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Abstract: In order to detect kiwifruit quickly and accurately in orchard environments for the picking
robot, this paper proposed a detection method based on a lightweight YOLOv4-GhostNet network.
The implementations of the method are as follows: The original CSP-Darknet53 backbone network
model was replaced by GhostNet, a feature layer facilitating small object detection was introduced
in the feature fusion layer, and part of the ordinary convolution was replaced by a combination of
1 × 1 convolution and depth-separable convolution to reduce the computational pressure caused by
the fused feature layer. The parameters of the new network are reduced, and the generalization ability
of the model is improved by loading pre-training weights and freezing some layers. The trained
model was tested, and the results showed that the detection performances were better than that of the
original YOLOv4 network. The F1 value, map, and precision were improved on the test set, which
were 92%, 93.07%, and 90.62%, respectively. The size of weight parameters was reduced to 1/6 of the
original YOLOv4 network, and the detection speed reached 53 FPS. Therefore, the method proposed
in this study shows the features of fast recognition, lightweight parameters, and high recognition
accuracy, which can provide technical support for vision systems of kiwifruit picking robots.

Keywords: kiwifruit detection; YOLOv4; GhostNet; light-weight; picking robot

1. Introduction

Kiwifruit is one of the most productive fruits in China and has great economic benefits.
Because of the increasing cost of manual picking in recent years, many agricultural indus-
tries have to use picking robots [1]. A vision system is a vital part of vision-based picking
robots, affecting performances such as efficiency, stability, and adaptation in complex en-
vironments [2,3]. However, there are factors that make the vision system unstable: the
varying light intensity due to changing weather conditions; the diversity of fruit clusters
with different branch, leaf shading, and overlapping; the limited computational resources
and complex algorithms which do not run efficiently for the picking robot. These factors
make it difficult for picking robots to quickly and accurately detect kiwifruit.

In recent years, researchers around the world have conducted lots of studies on the
object recognition of fruit and vegetables in natural environments, including traditional
image processing techniques and deep learning methods which are currently popular.
Traditional recognition methods mainly include edge contour extraction methods, region
growth segmentation methods, threshold segmentation methods, etc. The fruit objects
in images are usually recognized by using single feature or the combination of multiple
features extracted from the fruit images, such as shapes, textures, and color differences.
Hussin et al. [4] used a circular Hough transform method for citrus object detection, but the
detection accuracy was low for dense and overlapping fruits. Payne et al. [5] employed RGB
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and YCbCr color space segmentation as well as texture segmentation based on adjacent
pixel variability to segment mangoes from background pixels. Sun et al. [6] proposed a
string harvest tomato segmentation method based on the Canny edge detection algorithm,
which solved the problem of fruit adhesion, but also wasted a large number of non-fruit
adhesion points. Scarfe et al. [7] used the Sobel edge algorithm to remove the target fruit
background and identify kiwi using the template matching method, but did not use the
fruit shape information. Peng et al. [8] presented methods such as shape invariant moments
to synthesize the color and shape features of fruits and used an SVM classifier to classify
fruits, but the applicability of the algorithm is relatively poor for different environments.
The methods mentioned above can identify a single type of fruit, but they are poorly
adapted to situations such as similar color backgrounds, fruit shading, and light changes,
resulting in poor generality. So, traditional machine vision technologies are limited by their
classification algorithms and cannot meet the requirements for picking robots in complex
environments [9].

