Yield and Nitrogen Status of Maize (Zea mays L.) Fertilized with Solution of Urea—Ammonium Nitrate Enriched with P, Mg or S
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experiment
2.2. Yield and N Content Determination
- HI—harvest index
- YG—grain yield (t ha−1 d.m.)
- YS—straw yield (t ha−1 d.m.)
2.3. Methods of Calculating of Nitrogen Use Efficiency (NUE) Indicators
- -
- agronomic efficiency (AE),
- YN—yield of maize fertilized with N,
- Y0—yield of maize from the control object
- DN—N dose [kg ha−1]
- -
- physiological efficiency (PE),
- YN—yield of maize fertilized with N,
- Y0—yield of maize from the control object
- UN—nitrogen uptake by fertilized plants (kg N ha−1),
- U0—nitrogen uptake by control plants (kg N ha−1)
- -
- internal N utilization efficiency (IE) [30]:
- IE—internal N utilization efficiency
- Y—grain yield[t ha−1]
- U—nitrogen uptake by plants (kg N ha−1)
- -
- reciprocal internal N utilization efficiency (unit uptake):
- RIE—reciprocal internal N utilization efficiency
- U—nitrogen uptake by plants (kg ha−1)
- YG—grain yield (t ha−1)
- -
- share of grain in nitrogen accumulation (HIN):
- HIN—share of grain in nitrogen accumulation
- UG—accumulation of N in grain (kg N ha−1)
- U—accumulation of N in maize aerial parts (kg N ha−1)
- -
- N-fertilizer recovery efficiency (RN) [29]:
- RN—recovery efficiency
- UN—nitrogen uptake by fertilized plants (kg N ha−1)
- U0—nitrogen uptake by control plants (kg N ha−1)
- DN—N dose (kg N ha−1)
- -
- partial nitrogen balance (PNB):
- PNB—partial nitrogen balance
- UG—accumulation of N in grain (kg N ha−1)
- DN—N dose (kg N ha−1)
2.4. Statistical Analysis
2.5. Meteorological Conditions
3. Results
3.1. Maize Yield and Harvest Index
3.2. Nitrogen Content
3.3. Nitrogen Use Efficiency (NUE) Indicators
4. Discussion
4.1. Maize Yield and Harvest Index
4.2. Nitrogen Content
4.3. Nitrogen Use Efficiency Indices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://knoema.com/atlas/World/topics/Agriculture/Crops-Production-Quantity-tonnes/Maize-production (accessed on 25 July 2021).
- Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 July 2021).
- Liang, H.; Shen, P.; Kong, X.; Liao, Y.; Liu, Y.; Wen, X. Optimal nitrogen practice in winter wheat-summer maize rotation affecting the fates of 15 N-labeled fertilizer. Agronomy 2020, 10, 521. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Wang, X.; Blackmer, A.M.; Zhang, F. Optimal rates of nitrogen fertilization for a winter wheat-corn cropping system in Northern China. Commun. Soil Sci. Plant Anal. 2004, 35, 583–597. [Google Scholar] [CrossRef]
- Rahimizadeh, M.; Kashani, A.; Zare-Feizabadi, A.; Koocheki, A.R.; Nassiri-Mahallati, M. Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen and crop residues. Aust. J. Crop. Sci. 2010, 4, 363–368. [Google Scholar]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Kusnierek, K.; Mi, G.; Mulla, D.J. Economic Optimal Nitrogen Rate Variability of Maize in Response to Soil and Weather Conditions: Implications for Site-Specific Nitrogen Management. Agronomy 2020, 10, 1237. [Google Scholar] [CrossRef]
- Jiang, C.; Lu, D.; Zu, C.; Shen, J.; Wang, S.; Guo, Z.; Zhou, J.; Wang, H. One-time root-zone N fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil. Sci. Rep. 2018, 8, 10258. [Google Scholar] [CrossRef]
- Potarzycki, J. Improving nitrogen use efficiency of maize by better fertilizing practices. Review paper. Fertil. Fertil. 2010, 39, 5–24. [Google Scholar]
- Nikolajsen, M.T.; Pacholski, A.S.; Sommer, S.G. Urea Ammonium Nitrate Solution Treated with Inhibitor Technology: Effects on Ammonia Emission Reduction, Wheat Yield, and Inorganic N in Soil. Agronomy 2020, 10, 161. [Google Scholar] [CrossRef]
