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Abstract: Soil organic matter (SOM) is an essential nutrient for crop growth and development. Hy-
perspectral satellite images with comprehensive spectral band coverage and high spectral resolution
can be used to estimate and draw a spatial distribution map of SOM content in the region, which
can provide a scientific management basis for precision agriculture. This study takes Xinzheng City,
Henan Province’s agricultural area, as the research object. Based on ZY1-02D hyperspectral satellite
image data, the first derivative of reflectance (FDR) was processed on the original reflectance (OR).
The SOM characteristic spectral bands were extracted using the correlation coefficient (CC) and least
absolute shrinkage and selection operator (Lasso) methods. The prediction model of SOM content
was established by multiple linear regression (MLR), partial least squares regression (PLSR), and
random forest (RF) algorithms. The results showed that: (1) FDR processing can enhance SOM spec-
tral features and reduce noise; (2) the Lasso feature band extraction method can reduce the model’s
input variables and raise the estimation precision; (3) the SOM content prediction ability of the RF
model was significantly better than that of the MLR and PLSR models. The FDR-Lasso-RF model
was the best SOM content prediction model, and the validation set R2 = 0.921, MAEV = 0.512 g/kg,
RMSEV = 0.645 g/kg; (4) compared with laboratory hyperspectral data-SOM prediction methods,
hyperspectral satellite data can achieve accurate, rapid, and large-scale SOM content prediction and
mapping. This study provides an efficient, accurate, and feasible method for predicting and mapping
SOM content in an agricultural region.

Keywords: soil organic matter; hyperspectral satellite data; ZY1-02D; spectral characteristic selection;
agricultural region

1. Introduction

Organic matter in the soil (SOM) is among the crucial nutrients for crop growth [1,2].
How to assess SOM rapidly and effectively is one of the difficult problems faced by the
development of modern agriculture [3]. Traditional SOM measurements rely mainly on
field collection of soil samples and laboratory chemical analysis [4]. However, the cost
of observation is high, time-consuming, and labor-intensive [5,6], and is incapable of
providing dynamic and detailed observation data [7,8]. In addition, the soil sampling
process can damage the surface [9], adversely affecting agricultural production.

Remote sensing technology provides a timely, reliable, and non-destructive monitor-
ing method for SOM content estimation [10]. Some researchers anticipate SOM content
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using non-imaging hyperspectral approaches, which refer to the use of portable spectrom-
eters to obtain soil spectra and estimates in combination with relevant models [11,12].
In previous studies, linear models such as multiple linear regression (MLR) and partial
least squares regression (PLSR) [10,13,14], and machine learning models such as random
forest (RF) [15–18] are widely used for SOM in estimation research. In real-time, the soil
ground hyperspectral model can quickly and efficiently estimate the SOM content [3,19,20].
However, the observation scale is small, and predicting the SOM content over a vast area
is impossible. Many academics additionally forecast SOM content using imaging remote
sensing technologies, such as Landsat8 and Sentinel-2, and other multispectral satellite
data [21–23]. However, multispectral remote sensing images have few bands and low
spectral resolution. For example, the spectral coverage range of the Landsat8 image is
430–1251 nm, a total of 11 spectral bands. The spectral coverage of the Sentinel-2 image
is 443–2190 nm, with a total of 12 spectral bands. The spectral resolution of multispectral
images is low, and since the detailed characteristic information of soil components cannot
be highlighted, unsatisfactory results are obtained for SOM estimation [24]. Hyperspec-
tral satellite remote sensing images have the advantages of high spectral resolution and
comprehensive spectral band coverage. It offers a path to provide the detailed geographic
distribution of SOM content with excellent precision over large areas [25]. For example,
the ZY1-02D hyperspectral satellite can simultaneously acquire spectral information in
166 bands ranging from visible light (400 nm) to short-wave infrared (2500 nm). Recently,
studies have shown that the ZY1-02D hyperspectral data constructed based on spectral
indices have great potential for SOM content prediction [4]. However, few studies on SOM
content prediction use ZY1-02D hyperspectral data. Therefore, it is necessary to further
explore the SOM content prediction method based on this data.

