 AIC 301.26
BIC 310.73

ARIMA
Int (2,0,1)

AR1 1.05 0.130 8.11 p < 0.0001 Log-
likelihood

−146.56
χ2 = 0.51

(p < 0.0001)
χ2 = 0.0021
(p = 0.963)

AR2 −0.12 0.100 −8.25 p < 0.0001

MA1 −0.83 0.100 −8.24 p < 0.0001 AIC 302.85
Impact (w) 0.92 0.59 1.56 0.060 BIC 318.65

ARIMA: autoregressive integrated moving average, ARIMA Int: ARIMA with intervention, AR: autoregressive,
MA: moving average, S.E.: standard error, p value: probability value, BIC: Bayesian information criterion,
AIC: Akaike information criterion, ω: impact parameter.

3.2. Results of ARIMA Intervention Model

The ARIMA intervention model was employed for the time series data of rice prices;
the model building steps are similar to those of the ARIMA model, except for the impact
parameter estimation, which was done by incorporating dummy variables (0: no impact,
and 1: impact) in the model. In this study the ARIMA intervention model (2,0,1) was
determined to be appropriate for rice prices. Table 3 shows the parameter obtained using
the maximum likelihood estimation approaches. The intervention parameter (Impact (ω))
for prices is predicted to be 0.92 (p = 0.060). The data suggest that the lockdown had a
positive impact on rice prices, implying that the price increased by INR 0.92 kg during the
lockdown period. The diagnostic checking of residuals indicates they are white noise, as the
Box–Pierce test autocorrelation shows non-significant residual probability values (p = 0.963).
Therefore, the fitted model is adequate for the data under consideration. Ray et al. [18]
conducted a study on cotton yield prediction and came up with similar results.

3.3. Results of the ANN Model and the ANN Intervention Model

The model with two tapped delays (lags) and five hidden nodes (2: 5S: 1L), with a
sigmoidal (S) activation function from the input to the hidden nodes, and a linear activation
(L) function from the hidden to the output layer, was chosen as the appropriate model,
based on the low MAPE values. Following model fitting, the Box–Pierce test is used to
diagnose the residuals. The residuals were neither autocorrelated nor random, since the
probability value of rice prices is 0.47. Similarly, the appropriate model chosen for the
ANN intervention is with the one with one tapped node, five hidden nodes, and one
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intervention variable, which was considered as an exogenous variable in the model. The
activation function, namely the sigmoidal and linear function, was used from the hidden-
input and hidden-output layer in building both the ANN and ANN intervention models.
The same Box–Pierce non-correlation test was used for testing the residuals, which are
non-autocorrelated and random in nature, as the probability values are non-significant
(Table 4).

Table 4. Parameter specifications of the ANN and ANN intervention models.

Model Specifications ANN ANN Int

Input Lag 2 2
Dependent/Output Variable 1 1
Hidden Layers 1 1
Hidden Nodes 5 5
Exogenous Variables 0 1
Model 2:5S:1L 2:5S:1L
Box–Pierce Non-Correlation
test for residuals χ2 = 0.506 (p = 0.475) χ2 = 0.892 (p = 0.344)

ANN: artificial neural network, ANN Int: artificial neural network intervention, S: sigmoidal activation function
(input to the hidden layer), L: linear unit activation function (hidden to the output layer), p: probability value.

3.4. Results of the ELM Model and the ELM Intervention Model

The appropriate extreme learning machine model orders were chosen for both the
ELM and the ELM intervention models, based on the lowest MAPE values. For this
dataset, the model with six tapped and four hidden nodes was chosen as the optimal model
(Table 5). Following model fitting, the Box–Pierce test was used to diagnose the residuals.
The residuals were neither auto correlated nor random, since the probability value of
the residuals was 0.84. Similarly, for the ELM intervention model, a combination of six
input lags, four hidden nodes, and one exogenous variable were chosen as the appropriate
model orders. In the input to the hidden layer, a sigmoidal activation function was utilized,
and from the hidden to the output layer, a LASSO function was used. In this model, a
sigmoidal and LASSO function were used as activation functions from the input-output
layers. The Box–Pierce non correlation test is used for testing the residuals, which are
non-autocorrelated and random in nature; the results were presented in Table 5.

Table 5. ELM model and ELM intervention model parameter specifications.

Specifications ELM ELM Intervention

Input lags 6 6
Exogenous variable 0 1
Hidden nodes 4 4
Combined operator Median Median
Penalty estimation LASSO LASSO

Network repetition 20 20

Box–Pierce Non-Correlation
test for residuals χ2 = 0.040 (p = 0.841) χ2 = 0.267 (p = 0.605)

ELM: extreme learning machine, ELM Int: extreme learning machine intervention, LASSO: least absolute shrinkage
and selection operator.