- Olszewski, J.; Makowska, M.; Pszczółkowska, A.; Okorski, A.; Bieniaszewski, T. The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant Soil Environ. 2014, 60, 531–536. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Tahir, M.M.; Rahim, N. Effect of N fertilizer source and timing on yield and N use efficiency of rainfed maize (Zea mays L.) in Kashmir—Pakistan. Geoderma 2013, 195, 87–93. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J.; Kruczek, A.; Szymanska, G.; Roszkiewicz, R. Response of two cultivar types of maize (Zea mays L.) expressed in protein content and its yield to varied soil resources of N and Mg and a form of nitrogen fertilizer. Pol. J. Environ. Stud. 2013, 22, 1845–1853. [Google Scholar]
- Mozafar, A.; Schreiber, P.; Oertli, J.J. Photoperiod and root-zone temperature. Interacting effects on growth and mineral nutrients of maize. Plant Soil 1993, 153, 71–78. [Google Scholar] [CrossRef]
- Yanai, J.; Linehan, D.J.; Robinson, D.; Young, I.M.; Hackett, C.A.; Kyuma, K.; Kosaki, T. Effects of inorganic nitrogen application on the dynamics of the soil solution composition in the root zone of maize. Plant Soil 1996, 180, 1–9. [Google Scholar] [CrossRef]
- Szulc, P. The effect of the sum of absolute values of nutrient status indexes in plants of two hybrid types of maize (Zea mays L.) on dynamics of dry matter accumulation in initial vegetation period at varied soil nitrogen and magnesium resources. Fresenius Environ. Bull. 2013, 22, 2616–2624. [Google Scholar]
- Mollier, A.; Pellerin, S. Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Botany 1999, 50, 487–497. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef]
- Gaj, R.; Budka, A.; Górski, D.; Borowiak, K.; Wolna-Maruwka, A.; Bąk, K. Magnesium and calcium distribution in maize under differentiated doses of mineral fertilization with phosphorus and potassium. J. Elem. 2018, 23, 137–150. [Google Scholar] [CrossRef]
- Grzebisz, W. Crop response to magnesium fertilization as affected by nitrogen supply. Plant Soil 2013, 368, 23–39. [Google Scholar] [CrossRef]
- Ariraman, R.; Kumar, A.P.; Selvakumar, S.; Sowmya, S.; Mansingh, M.D.I. Effect of sulphur nutrition on growth parameters, yield parameters, yield, nutrient uptake, quality and economics of maize: A review. J. Pharmacogn. Phytochem. 2020, 9, 1632–1636. [Google Scholar] [CrossRef]
- Tirupathi, I.; Sagar, V.; Devi, S.; Sharma, S. Effect of nitrogen and sulphur levels on growth, yield, quality and economics of single cross hybrid maize. Int. J. Sci. Environ. 2016, 5, 2989–2998. [Google Scholar]
- Khan, M.J.; Khan, M.H.; Khattak, R.A.; Jan, M.T. Response of Maize to Different Levels of Sulfur. Commun. Soil Sci. Plant Anal. 2006, 37, 41–51. [Google Scholar] [CrossRef]
- Sutar, R.K.; Pujar, A.M.; Aravinda Kumar, B.N.; Hebsur, N.S. Sulphur Nutrition in Maize—A Critical Review. Int. J. Pure App. Biosci. 2017, 5, 1582–1596. [Google Scholar] [CrossRef]
- Usmani, M.M.; Nawaz, F.; Majeed, S.; Shehzad, M.A.; Ahmad, K.S.; Akhtar, G.; Aqib, M.; Shabbir, R.N. Sulfate-mediated Drought Tolerance in Maize Involves Regulation at Physiological and Biochemical Levels. Sci. Rep. 2020, 10, 1147. [Google Scholar] [CrossRef] [PubMed]
- [WRB] IUSS WORKING GROUP WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015; World Soil Resources Reports 106; FAO: Rome, Italy, 2014; p. 188. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Evaluation of the Properties of Soils and Plants; Issued by the Institute of Environmental Protection: Warsaw, Poland, 1991; p. 334. (In Polish) [Google Scholar]
- Kukurydza 2016. Available online: https://www.syngenta.pl/file/8926/download (accessed on 15 July 2022).