However, the rich spectral information in hyperspectral imagery may contain a lot of
noise [25]. Studies have found that spectral derivative processing can reduce noise infor-
mation [26,27], highlight and enhance the subtle spectral information of soil components,
and improve the accuracy of prediction models [28,29]. In addition, some scholars believe
that selecting a strong information band to build a spectral analysis model can remove
redundant variables and improve model accuracy and operating efficiency [13,30,31]. The
correlation coefficient (CC) method is commonly used for feature band screening. It can ob-
tain the degree of association between each band with the soil’s attributes for characteristic
extract. The least absolute shrinkage and selection operator (Lasso) is a feature extraction
algorithm [32]. Studies have shown that, compared with other variable selection meth-
ods, lasso-based variable selection methods can ensure the accuracy of model predictions.
Furthermore, the model has fewer input variables and runs faster [33].

A high-precision SOM content prediction model was established to extract the best
spectral band as a predictor variable. This study used first derivative processing to high-
light SOM characteristic spectral information in ZY1-02D hyperspectral data. Feature
spectral extraction was performed using the CC and Lasso methods. Various models were
established to forecast the research area’s SOM content.

2. Materials
2.1. Study Area

The research location, Xinzheng City (34◦16′~34◦39′ N, 113◦30′~113◦54′ E), is posi-
tioned in the middle of Henan Province, China (Figure 1), and is one of the prominent
grain-producing areas in Henan Province. The average ground elevation is 108 m, with the
terrain being higher in the west and lower in the east. It has the characteristics of a warm
continental monsoon climate with distinctive seasons. The average yearly temperature
and precipitation are 14.3 degrees Celsius and 676.1 mm, respectively. The study area
covers 884.592 square kilometers, and more than half (58.59%) of the land is dedicated to
agriculture. The main crop types include wheat, corn, and soybeans.
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2.2. Gathering and Preparation of the Soil Samples

In March 2021, in the study region, a total of 539 soil samples were obtained. Five
soil samples were collected in a 30 × 30 m square using the 5-point sampling method for
each sampling point, and the collection depth was 0–20 cm. The soil of each sub-sample
collected was broken into pieces, and the roots, straws, stones, and other debris were picked
out and mixed thoroughly. After that, 1.0–1.5 kg of the soil samples was collected by the
quartering method. The samples were naturally air-dried in the room and passed through
a 1.988 mm sieve after drying. The total weight of the under-sieve portion was more than
300 g. Utilizing the concentrated sulfuric acid–potassium dichromate volumetric heating
technique, the SOM content of all soil samples was measured [34].

2.3. Hyperspectral Satellite Data Acquisition, Pre-Processing, and First Derivative Processing

The Advanced Hyperspectral Imager (AHSI) of ZY1-02D obtained the hyperspectral
satellite image that was used in this investigation (Figure 1b) on 28 January 2021. Table 1
contains the specific information about the AHSI hyperspectral sensor. The AHSI has a
spatial resolution of 30 m, a stripe breadth of 60 km, a 400–2500 nm spectral range, and
a total of 166 spectral channels. The visible and near-infrared (VNIR) spectral range is
76 bands, and the short-wave infrared (SWIR) spectral range is 90 bands. The spectral
resolutions of VNIR and SWIR are 10 nm and 20 nm, and three overlapping bands (77–79)
were removed in this study.
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Table 1. ZY1-02D AHSI hyperspectral sensor specifications.

Satellite Payloads ZY-1-02D

Launch Time 12 December 2019
Number of Bands 76 (VNIR), 90 (SWIR)

Spectral Range (nm) 400–2500
Spectral Resolution (nm) 10 (VNIR), 20 (SWIR)

Spatial Resolution (m) 30
Swath Width (km) 60
Revisit Cycle (d) 3

This study used ENVI5.3 (Environment for Visualizing Images 5.3, Harris Geospatial
Corporation, Broomfield, CO, USA) for orthorectification, radiometric correction, and
atmospheric correction. Savitzky–Golay (SG) filtering was used to remove background
noise information and smooth the spectrum [35]. After SG filtering and smoothing, the
reflectance data were used as the original reflectance (OR) data of soil samples for spectral
processing and predictive modeling. The spectral reflectance SG smoothing was performed
in MATLAB R2018a (MathWorks Inc., Natick, MA, USA).

The first derivative of reflectance (FDR) processing can highlight the reflection and
absorption characteristics of soil components in the spectral curve and enhance the char-
acteristic spectral bands of SOM [36]. It also eliminates the effects of background noise in
irrelevant bands, thereby reducing systematic errors caused by instrumentation [37]. FDR
processing was implemented in MATLAB R2018a (MathWorks Inc., Natick, MA, USA).