4. Discussion

The estimated value of the ARIMA intervention parameter demonstrates that the
COVID-19 epidemic had a positive impact on rice prices in India. According to the findings,
rice prices increased by INR 0.92/kg during the study period. Similar results were found in
the time series intervention impact analysis studies [36,37]. For modeling and forecasting,
all of the models examined in this study’s evaluation of forecasting performance were
assessed by taking into account the MAPE values of the two sets (training and testing).
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Comparing the performance results from Table 6 and other models, the ELM intervention
model outperformed them all. The usual time series models (ARIMA and the ARIMA
intervention model) in two sets of this study’s data underperformed compared to the
machine learning models in two datasets (training and testing). The performance order of
all considered models in this study is first, the ELM intervention, followed by ELM, then
the ANN models, and finally, the ARIMA models.

Table 6. Model performance in terms of MAPE in training and testing datasets.

ARIMA ARIMA_Int ANN ANN_Int ELM ELM_Int

Training 1.29 1.28 0.85 0.70 0.58 0.45
Testing 1.01 1.19 1.11 0.92 1.01 0.82

MAPE: mean absolute percentage error.

In this study, the obtained results show that the extreme learning machine intervention
model outperformed the other models considered for this investigation. The superiority
of the ELM intervention model may be attributable to its ability to replicate the complex,
nonlinear structure of the data, while also monitoring the performance of an external
intervention variable. Additionally, while ANN required more time to adjust the model’s
parameters and train the network, the ELM trained much more quickly. It was also
discovered that the ANN took a longer time to tweak the model parameters and train the
network, but the ELM trained at a much faster rate, making it particularly beneficial in
describing the COVID-19 pandemic’s effects on rice prices in India. The machine learning
models considered in this study performed better than the standard time series models
(ARIMA and the ARIMA intervention model) in both sets (training set and testing set).
Table 7 shows the predicted values of all models, revealing that the four models, the
ARIMA, ANN, ARIMA intervention, and ANN intervention models yield nearly same
values. Thus, based on the results, it can be concluded that these models were not able to
generalize and estimate different values compared to the ELM intervention model.

Table 7. Sample forecast using different models in testing datasets.

Rice Price ARIMA ARIMA_Int ANN ANN_Int ELM ELM_Int

24 June 2020 34.73 34.34 34.23 34.62 34.15 34.36 34.29
25 June 2020 34.58 34.30 34.17 34.37 34.27 34.23 34.27
26 June 2020 34.68 34.30 34.15 34.41 34.55 34.20 34.27
27 June 2020 33.70 34.30 34.13 33.24 33.28 34.18 34.13
28 June 2020 33.57 34.30 34.12 34.03 34.03 34.19 33.91
29 June 2020 34.31 34.30 34.11 33.95 33.93 34.37 34.34
30 June 2020 34.33 34.30 34.10 33.99 33.96 34.39 34.34

MAPE 1.01 1.19 1.11 0.92 1.01 0.82

According to several studies [38–44] for forecasting time series data in the agricultural
and related fields, the results showed that AI performed better than the standard ARIMA
model, which is in accordance with some previous findings. By considering the MAPE
values, a significant difference between the actual and forecasted values can be obtained
by the DM test. The DM test was similarly used to compare the inter-combinational
significance comparison between the models [45–48]. The results of the DM test revealed
that in two sets (training and testing set) of data, the extreme learning machine intervention
model performed better than all other models (Table 8).
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Table 8. Comparison of different models using the Diebold–Mariano Test.

A1, A2 A1, A3 A1, A4 A1, A5 A1, A6 A2, A3 A2, A4 A2, A5

Statistics 0.295 −0.533 −1.783 7.918 7.834 −0.641 −1.891 7.413

Probability 0.769 0.596 0.077 <0.0001 <0.0001 0.523 0.060 <0.0001

A2, A6 A3, A4 A3, A5 A3, A6 A4, A5 A4, A6 A5, A6

Statistics 7.431 −1.557 7.383 7.582 7.429 7.549 4.199

Probability <0.0001 0.121 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

A1: ARIMA, A2: ARIMA_Int, A3: ANN, A4: ANN_Int, A5: ELM, A6: ELM_Int.