- Dobermann, A. Nutrient use efficiency, measurement and management. In Proceedings of the IFA International Workshop on Fertilizer Best Management Practices, Brussels, Belgium, 7–9 March 2007; pp. 1–29. [Google Scholar]
- Xua, X.; Hea, P.; Pampolinoc, M.; Chuana, L.; Johnstond, A.M.; Qiua, S.; Zhaoa, S.; Zhoua, W. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crops Res. 2013, 150, 115–125. [Google Scholar] [CrossRef]
- Bac, S.; Koźmiński, C.; Rojek, M. Agrometeorology; Polish Scientific Publishers PWN: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- Bélec, C.; Tremblay, N. Adapting nitrogen fertilization to unpredictable seasonal conditions with the least impact on the environment. Horttechnology 2006, 16, 408–412. [Google Scholar]
- Shanahan, J.F.; Kitchen, N.R.; Raun, W.R.; Schepers, J.S. Responsive in-season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef][Green Version]
- Kyveryga, P.M.; Blackmer, A.M.; Morris, T.F. Alternative benchmarks for economically optimal rates of nitrogen fertilization for corn. Agron. J. 2007, 99, 1057–1065. [Google Scholar] [CrossRef]
- Steusloff, T.W.; Singh, G.; Nelson, K.A.; Motavalli, P.P. Enhanced Efficiency Liquid Nitrogen Fertilizer Management for Corn Production. Int. J. Agron. 2019, 2019, 9879273. [Google Scholar] [CrossRef]
- Cofas, E. The dynamics of maize production in the climate factors variability conditions. In Agrarian Economy and Rural Development—Realities and Perspectives for Romania. 9th Edition of the International Symposium, November 2018, Bucharest; The Research Institute for Agricultural Economy and Rural Development (ICEADR): Bucharest, Romania, 2018; pp. 239–245. [Google Scholar]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kuchnia, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn Response to Nitrogen is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef]
- Srinivasan, G.; Zaidi, P.H.; Singh, N.N.; Sanchez, C. Increasing productivity through genetic improvement for tolerance to drought and excess-moisture stress in maize (Zea mays L.). In Water in Agriculture for 21st Century. ACIAR Proceedings No. 116; Veng, S., Craswell, E., Fukai, S., Fisher, K., Eds.; ACIAR: Canberra, Australia, 2003; pp. 227–239. [Google Scholar]
- Szulc, P.; Bocianowski, J. Effects of application of different nitrogen fertilizer forms and magnesium on dynamics of dry matter accumulation in two maize (Zea mays L.) hybrids in their early growth stages. Polish J. Agron. 2012, 11, 65–80. [Google Scholar]
- Gagnon, B.; Ziadi, N.; Grant, C. Urea fertilizer forms affect grain corn yield and nitrogen use efficiency. Can. J. Soil Sci. 2012, 92, 341–351. [Google Scholar] [CrossRef]
- Grzebisz, W.; Wrońska, M.; Diatta, B.J.; Szczepaniak, W. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part II. Nitrogen uptake and dry matter accumulation patterns. J. Elem. 2008, 13, 17–28. [Google Scholar]