3. Methods

Figure 2 displays the study’s flow chart. It consists of three main steps: (1) collect soil
samples for chemical analysis; (2) preprocess ZY1-02D hyperspectral images; and (3) SOM
characteristic spectrum selection, modeling, and mapping.

3.1. Characteristic Spectral Band Selection
3.1.1. Correlation Coefficient (CC)

This method refers to the correlation analysis based on the Pearson coefficient between
the reflectivity of each band and the soil properties to determine the soil parameters’
correlation with each band as well as the correlation coefficient curve. CC is currently
the most widely used method for screening soil attribute characteristic bands. In this
study, the correlation coefficient method’s standard for choosing feature bands was level
of significance p < 0.01, and the correlation analysis operation was completed in SPSS26
(Statistical Product and Service Solutions). The following formula can be used to determine
the Pearson coefficient:

r =
∑n

i=1(xi−x)(y i−y)√
∑n

i=1 (x i−x)2 ∑n
i=1 (y i−y)2

(1)

where r represents the Pearson correlation coefficient, n represents the number of samples,
xi and yi represent the spectral reflectance and soil properties of each band, respectively,
x and y indicate the mean value of spectral reflectance and soil properties in each band.
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3.1.2. Least Absolute Shrinkage and Selection Operator (Lasso)

The Lasso algorithm is a feature selection method based on a linear regression model
for feature selection by selecting and compressing variables, which can effectively prevent
the problem of overfitting [33]. The basic idea of the algorithm is that when the total
of the absolute values of the regression coefficients is below a predetermined threshold,
it minimizes the residual sum of squares. To decrease the size of the feature space, the
coefficients of variables with low correlation are compressed to 0, and then these feature
variables are removed. Equation (2) is the mathematical expression of the minimum
residual sum of squares of the Lasso feature selection method. Lasso feature selection is
performed in Python 3.8.

argmin
ρ

 n

∑
i=1

(
yi −

m

∑
j=1

xijβj

)2
 subject to

m

∑
j=1

∣∣∣βj

∣∣∣ ≤ γ (2)
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where βj is the regression coefficient, n is the number of samples, m is the number of
features, xij is the spectral band reflectance, yi is the SOM content of each sampling point, γ
is the threshold.

3.2. Prediction Models
3.2.1. Multiple Linear Regression (MLR)

MLR, which uses regression equations to measure the linear relationship between
the dependent variable and two or more independent variables, is a common SOM esti-
mate algorithm. The fundamental goal is to identify the mathematical formula that most
accurately captures the connection between the independent and dependent variables [38].

3.2.2. Partial Least Squares Regression (PLSR)

PLSR is a mathematical optimization technique that, by reducing the sum of squared
errors, determines the optimal function match for a piece of data and, in the simplest
possible manner, determines some truth values that are utterly unknown. It can prevent
overfitting, improve the explanatory power of dependent variables, and more effectively
choose the input variables with the best explanatory power [39,40]. Therefore, PLSR is
widely used in SOM estimation [41,42].

3.2.3. Random Forest (RF)

The RF model is a decision tree-based ensemble regression technique. Each split node
in a decision tree is chosen at random from n inputs to completely partition the variable
space [25]. RF is a nonlinear machine learning model, which belongs to a major branch of
machine learning. It is insensitive to the multicollinearity of variables and has a wide range
of applications in nonlinear problems. Studies have shown that the RF prediction model is
superior to other machine learning algorithms [43]. This study establishes the number of
decision trees (ntree) and the number of split nodes following experimental testing (mtry),
two critical parameters of the RF model, to ntree = 400 and mtry = 2. All the predictive
models were built in Python 3.8.

3.3. Model Accuracy Evaluation

In this work, the dataset is split using the sklearn.model_selection import train_test_
split module in Python 3.8. In order to ensure the consistency of data input of different
estimation models, this study set the random state parameter to 0. 539 samples were
divided at random into calibration and validation sets in a ratio of 4:1. The dataset was
used as fixed data input for different model combinations to select the best SOM estimation
model combination. The coefficient of determination (R2), root mean square error (RMSE),
and mean absolute error (MAE) were used as metrics to assess how well various models
performed [10]. The related equation is this:

R2= 1−∑n
i=1(yi − ŷi)

2 (3)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

where n is the number of samples, yi is the SOM observed value of sample i, ŷi is the SOM
predicted value of sample i, the greater the R2 value, the lower the RMSE and MAE, and
the more accurate the model.