Deep learning object detection algorithms can complete the fruit recognition tasks
quickly and reach great performances, which are mainly divided into two categories: the
first one is the regression-based one-stage object detection algorithm, including YOLO [10],
Single Shot MultiBox Detector (SSD) [11], etc., and the other is the two-stage algorithm
based on region suggestion, the representative algorithms include Faster RCNN [12],
RCNN [13] and Mask R-CNN [14], etc. Sa et al. [15] and Song et al. [16] used Faster R-CNN
networks to identify bell pepper and kiwi, respectively and improved the network recogni-
tion accuracy. However, the two-stage object detection algorithm model is slower to train
and has a longer detection time than that of one-stage algorithms. Fu Longsheng et al. [17]
proposed a LeNet convolutional neural network-based multi-cluster kiwifruit recognition
method, which used elevated angle of capture for image acquisition of trellis cultivated
kiwifruit, with high accuracy for independent and adjacent fruit recognition. However, the
accuracy is relatively low for obscured and overlapping fruits and the recognition speed is
slow for individual fruits. Tian et al. [18] presented an improved YOLOv3 network using
DenseNet as its feature extraction layer for detecting apples at different growth stages, but
lacked fruit recognition in large-view scenes. Lu et al. [19] proposed a lightweight neural
network based on an improved YOLOv3-LITE using MobileNetv2 as the backbone of the
model, which has an average accuracy of 91.13% and a recognition speed of 16.9 ms for a
single image on a computer workstation. Fu et al. [20] proposed an application for kiwi
picking by improving YOLOv3-tiny lightweight neural network for robot object detection,
which has a model weight of 27 MB and an average detection speed of 34 ms per image
on a robotic workstation, but YOLOv4 has a better balance of detection accuracy and
detection speed than YOLOv3. Based on the kiwi occlusion, Suo et al. [21] used YOLOv3
and YOLOv4 to classify the target fruits into multiple classes for detection, and the results
showed that the highest mAP of 91.9% was achieved by YOLOv4, which cost 25.5 ms
on average to process an image, but no improvement was made to the original YOLOv4
network. The original YOLOv4 network structure is too large, with high computational
complexity and huge model size, which is not suitable for deployment in picking robots
for real-time detection [22–24].

To achieve fast and precise identification of kiwifruit picking robots in the case of
scaffolding cultivation of kiwifruit with insufficient light, overlapping, and clustering, an
improved lightweight GhostNet-YOLOv4 neural network is proposed. A feature fusion
layer is introduced which is favorable for small object detection, and a combination of
1 × 1 convolution and depth-separable convolution is introduced to achieve the function of
ordinary convolution by borrowing the Ghost Module structure, compressing the number
of network parameters and improving the detection speed of the network. To verify the
effectiveness of the improved object detection algorithm in detection, the experiments of the
improved algorithm in different scenarios and the results are compared with four classic
object detection algorithms: SSD, YOLOv3, YOLOv4, and MobileNetV3-YOLOv4.
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2. Materials and Methods
2.1. Image Data Acquisition

The kiwifruit images were acquired at the orchard base of Hunan Academy of Agricul-
tural Sciences at different times of the day. The camera used for acquisition was a RGB-D
camera, RealSense D435i, which is manufactured by Intel (Santa Clara, CA, USA). The
camera was positioned 20–90 cm away from the kiwifruit fruit for the acquisition, as shown
in Figure 1. To simulate the vision system of a picking robot, different elevation angles
were used for the shots, and a total of 2325 raw kiwifruit images were collected. To avoid
overfitting phenomena due to insufficient diversity of sample data acquisition, the presence
of branches and leaves shading, fruit adjacency and denseness of scaffolded kiwifruit were
differentiated to increase sample diversity. To enhance the generalization ability of the
training model results, the collected images were randomly enhanced to get 6890 kiwifruit
images, and later divided into training, validation and test sets according to the ratio of
9:1:1. The final data set is shown in Table 1. The LabelImg tool, an opensource software
from Github (https://github.com/heartexlabs/labelImg, accessed on 29 August 2022), was
used to label the data, and the smallest outer rectangle of the fruit was used as the real
frame to avoid the interference of useless pixels; the part of the kiwifruit fruit exposed
in the image that was obscured or overlapped was labeled to generate the dataset file in
XML format.
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Figure 1. The image acquisition apparatus.

Table 1. The dataset of kiwifruit.