- Szulc, P.; Waligóra, H.; Skrzypczak, W. Better effectiveness of maize fertilization with nitrogen through additional application of magnesium and sulphur. Nauka Przyr. Technol. 2008, 2, 19. [Google Scholar]
- Channabasamma, A.; Habsur, N.S.; Bangaremma, S.W.; Akshaya, M.C. Effect of Nitrogen and Sulphur Levels and Ratios on Growth and Yield of Maize. Mol. Plant Breed. 2013, 4, 292–296. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- Mickiewicz, A.; Wróbel, S. Effect of boron and zink foliar application to maize cultivated in monoculture depending on soil tillage system. Fragm. Agron. 2008, 25, 82–92. (In Polish) [Google Scholar]
- Wieremiej, W. Usefulness of Poultry Wastes in Fertilization of Maize (Zea mays L.) and Their Influence on Selected Soil Properties. Ph.D. Thesis, Siedlce University Natural Sciences and Humanities, Siedlce, Poland, 2016; p. 98. (In Polish). [Google Scholar]
- Kruczek, A. The effect of nitrogen dose and foliar fertilization of maize with nitrogen and microelements on selected indicators of fertilization efficiency. Fragm. Agron. 2000, 17, 5–17. (In Polish) [Google Scholar]
- Filipek-Mazur, B.; Lepiarczyk, A.; Tabak, M. Effect of nitrogen and sulphur fertilization on yield and chemical composition of maize grain. Part II. Nitrogen and sulphur content. Fragm. Agron. 2013, 30, 29–35. (In Polish) [Google Scholar]
- Barczak, B.; Murawska, B.; Spychaj-Fabisiak, E. Content of sulphur and nitrogen in maize grain depending on the soil type and the fertilization applied. Fragm. Agron. 2011, 28, 7–14. (In Polish) [Google Scholar]
- Szulc, P.; Kruczek, A.; Waligóra, H.; Skrzypczak, W. Energy value of raw material on the maizes, in dependence to methods fertilization of phosphorus. Nauka Przyr. Technol. 2007, 1, 1–9. (In Polish) [Google Scholar]
- Baran, A.; Pińczuk, G.; Zając, T.; Jasiewicz, C. Effect of variety and method of fertilization on the content and accumulation of macroelements in the characteristic development phases of maize (Zea mays). Acta Agrophys. 2011, 17, 255–265. (In Polish) [Google Scholar]
- Wang, X.; Liu, S.; Yin, X.; Bellaloui, N.; Winings, J.H.; Agyin-Birikorang, S.; Singh, U.; Sanabria, J.; Mengistu, A. Maize Grain Composition with Additions of NPK Briquette and Organically Enhanced N Fertilizer. Agronomy 2020, 10, 852. [Google Scholar] [CrossRef]
- Gołębiewska, M.; Wróbel, E. The effect of nitrogen fertilization on yielding of maize. Biul. IHAR 2009, 251, 121–136. (In Polish) [Google Scholar]
- Szmigiel, A.; Kołodziejczyk, M.; Oleksy, A. The effect of organic and mineral fertilization on grain yield of maize. Fragm. Agron. 2006, 23, 70–79. (In Polish) [Google Scholar]
- Dobermann, A. Nitrogen Use Efficiency—State of the Art. 2005. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1319&context=agronomyfacpub (accessed on 25 May 2021).