3.4. Model Stability Evaluation

The d-factor was employed in this study to assess the model’s stability. The stability of
the model is evaluated using the degree of the d-factor that is near to 0. That is, the model’s
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stability is greater the smaller the d-factor. The d-factor has a fairly optimal value within
the parameter uncertainty range. The following formula is used to compute the d-factor:

dr =
1
n

n

∑
i=1

(XUi−XLi) (6)

d− factor =
dr

σX
(7)

where dr is the mean of the upper confidence limit XUi and the lower confidence limit XLi.
The number of samples is n, and the measurement’s standard deviation is σX.

4. Results
4.1. Statistical Description of SOM Content

Table 2 shows the measured value of SOM content and its data analysis results. The
lowest value of SOM content of the total soil samples was 12.413 g/kg, the highest value
was 28.446 g/kg, and the average value was 20.316 g/kg. The standard deviation (SD)
of the overall sample was 2.501 g/kg, and the coefficient of variation (CV) was 12.309%.
SD and CV reflect the spatial variability of SOM. The general description of the sample
variable is similar for the calibration and validation set samples, indicating that the data set
is divided reasonably.

Table 2. Statistical description of SOM content.

Set N Max (g/kg) Min (g/kg) Mean
(g/kg) SD (g/kg) CV (%)

Whole set 539 28.446 12.413 20.316 2.501 12.309
Calibration set 431 28.446 12.413 20.195 2.527 12.513
Validation set 108 27.412 13.792 20.797 2.344 11.271

4.2. Spectral Reflectance Characteristics of Soil Samples
4.2.1. Original Reflectance (OR)

Figure 3a shows that, with the exception of samples with an SOM content of 20.688 g/kg,
soil spectral reflectance was inversely proportional to SOM content, and spectral shapes
were similar. The wavelength ranges from 619 to 877 nm, and as the wavelength increases,
reflectance rises swiftly with a peak at 877 nm. The reflectance between 920 and 1106 nm
increased slowly with the increase in wavelength and reached its maximum at 1106 nm.
Reflectance decreased rapidly with a wavelength increase between 1123–1459 nm, and
reflectance decreased with a wavelength increase between 1510 and 2500 nm.
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4.2.2. First Derivative Reflectance (FDR)

Studies have shown that FDR can distinguish absorption peaks and enhance weak
absorption features [44]. Soil samples with varying SOM content exhibited prominent
absorption characteristics as shown in Figure 3b FDR curves at 560–611 nm, 868–912 nm,
1123–1459 nm, and 1695–1812 nm wavelengths. At the same time, FDR also showed
prominent reflection peaks between the wavelengths of 687–791 nm, 1543–1593 nm, and
2031–2165 nm. Compared with OR, FDR can highlight more spectral features.

4.3. Characteristic Spectral Band Selection
4.3.1. CC Characteristic Band Choice

A correlation analysis was performed between SOM content and OR and FDR, and
the significance test (two-sided) of the correlation coefficient at the level of p = 0.01 was
performed, as shown in Figure 4 and Table 3. The 133 significantly correlated bands of OR
were mainly distributed between 1308–2500 nm wavelengths. There were 149 significant
correlation bands in FDR, evenly distributed at wavelengths of 400–2500 nm. The maximum
correlation band between OR and SOM content appeared at 1661 nm (correlation coefficient
R = −0.495). The maximum correlation band between FDR and SOM content appeared at
611 nm (correlation coefficient R = −0.495). This study selected the relevant bands with OR
and FDR = 0.01 significance levels as characteristic bands.
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Table 3. Correlation coefficient significant correlation band information.

Spectral Number
of Bands

Wavelength Range
(nm)

Maximum
Correlation
Band (nm)

Correlation
Coefficient R

OR 133 400–413, 551–697 1661 −0.495
766–1157, 1308–2500

FDR 149 405–628, 654–843 611 −0.621
868–954, 988–1594

1627–1779, 1829
1862–2166, 2216–2500

4.3.2. Lasso Characteristic Spectral Band Choice

Lasso feature selection removed bands with zero β coefficients and retained bands
with non-zero β coefficients as feature variables. Figure 5 and Table 4 show that OR-
Lasso chose 27 characteristic bands that were uniformly distributed in the 400–2500 nm
wavelength range; FDR-Lasso chose 6 characteristic bands that are concentrated in the
500–750 nm and 1750–2100 nm spectral regions.
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Table 4. Lasso feature selection band number and wavelength.