Dataset Occlusion Dense Low Light Others

Training set 1742 1325 719 1854
Validation set 193 147 79 206

Test set 193 147 79 206
Total 2128 1619 877 2266

https://github.com/heartexlabs/labelImg
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2.2. Image Preprocessing

When a robotic vision system performs real-time monitoring of kiwifruit picking, the
recognition effect is mainly affected by factors such as light intensity, robot arm vibration,
branch, leaf shading situation, and fruits overlapping. In order to make the training model
have better generalization ability (Figure 2), the original image is first Hue, Saturation,
Value (HSV) transformed to simulate the lighting condition of scaffolded kiwifruit; the data
features are enhanced using linear enhancement techniques to reduce the probability of
sample inhomogeneity; to enhance the recognition of small target fruits, the image scaling
is controlled and gray bars are added to the edges; padding is used to enrich the data set
while avoiding learning unnecessary features; introducing Gaussian noise and pretzel noise
to simulate the disturbance of the actual picking to the robot vision system and enhance
the network model’s ability to capture the target fruits.
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Figure 2. Manipulations of the kiwi image dataset. (a) Original image; (b) Applying salt and pepper
noise; (c) Padding; (d) HSV (Hue, Saturation, Value) transforming.

The network uses the Mosaic data enhancement method to traverse four images at a
time (Figure 3): firstly, the fixed area of the image is intercepted by using the matrix, and the
images are inverted, scaled, and transformed by HSV color gamut; secondly, the four images
are stitched into one image, and the combination of images and frames is performed, the
frames beyond the image are removed, and the stitched images are edge processed; finally,
the enhanced images are passed into the neural network for normalization calculation, and
four images are calculated at a time, which enriches the detection background of the target
fruit and speeds up the model learning efficiency.
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3. Kiwifruit Recognition Network
3.1. YOLOv4 Network Model

A sketch of the YOLOv4 network structure is shown in Figure 4. The network model
is mainly divided into three parts: the benchmark network Backbone, Neck network, and
Head output [25], which are used for classification regression and prediction through three
effective feature layers. Yolo Head output: this part contains a 3 × 3 convolution and a
1 × 1 convolution, which are used for the feature set and channel number adjustment,
respectively, to complete the output of target prediction results. Neck network: The SPP [26]
module and PANet [27] module are used to fuse the feature information of different size
feature maps to further improve the diversity and robustness of the features. SPP pools the
last feature layer of the backbone network, which can greatly increase the perceptual field
and separate the most significant contextual features. PANet (Path Aggregation Network)
is a bottom-up feature pyramid added to the FPN (traditional feature pyramid), which
achieves iterative feature extraction with strong semantic features and strong localization
features. Backbone network CSPDraknet53: The CSPnet structure connects a small amount
of processing directly to the end with a large residual edge, which enhances the learning
ability of CNN. The Mish activation function is also introduced in the CSPnet structure, and
Mish has the properties of no upper bound, fast convergence, and smooth nonmonotonicity,
which helps to stabilize the network gradient flow, avoid gradient saturation, and improve
the generalization ability of the model. The Mish function [28] is as Equation:

Mish = x × tan h(ln(1 + ex)) (1)

where, x is the input value and tan h() is the hyperbolic tangent function.

3.2. YOLOv4 Object Detection Model Improvement
3.2.1. Construction of the YOLOv4 Network Using the GhostNet Network

The GhostNet model is a lightweight deep network proposed by Huawei for embed-
ded devices, whose core idea is to use less computationally intensive operations to generate
redundant features, with lighter and faster features. GhostNet consists of multiple Ghost
Bottleneck, and the structure of Ghost Bottleneck is shown in Figure 5. It consists of two
Ghost modules and one depth-separable convolution stacked alternately with each other,
and a large residual edge is formed on the other side of the stack by a 2 × 2 depth-separable
convolution and a 1 × 1 normal convolution processing, which enhances the learning
ability of CNN [29,30].
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Ghost Bottlenecks is a bottleneck structure composed of Ghost Module, the essence
of which is to use Ghost Module to replace the normal convolution inside the bottleneck
structure. Ghost module achieves the function of normal convolution through the combi-
nation of 1 × 1 convolution and depth separable convolution, which can greatly reduce
the number of network parameters. The structure of Ghost Module is shown in Figure 6.
The 1 × 1 convolution and 3 × 3 depth-separable convolution are used to obtain similar
feature maps with dense features, which increases the perceptual field of the network and
can effectively solve the problem of shallow network depth and insufficient perceptual
field caused by the extensive use of 1 × 1 convolution in YOLOV4-tiny network. Therefore,
this paper borrows this structure in the Neck network.
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3.2.2. Improved YOLOv4 Network Model