- Carneiro, A.; Telmo, J.; Villalba, H.; Oswin, E.; Pivotto, B.R.; Santi, A.L.; Benítez, L.; Asterio, E.; Menefee, D.; Kunz, J. Efficiency of nitrogen fertilizer applied at corn sowing in contrasting growing seasons in Paraguay. Rev. Bras. Cienc. Solo 2013, 37, 1641–1650. [Google Scholar]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification, 1st ed.; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA): Paris, France; International Water Management Institute (IWMI): Gujarat, India; International Plant. Nutrition Institute (IPNI): Norcross, GA, USA; International Potash Institute (IPI.): Paris, France, 2015; pp. 8–38. ISBN 979-10-92366-02-0. [Google Scholar]
- Wrońska, M.; Grzebisz, W.; Potarzycki, J.; Gaj, R. Maize response to nitrogen and zinc fertilization. Part II. Accumulation of nutrients at maturity. Fragm. Agron. 2007, 24, 399–407. (In Polish) [Google Scholar]
- Jiang, W.; Liu, X.; Qi, W.; Xu, X.; Zhu, Y. Using QUEFTS model for estimating nutrient requirements of maize in the Northeast China. Plant Soil Environ. 2017, 63, 498–504. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Lamb, J.A.; Sheaffer, C.C.; Rosen, C.J.; Jung, H.G. Fertilizer Nitrogen Rate Effects on Nutrient Removal by Corn Stover and Cobs. Agron. J. 2013, 105, 437–445. [Google Scholar] [CrossRef]
- Potarzycki, J. Influence of formulation of phosphorus fertilizer on nitrogen uptake and its efficiency under maize grain cropping. Acta Sci. Pol. Agric. 2009, 8, 13–19. [Google Scholar]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 78. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Szulc, P.; Waligóra, H.; Michalski, T.; Rybus-Zając, M.; Olejarski, P. Efficiency of nitrogen fertilization based on the fertilizer application method and type of maize cultivar (Zea mays L.). Plant Soil Environ. 2016, 62, 135–142. [Google Scholar] [CrossRef]
- Halvorson, A.; Schweissing, F.C.; Bartolo, M.E.; Reule, C.A. Corn Response to Nitrogen Fertilization in a Soil with High Residual Nitrogen. Agron. J. 2005, 97, 1222–1229. [Google Scholar] [CrossRef]
- Świerczewska, M.; Sztuder, H. Efficiency indices and nutrient utilization at different methods of fertilizer application in maize cultivation. Zesz. Probl. Post. Nauk Roln. 2006, 508, 181–186. (In Polish) [Google Scholar]
- Hernandez-Ramirez, G.; Brouder, M.S.; Douglas, R.S.; Van Scoyoc, E.G. Nitrogen partitioning and utilization in corn cropping systems: Rotation, N source, and N timing. Eur. J. Agron. 2011, 34, 190–195. [Google Scholar] [CrossRef]