Method Number of Bands Wavelength (nm)

OR-Lasso 27 400, 490–500, 516, 636–671, 722–731, 808, 825, 988, 1123
1241, 1425, 1459, 1695, 1846, 1930, 2082, 2166, 2233

2468–2500
FDR-Lasso 6 559, 567, 714, 731, 1964, 2048

4.4. The Results of Prediction Models

Table 5 presents the model’s projected outcomes for SOM content. From the validation
set model, compared to the entire band model and the CC feature selection model, the
Lasso feature selection spectral model exhibited greater prediction accuracy. The full-band
model and the CC feature selection model differ less in terms of prediction accuracy. The six
groups of RF spectral models all had calibration set and validation set R2 values higher than
0.85, demonstrating the RF models’ potent predictive power. FDR-Lasso-RF was the best
prediction model. In its validation set, R2 = 0.921, MAE = 0.512 g/kg, RMSE = 0.645 g/kg.
Compared with other models, R2 was the highest, and MAE and RMSE were the lowest,
indicating that the FDR-Lasso-RF model had the optimal SOM prediction performance. In
addition to the FDR-Lasso-RF model having a good prediction effect, the OR-Lasso-PLSR
and FDR-Lasso-PLSR models also had certain prediction abilities, and their R2 were 0.448
and 0.411. The MLR model’s calibration set and validation set accuracy varied greatly,
and its capacity for model estimation was subpar. The RF model’s calibration set and
validation set both had identical prediction accuracy and a high level of SOM estimation.
The prediction outcomes based on FDR were also superior to OR for the RF model.

Figures 6–8 are the fitting diagram of the SOM predicted value and the measured
value of the RF model input in different bands. Various RF models had excellent predictive
ability. The fitting effect of predicted and measured values based on the Lasso feature
selection was better than that of the whole band and CC feature selection. The predicted
and measured values of the FDR-Lasso-RF model fit best (Figure 8c,d).
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Table 5. The prediction model’s outcome statistics.

Model Method Calibration Set Validation Set

R2
C MAEC RMSEC R2

V MAEV RMSEV
(g/kg) (g/kg) (g/kg) (g/kg)

MLR OR 0.646 1.166 1.503 0.256 1.751 2.203
OR-CC 0.616 1.203 1.564 0.239 1.712 2.159

OR-Lasso 0.453 1.471 1.863 0.296 1.536 1.925
FDR 0.625 1.202 1.545 0.200 1.789 2.279

FDR-CC 0.601 1.242 1.594 0.172 1.821 2.315
FDR-Lasso 0.414 1.508 1.929 0.385 1.409 1.799

PLSR OR 0.330 1.598 2.066 0.307 1.528 1.942
OR-CC 0.312 1.618 2.094 0.298 1.528 1.954

OR-Lasso 0.316 1.611 2.083 0.448 1.337 1.704
FDR 0.316 1.599 2.087 0.286 1.540 1.972

FDR-CC 0.317 1.599 2.087 0.285 1.539 1.972
FDR-Lasso 0.393 1.525 1.963 0.411 1.369 1.761

RF OR 0.900 0.603 0.797 0.880 0.633 0.807
OR-CC 0.898 0.614 0.806 0.871 0.657 0.838

OR-Lasso 0.908 0.601 0.764 0.901 0.537 0.721
FDR 0.913 0.567 0.743 0.897 0.582 0.750

FDR-CC 0.913 0.570 0.734 0.893 0.590 0.762
FDR-Lasso 0.923 0.553 0.701 0.921 0.512 0.645
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In general, no matter which model was used, the model’s prediction accuracy was
improved when the Lasso feature selected the band as the model input variable. The model
selected based on the CC feature band had the worst accuracy and was not as good as the
prediction ability of the whole band. The predictive power of FDR was better than OR for
different spectral forms. From the model point of view, RF estimation ability was the best,
followed by PLSR, and MLR was the worst. As shown in Figure 8c,d, the FDR-Lasso-RF
model still has good prediction accuracy and fitting effect at the extreme value.
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5. Discussion

According to this study, of the three model algorithms, the RF model had the highest
SOM prediction accuracy. Therefore, in the discussion section, the following discussion is
made only for predicting SOM content based on the RF model.