The structure of the improved YoloV4 network model is shown in Figure 7. The feature
layers with the same width and height as in CSP-Darknert53 are found from GhostNet, and
these feature layers are passed into the enhanced feature network to realize the application
of GhostNet in YOLOv4 network. Kiwifruit as recognition targets vary in scale, and most
of them are small target fruits. The small target feature information is rough in location
information and feature information is easily lost when processed by feature fusion, which
causes false detection and missed detection in the network model. To improve the detection
accuracy of the original model for small kiwifruit targets, 104 × 104 feature layers are
added to aggregate the shallow feature information. Four scale feature layers of 13 × 13,
26 × 26, 52 × 52, and 104 × 104 (q4) are output from the backbone network. q4 sensory
field is suitable for small object detection, and the q4 feature layer is fused with the previous
feature layer by downsampling to enhance the extraction of small target feature information.
Drawing on the Ghost Module network, this study proposes to use a combination of 1 × 1
convolution and depth-separable convolution to replace part of the normal convolution in
the YOLOv4 feature extraction network, and use it as the main module to adjust the number
of channels and perform inter-channel feature fusion, which can reduce the computational
pressure brought by the fused feature layer q4. The Alpha parameter is introduced into the
network model to replace the number of channels inside PAnet by using the parameter to
adjust the parameter to improve part of the channel number adjustment in order to reduce
the parameter redundancy.
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[Ĉi lg Ci + (1 − Ĉi) lg(1 − Ci)] (4) 

Loss(cls)  =  − ∑  Iij
obj

∑ [p̂i (c)lg pi(c) + (1 − p̂i(c)) lg I(c))]

 

cϵclasses

K × K

i=0

 (5) 

where, K represents the grid size, I denotes the i-th square of the feature map, j denotes 

the j-th predicted frame of the square, w and h represent the width and height of the 

ground truth, respectively, obj and noobj denote the presence and absence of objects in 
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synthesis module, Depthwise Convolution plus Batch normalization plus Leaky relu activation
function synthesis module, SPP stands for spatial pyramid pooling.

The loss function for network training includes regression loss function Loss(cord),
confidence loss function Loss(conf) and classification loss function Loss(cls). The loss
function formula is as Equations:

Loss = Loss(coord) + Loss(conf) + Loss(cls) (2)

Loss(coord) = λcoord

K × K

∑
i=0

M

∑
j=0

Iobj
ij (2 − I × hi)[LCIOU] (3)

Loss(conf) = −
K × K

∑
i=0

M

∑
j=0

Iobj
ij [ĈilgCi + (1 − Ĉi)lg(1 − Ci)]− λnoobj

K × K

∑
i=0

×
M

∑
j=0

Inoobj
ij [ĈilgCi + (1 − Ĉi)lg(1 − Ci)] (4)

Loss(cls) = −
K × K

∑
i=0

Iobj
ij ∑

cεclasses
[p̂i(c)lgpi(c) + (1 − p̂i(c))lgI(c))] (5)

where, K represents the grid size, I denotes the i-th square of the feature map, j denotes
the j-th predicted frame of the square, w and h represent the width and height of the
ground truth, respectively, obj and noobj denote the presence and absence of objects in
the i-th square, respectively, Ci and Ĉi denote the categories of predicted and true frames,
respectively pi(c) is the confidence level of the predicted target, p̂i(c) is the confidence
level of the actual target, λcoord and λnoobj are the penalty coefficients, and LCIOU is the
regression loss function of the bounding box.
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4. Results and Analysis
4.1. Test Platform

The test platform of this paper: Windows 10, 64-bit operating system, Pytorch deep
learning framework, and Python programming language. The test environment is shown
in Table 2.

Table 2. Information about the test platform.