- Rutkowska, A.; Skowron, P. Productive and Environmental Consequences of Sixteen Years of Unbalanced Fertilization with Nitrogen and Phosphorus—Trials in Poland with Oilseed Rape, Wheat, Maize and Barley. Agronomy 2020, 10, 1747. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W. Nutrient Use Efficiency and Effectiveness in North America: Indices of Agronomic and Environmental Benefit; International Plant Nutrition Institute: Norcross, GA, USA, 2007; p. 4. [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R Soc. B 2013, 368, 20130165. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L.; Jensen, L.S.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.K.; Oenema, J.; Richards, K.G.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. Syst. 2020, 77, 1–14. [Google Scholar] [CrossRef]
- Su, W.; Ahmad, S.; Ahmad, I.; Han, Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. Peer J. 2020, 8, e10291. [Google Scholar] [CrossRef]
- Davies, B.; Coulter, J.A.; Pagliari, P.H. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLoS ONE 2020, 15, e0233674. [Google Scholar] [CrossRef]
Number of Object | Date of Application | |
---|---|---|
Pre-Sowing (100 kg N ha−1) | 4–6 Leaf Phase (14–16 BBCH) (80 kg N ha−1) | |
I. * | control, no nitrogen fertilization | |
II. * | ammonium nitrate | urea |
III. * | UAN | urea |
IV. * | UAN | UAN |
V.* | UAN + S | UAN + Mg |
VI. ** | UAN + P (Medium) | UAN + P (Medium) |
VII. *** | UAN + P (Starter) | UAN + S |
VIII. *** | UAN + P (Starter) | UAN + Mg |
Month | Average Daily Air Temperature [°C] | Long-Term Average (1981–2010) | Rainfalls [mm] | Long-Term Average (1981–2010) | K *–Selyaninov Hydrothermal Coefficient [31] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |||
April | 7.2 | 8.8 | 6.7 | 7.7 | 23.4 | 33.1 | 52.1 | 29.8 | 1.08 | 1.26 | 2.59 |
May | 12.1 | 14.8 | 13.1 | 13.2 | 25.4 | 70.8 | 34.0 | 62.3 | 0.68 | 1.53 | 0.84 |
June | 15.7 | 18.0 | 16.7 | 15.8 | 43.0 | 66.3 | 109.9 | 72.9 | 0.91 | 1.23 | 2.19 |
July | 18.0 | 18.5 | 17.3 | 18.3 | 71.0 | 138.6 | 106.1 | 81.2 | 1.27 | 2.41 | 1.98 |
Aug | 21.3 | 17.5 | 18.7 | 17.7 | 13.0 | 71.9 | 54.8 | 70.6 | 0.19 | 1.32 | 0.95 |
Sept | 14.2 | 14.7 | 13.5 | 13.0 | 51.2 | 17.1 | 211.1 | 56.2 | 1.19 | 0.39 | 5.21 |
Oct | 6.6 | 6.9 | 9.4 | 8.1 | 20.8 | 96.3 | 160.3 | 51.2 | 1.01 | 4.51 | 5.52 |
Fertilization | Years of the Study | Average | ||
---|---|---|---|---|
2015 | 2016 | 2017 | ||
Grain yield (t ha−1) | ||||
Control, no N fertilization | 5.26 ± 0.31 a * | 8.61 ± 0.17 e | 7.38 ± 0.10 d | 7.08±0.43 B |
Ammonium nitrate/urea | 6.60 ± 0.09 b | 11.57 ± 0.14 h | 9.80 ± 0.09 fg | 9.32 ± 0.62 A |
UAN/urea | 6.65 ± 0.09 b | 11.63 ± 0.09 h | 9.64 ± 0.09 f | 9.31 ± 0.62 A |