Figure 2A–F depicts the actual vs fitted plots of the various models for rice prices in
India during the observed period. The fitted values of the classical linear time series models,
i.e., the ARIMA and ARIMA intervention models, are more deviated from the actual values.
The fitted values of the ML models are closer to the actual rice prices, specifically, the
predicted values of the ELM intervention models are very close to the actual rice prices, in
both the training and the testing datasets.

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 

According to several studies [38–44] for forecasting time series data in the agricul-
tural and related fields, the results showed that AI performed better than the standard 
ARIMA model, which is in accordance with some previous findings. By considering the 
MAPE values, a significant difference between the actual and forecasted values can be 
obtained by the DM test. The DM test was similarly used to compare the inter-combina-
tional significance comparison between the models [45–48]. The results of the DM test 
revealed that in two sets (training and testing set) of data, the extreme learning machine 
intervention model performed better than all other models (Table 8). 

Table 8. Comparison of different models using the Diebold–Mariano Test. 

 A1, A2 A1, A3 A1, A4 A1, A5 A1, A6 A2, A3 A2, A4 A2, A5 
Statistics 0.295 −0.533 −1.783 7.918 7.834 −0.641 −1.891 7.413 

Probability 0.769 0.596 0.077 <0.0001 <0.0001 0.523 0.060 <0.0001 
 A2, A6 A3, A4 A3, A5 A3, A6 A4, A5 A4, A6 A5, A6  

Statistics 7.431 −1.557 7.383 7.582 7.429 7.549 4.199  
Probability <0.0001 0.121 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  

A1: ARIMA, A2: ARIMA_Int, A3: ANN, A4: ANN_Int, A5: ELM, A6: ELM_Int. 

Figure 2A–F depicts the actual vs fitted plots of the various models for rice prices in 
India during the observed period. The fitted values of the classical linear time series mod-
els, i.e., the ARIMA and ARIMA intervention models, are more deviated from the actual 
values. The fitted values of the ML models are closer to the actual rice prices, specifically, 
the predicted values of the ELM intervention models are very close to the actual rice 
prices, in both the training and the testing datasets. 

 
Figure 2. (A) Actual vs ARIMA fitted values, (B) actual vs ARIMA intervention fitted values, (C) 
actual vs ANN fitted values, (D) actual vs ANN intervention fitted values, (E) actual vs ELM fitted 
values, and (F) actual vs ELM intervention fitted values. 

Figure 2. (A) Actual vs ARIMA fitted values, (B) actual vs ARIMA intervention fitted values,
(C) actual vs ANN fitted values, (D) actual vs ANN intervention fitted values, (E) actual vs ELM
fitted values, and (F) actual vs ELM intervention fitted values.

5. Conclusions

The purpose of this study is to assess the impact of the nationwide lockdown imposed
by the government of India due to COVID-19 on rice prices from January to July 2020
and to subsequently forecast future prices. The study utilized statistical machine learning
algorithms by developing models through making use of the data on the prices of rice,
which is consumed by a majority of the population in Asia, especially in India. The
results obtained by the ARIMA intervention model revealed that rice prices in India
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increased during the sudden lockdown imposed by the government to contain the spread
of COVID-19. Usually, in agricultural impact studies, popular yet traditional models such as
the ARIMA and ARIMA intervention models are employed for modeling and forecasting
time series data to understand the effect of policies due to unexpected aberrations or
unforeseen circumstances. However, ARIMA and ARIMA variants are not efficient for the
dataset under consideration; moreover, ARIMA models cannot capture the nonlinearity
present in the time series data. To overcome this problem, machine learning algorithm
models, such as the ANN and ELM intervention models, were employed to detect the
presence of nonlinearity data, along with an intervention variable, basically an exogenous
variable in the first (input) layer. The results indicated that for the modeling and forecasting
of price data, the ELM intervention models are the ultimate choice due to their ability to
capture non-linearity in the time series data. Since in most circumstances, the data obtained
are nonlinear, employing a linear time series will result in faulty modeling, and the forecasts
obtained will be misleading; thus, policy formulation based on these forecast values will
result in failure and poor policy planning.

It is advisable to make use of suitable time series and machine learning models,
based on the nature of the data under consideration. While employing statistical and
machine learning models, proper care must also be taken for the development of models
based on the dataset because the faulty choice of models for different datasets will lead to
varying conclusions.

The results of this study show that the ELM intervention model generates faster
outputs than the other tested models for predicting similar agri-food prices, as it recognizes
the non-linear pattern in time series data, along with the intervention variable considered as
an exogenous variable. Thus, these results can be a valuable tool in planning and designing
more sustainable interventions in the food market during (inter)national crisis situations.
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