5.1. Benefits of FDR Processing

The results (Table 5) show that the predictive power of FDR was better than OR
for various RF models. Relevant research has demonstrated that the FDR transform can
improve the effective signal in spectral reflectance while reducing the effect of noise [45–47].
This study found that, compared with OR, FDR can highlight the characteristic bands of
SOM. The maximum correlation band of FDR and SOM was R = −0.621, and the maximum
correlation band of OR was R = −0.495. Together, FDR and the Lasso feature selection
technique can minimize the data dimension and boost model accuracy.

5.2. Benefits of Lasso Feature Band Selection

Some scholars have proposed extracting the SOM strong information band for model
estimation can reduce the interference of irrelevant variables and improve the prediction
accuracy [48,49]. The findings of this study demonstrate that (Table 5) the precision of
various prediction models chosen by Lasso bands has increased. The best validation set
model accuracy based on Lasso feature selection was R2 = 0.921, MAEV = 0.512 g/kg,
RMSEV = 0.645 g/kg. This was because the SOM-independent spectral information con-
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tained in the full-band and CC feature selection bands interfered with the estimation
results. The Lasso variable selection method can retain feature information, remove noise
information, and improve model prediction accuracy.

5.3. Importance Analysis of RF Model Input Variables

The FDR model’s capacity for SOM estimation was superior to OR. Consequently, in
this research, the important analysis of the input variables of the RF model was carried
out based on the FDR spectral data. The importance of RF model variables for different
wavelength spectral bands is shown in Figure 9. The bands with the highest importance
of RF model variables were concentrated in the wavelength intervals 500–750 nm and
1750–2100 nm. In theory, the greater the importance of the variable, the more outstanding
the contribution to the model. The six SOM characteristic bands of FDR selected by
the Lasso method in this study were all between the wavelengths of 500–750 nm and
1750–2100 nm. The wavelength range of the characteristic spectrum of SOM in previous
studies is consistent [10,13,25,50,51], which is due to the corresponding transformation of
some ground spectral reflection bands with the difference of soil organic matter content.
Therefore, we can use characteristic spectral bands to estimate the SOM content. The model
results show (Table 5) that the FDR-Lasso-RF model had the best SOM content prediction
effect. It shows that the RF model has a strong sensitivity to the characteristic spectral
bands of SOM. Using the characteristic band as an input variable in the RF model can
minimize model complexity while improving forecast accuracy.

Agronomy 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 

5.2. Benefits of Lasso Feature Band Selection 

Some scholars have proposed extracting the SOM strong information band for model 

estimation can reduce the interference of irrelevant variables and improve the prediction 

accuracy [48,49]. The findings of this study demonstrate that (Table 5) the precision of 

various prediction models chosen by Lasso bands has increased. The best validation set 

model accuracy based on Lasso feature selection was R2 = 0.921, MAEV = 0.512 g/kg, 

RMSEV = 0.645 g/kg. This was because the SOM-independent spectral information con-

tained in the full-band and CC feature selection bands interfered with the estimation re-

sults. The Lasso variable selection method can retain feature information, remove noise 

information, and improve model prediction accuracy. 

5.3. Importance Analysis of RF Model Input Variables 

The FDR model’s capacity for SOM estimation was superior to OR. Consequently, in 

this research, the important analysis of the input variables of the RF model was carried 

out based on the FDR spectral data. The importance of RF model variables for different 

wavelength spectral bands is shown in Figure 9. The bands with the highest importance 

of RF model variables were concentrated in the wavelength intervals 500–750 nm and 

1750–2100 nm. In theory, the greater the importance of the variable, the more outstanding 

the contribution to the model. The six SOM characteristic bands of FDR selected by the 

Lasso method in this study were all between the wavelengths of 500–750 nm and 1750–

2100 nm. The wavelength range of the characteristic spectrum of SOM in previous studies 

is consistent [10,13,25,50,51], which is due to the corresponding transformation of some 

ground spectral reflection bands with the difference of soil organic matter content. There-

fore, we can use characteristic spectral bands to estimate the SOM content. The model 

results show (Table 5) that the FDR-Lasso-RF model had the best SOM content prediction 

effect. It shows that the RF model has a strong sensitivity to the characteristic spectral 

bands of SOM. Using the characteristic band as an input variable in the RF model can 

minimize model complexity while improving forecast accuracy. 

 

Figure 9. Model predicted contribution importance for RF input variables. 