UAN/UAN | 6.81 ± 0.12 bc | 11.72 ± 0.15 h | 10.21 ± 0.13 g | 9.56 ± 0.62 A |
UAN + S/UAN + Mg | 6.42 ± 0.07 b | 11.05 ± 0.09 h | 9.56 ± 0.17 f | 9.16 ± 0.63 A |
UAN + P (Medium)/UAN + P (Medium) | 6.77 ± 0.44 bc | 11.68 ± 0.11 h | 10.22 ± 0.19 g | 9.56 ± 0.64 A |
UAN + P(Starter)/UAN + S | 7.23 ± 0.08 cd | 11.62 ± 0.14 h | 9.71 ± 0.12 f | 9.52 ± 0.55 A |
UAN + P(Starter)/UAN + Mg | 6.57 ± 0.22 b | 11.40 ± 0.11 h | 9.75 ± 0.21 fg | 9.24 ± 0.61 A |
Average | 6.54 ± 0.12 A | 11.22 ± 0.18 C | 9.54 ± 0.19 B | − |
Straw yield (t ha−1) | ||||
Control, no nitrogen fertilization | 7.33 ± 0.55 a–e | 12.95 ± 0.92 f | 6.73 ± 0.12 a–e | 9.00 ± 0.91 A |
Ammonium nitrate/urea | 6.02 ± 0.62 a–c | 16.57 ± 2.03 gh | 8.34 ± 0.37 c–e | 10.31 ± 1.51 A |
UAN/urea | 5.02 ± 0.36 a | 14.65 ± 0.72 fg | 8.70 ± 0.06 de | 9.46 ± 1.22 A |
UAN/UAN | 8.04 ± 0.44 b–e | 15.04 ± 1.17 fg | 8.92 ± 0.35 e | 10.67 ± 1.02 A |
UAN + S/UAN + Mg | 6.47 ± 0.83 a–d | 16.27 ± 1.51 gh | 7.20 ± 0.06 a–e | 9.98 ± 1.44 A |
UAN + P (Medium)/UAN + P (Medium) | 5.77 ± 0.38 ab | 14.81 ± 0.91 fg | 7.84 ± 0.08 b–e | 9.47 ± 1.20 A |
UAN + P(Starter)/UAN + S | 6.40 ± 0.61 a–d | 15.26 ± 1.30 f–h | 7.91 ± 0.16 b–e | 9.86 ± 1.25 A |
UAN + P(Starter)/UAN + Mg | 6.36 ± 0.72 a–d | 17.47 ± 1.63 h | 8.40 ± 0.11 c–e | 10.74 ± 1.55 A |
Average | 6.43 ± 0.24 A | 15.38 ± 0.48 C | 8.01 ± 0.14 B | − |
Harvest index (HI) | ||||
Control, no nitrogen fertilization | 0.38 ± 0.01 a | 0.40 ± 0.01 ab | 0.52 ± 0.01 g–j | 0.43 ± 0.02 B |
Ammonium nitrate/urea | 0.48 ± 0.03 a–h | 0.41 ± 0.03 ab | 0.54 ± 0.01 ij | 0.48 ± 0.02 AB |
UAN/urea | 0.53 ± 0.02 h–j | 0.44 ± 0.01 b–e | 0.52 ± 0.00 h–j | 0.50 ± 0.01 A |
UAN/UAN | 0.42 ± 0.01 a–c | 0.44 ± 0.02 b–d | 0.53 ± 0.01 h–j | 0.46 ± 0.02 AB |
UAN + S/UAN + Mg | 0.47 ± 0.03 c–f | 0.41 ± 0.02 ab | 0.57 ± 0.01 j | 0.48 ± 0.02 AB |
UAN + P(Medium)/UAN+ P(Medium) | 0.50 ± 0.02 f–i | 0.44 0.01 b–e | 0.56 ± 0.01 j | 0.50 ± 0.02 A |
UAN + P(Starter)/UAN + S | 0.48 ± 0.02 f–i | 0.43 ± 0.02 b–d | 0.55 ± 0.01 j | 0.49 ± 0.02 A |
UAN + P(Starter)/UAN + Mg | 0.47 ± 0.02 d–g | 0.39 0.02 ab | 0.53 ± 0.00 h–j | 0.47 ± 0.02 AB |
Average | 0.47 ± 0.01 B | 0.42 ± 0.01 A | 0.54 ± 0.00 C | − |
Fertilization | Years of the Study | Average | ||
---|---|---|---|---|
2015 | 2016 | 2017 | ||
Grain | ||||
Control, no N fertilization | 14.46 ± 0.06 d * | 14.47 ± 0.03 d | 11.17 ± 0.16 a | 13.37 ± 0.55 B |
Ammonium nitrate/urea | 17.01 ± 0.01 m | 15.78 ± 0.05 k | 12.58 ± 0.07 bc | 15.12 ± 0.66 A |
UAN/urea | 15.24 ± 0.11 gh | 15.55 ± 0.07 i–k | 12.48 ± 0.07 b | 14.42 ± 0.49 AB |
UAN/UAN | 15.4 ± 0.09 2 h–j | 14.93 ± 0.11 ef | 12.69 ± 0.06 bc | 14.35 ± 0.42 AB |
UAN + S/UAN + Mg | 15.31 ± 0.01 ghi | 14.83 ± 0.11 e | 12.82 ± 0.09 c | 14.32 ± 0.38 AB |
UAN + P(Medium)/ UAN + P(Medium) | 16.74 ± 0.01 l | 15.13 ± 0.02 fg | 12.61 ± 0.02 bc | 14.83 ± 0.60 A |
UAN + P(Starter)/UAN + S | 15.24 ± 0.22 gh | 15.47 ± 0.11 h–j | 12.77 ± 0.05 c | 14.49 ± 0.44 AB |
UAN + P(Starter)/UAN + Mg | 15.57 ± 0.12 jk | 15.4 ± 0.11 2 h–j | 12.83 ± 0.05 c | 14.61 ± 0.45 AB |
Average | 15.62 ± 0.17 C | 15.20 ± 0.09 B | 12.49 ± 0.11 A | – |
Straw | ||||
Control, no N fertilization | 8.00 ± 0.08 b | 10.21 ± 0.07 g | 7.09 ± 0.01 a | 8.44 ± 0.46 B |
Ammonium nitrate/urea | 11.09 ± 0.02 j | 12.55 ± 0.03 l–n | 10.67 ± 0.07 i | 11.44 ± 0.29 A |
UAN/urea | 9.85 ± 0.10 d–f | 12.10 ± 0.01 k | 9.71 ± 0.01 d | 10.55 ± 0.39 A |
UAN/UAN | 9.96 ± 0.04 f | 12.37 ± 0.04 l | 9.77 ± 0.04 de | 10.70 ± 0.42 A |
UAN + S/UAN + Mg | 9.33 ± 0.03 c | 12.69 ± 0.14 n | 9.46 ± 0.03 c | 10.49 ± 0.55 A |
UAN + P(Medium)/UAN + P(Medium) | 9.84 ± 0.09 def | 12.49 ± 0.06 lm | 9.78 ± 0.00 de | 10.70 ± 0.45 A |
UAN + P(Starter)/UAN + S | 10.37 ± 0.05 gh | 12.67 ± 0.05 n | 9.77 ± 0.03 de | 10.94 ± 0.44 A |
UAN + P(Starter)/UAN + Mg | 10.41 ± 0.05 h | 12.64 ± 0.12 mn | 9.89 ± 0.02 ef | 10.98 ± 0.42 A |
Average | 9.86 ± 0.18 A | 12.22 ± 0.16 B | 9.52 ± 0.20 A | – |
Trait | HI | HIN | RIE | IE | PE | AE | RN | PNB |
---|---|---|---|---|---|---|---|---|
YG | −0.25 * | −0.72 ** | 0.42 ** | −0.34 ** | −0.35 ** | 0.83 ** | 0.84 ** | 0.91 ** |
HI | 1.00 | 0.83 ** | −0.93 ** | 0.94 ** | 0.12 | −0.20 | −0.52 ** | −0.52 ** |
HIN | 1.00 | −0.87 ** | 0.82 ** | 0.30 * | −0.57 ** | −0.84 ** | −0.83 ** | |
RIE | 1.00 | −0.98 ** | −0.19 | 0.31 ** | 0.60 ** | 0.72 ** | ||
IE | 1.00 | 0.15 | −0.26 * | −0.53 ** | −0.67 ** | |||
PE | 1.00 | −0.20 | −0.33 ** | −0.31 ** | ||||
AE | 1.00 | 0.85 ** | 0.75 ** | |||||
RN | 1.00 | 0.83 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbowska, J.; Sienkiewicz, S.; Światły, A. Yield and Nitrogen Status of Maize (Zea mays L.) Fertilized with Solution of Urea—Ammonium Nitrate Enriched with P, Mg or S. Agronomy 2022, 12, 2099. https://doi.org/10.3390/agronomy12092099
Wierzbowska J, Sienkiewicz S, Światły A. Yield and Nitrogen Status of Maize (Zea mays L.) Fertilized with Solution of Urea—Ammonium Nitrate Enriched with P, Mg or S. Agronomy. 2022; 12(9):2099. https://doi.org/10.3390/agronomy12092099
Chicago/Turabian StyleWierzbowska, Jadwiga, Stanisław Sienkiewicz, and Arkadiusz Światły. 2022. "Yield and Nitrogen Status of Maize (Zea mays L.) Fertilized with Solution of Urea—Ammonium Nitrate Enriched with P, Mg or S" Agronomy 12, no. 9: 2099. https://doi.org/10.3390/agronomy12092099