  

Figure 9. Model predicted contribution importance for RF input variables.

5.4. Optimal Model SOM Mapping

Table 6 displays the findings of the RF model’s stability study. The d-factors of the RF
models in the six groups of validation sets were all around 0.3, and there was no significant
difference. It showed that the FDR-Lasso-RF model still had strong model stability while
reducing the model input variables and improving its accuracy.
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Table 6. Results of the RF model stability index calculation.

Model Method Calibration Set Validation Set

RF OR 0.160 0.302
OR-CC 0.157 0.291

OR-Lasso 0.156 0.309
FDR 0.162 0.305

FDR-CC 0.160 0.296
FDR-Lasso 0.167 0.307

Note: The smaller the value, the higher the model stability.

The FDR-Lasso-RF model has strong predictive power without increasing model
uncertainty (Table 6, Figure 8c,d). Thence, in this study, the best model FDR-Lasso-RF was
used for the estimation and SOM content mapping in the research area (Figure 10). The
highest and lowest values of SOM content in the study area were 25.012 and 13.331 g/kg.
SOM content is higher in the southwest and lower in the center and north. The main reason
is that the southwestern region is the Huanghuaihai Plain, with rich soil nutrients and high
humus content, and organic matter in the soil can be converted and accumulated efficiently.
The central and northern areas are mostly hilly terrain; the soil is poor, humus’s fixation
and transformation ability are weak, and soil organic matter content is low.

Agronomy 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

5.4. Optimal Model SOM Mapping 

Table 6 displays the findings of the RF model’s stability study. The d-factors of the 

RF models in the six groups of validation sets were all around 0.3, and there was no sig-

nificant difference. It showed that the FDR-Lasso-RF model still had strong model stability 

while reducing the model input variables and improving its accuracy. 

Table 6. Results of the RF model stability index calculation. 

Model Method Calibration Set Validation Set 

RF OR 0.160  0.302  
 OR-CC 0.157  0.291  
 OR-Lasso 0.156  0.309  
 FDR 0.162  0.305  
 FDR-CC 0.160  0.296  
 FDR-Lasso 0.167  0.307  

Note: The smaller the value, the higher the model stability. 

The FDR-Lasso-RF model has strong predictive power without increasing model un-

certainty (Table 6, Figure 8c,d). Thence, in this study, the best model FDR-Lasso-RF was 

used for the estimation and SOM content mapping in the research area (Figure 10). The 

highest and lowest values of SOM content in the study area were 25.012 and 13.331 g/kg. 

SOM content is higher in the southwest and lower in the center and north. The main rea-

son is that the southwestern region is the Huanghuaihai Plain, with rich soil nutrients and 

high humus content, and organic matter in the soil can be converted and accumulated 

efficiently. The central and northern areas are mostly hilly terrain; the soil is poor, humus’s 

fixation and transformation ability are weak, and soil organic matter content is low. 

 

Figure 10. Optimal model predicts SOM content for study area. 

6. Conclusions 

This study used ZY1−02D hyperspectral satellite data to predict SOM content in ag-

ricultural areas. The hyperspectral band reflectance was processed using the first deriva-

tive. CC and Lasso were used for SOM spectral information screening. The SOM was 

Figure 10. Optimal model predicts SOM content for study area.

6. Conclusions

This study used ZY1−02D hyperspectral satellite data to predict SOM content in agri-
cultural areas. The hyperspectral band reflectance was processed using the first derivative.
CC and Lasso were used for SOM spectral information screening. The SOM was estimated
using the modeling methods of MLR, PLSR, and RF, and the best model was selected for
mapping. The main results are as follows:

(1) In comparison to OR, FDR treatment can increase model fitting accuracy by empha-
sizing SOM spectral characteristic information in the soil spectrum.

(2) The Lasso feature selection method can effectively extract the SOM feature and spectral
bands, reduce the data dimension, highlight key information, and enhance model
estimation capabilities.
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(3) The RF model provides excellent SOM content prediction and model stability. The
FDR-Lasso-RF model is the best prediction model, with R2 = 0.921, MAEV = 0.512 g/kg,
and RMSEV = 0.645 g/kg in its validation set.

(4) Hyperspectral satellite data make up for the lack of large-scale observation of labo-
ratory hyperspectral data and provide a feasible method for rapid, large-scale, and
accurate prediction and mapping of SOM content in agricultural areas.
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