Configuration Parameter

Graphics Processing Unit (GPU) Ge Force GTX1050Ti
Operating System Windows10

Accelerated Environment Pytorch1.8.1 CUDA11.1
Development Platform Visual Studio Code

4.2. Performance Metrics

In order to select a suitable model, accuracy (Precision), recall (Recall), mean average
precision (mAP), average frame rate (fps), weight size (weights), and F1-Score (F1), are
used as model performance evaluation metrics, while performance evaluation is performed
using Precision-Recall curves. The calculation formula is as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 × Precision × Recall
Precision + Recall

(8)

mAP =
1
C

N

∑
K=i

P(k)∆R(k) (9)

where, TP is the number of positive samples judged to be true, FP is the number of positive
samples judged to be false, FN is the number of negative samples judged to be false, P(k)
represents the accuracy, and R(k) represents the recall rate.

4.3. The Training of the Kiwifruit Recognition Network

Pre-training weights and freezing part of the training layers are used to load GhostNet
weights, initial training freezes part of the network layers, and after 50 generations of
training starts to unfreeze the frozen part for full network training. Putting more resources
on the parameter training of the later network and unfreezing this part of the network
parameters afterwards can effectively guarantee the weights. In the training process, the
input image size is set to 416 × 416, the model freeze layer is set to 50 training generations,
the batch sample is set to 16, the momentum factor is set to 0.9, the decay coefficient is
0.0005, and the initial learning rate is 0.001. After unfreezing, the total training generations
are set to 500, the number of batch samples is eight, the momentum factor is set to 0.9, the
decay coefficient is 0.0005, and the initial learning rate is 0.001. The loss value is one of the
measures of the model effectiveness, and the lower the loss value is, the better the model
training is theoretically. The weight file is saved once after each generation of training
(epoch), and the visualization plot is recorded according to the background log information
after the training is completed, and the trend of model loss value change is shown in
Figure 8.

The improved YOLOv4 network model decreases the training loss value as the number
of iterations increases. As can be seen from the figure, the loss function value decreases
rapidly in the first 100 iteration cycles (fast model fitting); in 100–350 iterations, the loss
value slowly decreases close to the optimal solution; after 70 iterations the loss value
gradually stabilizes to a small fluctuation at 0.3, then the model is considered to converge.
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The loss value of Ghostnet-YOLOv4 after stabilization is lower than that of MobilentV3-
YoloV4, and the training results of Ghostnet-YOLOv4 network model are more satisfactory
in terms of parameter convergence.
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From the loss function and Table 3, it can be seen that the loss function of the improved
YOLOv4 model decreases rapidly. The corresponding average accuracy is stable at about
93.07%, which is because the improved YOLOv4 introduces a feature layer with a smaller
perceptual field and improves the detection of model fine-grained. This indicates that the
improved model is more capable of recognizing kiwifruit fruits in natural environments.

Table 3. The performances of the models using different backbone networks.

Network Model mAP Recall F1 FPS Weights Precision

YOLOv4 91.79 87.94 87.0 36 244 85.26
MobileNetV3-YOLOv4 91.44 86.45 88.0 47 53.7 90.04

GhostNet-YOLOv4 93.07 92.43 92.0 53 42.5 90.62

4.4. Improvement Results of Different Backbone Feature Extraction Networks

The original YOLOv4 network structure is prone to target fruit under-recognition
during target fruit detection due to backlighting, high fruit density, fruit overlapping, and
small target fruits. The improved MobileNetV3-YOLOv4 network improves the Precision
by 4.78%, F1 value by 1.0%, and detection speed by 47 frames/s compared with the original
YOLOv4. The improved GhostNet-YOLOv4 improves the mAP by 5.36%, Precision by
5.36%, F1 by 5%, Recall by 4.49%, and detection speed by 53 frames/s over the original
YOLOv4, with a weight reduction of 201.5 MB (Table 3). By adding feature layers favorable
to small target fruit detection in the path aggregation network and introducing depth-
separable convolution and Ghost Module modules, the model size can be effectively
compressed, the model recognition speed accelerated, and the model recognition accuracy
improved. Compared with MobileNetV3 series as the backbone network, YOLOv4 with
GhostNet as the backbone network has different degrees of improvement in Precision,
Recall, detection speed, and F1 value.
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The two detection models were used to detect the dataset separately, and Figure 9.
Shows the curves of the P and R relationships of the two networks. From the PR curves
in Figure 9, the area enclosed under the PR curve of kiwifruit in the images of GhostNet-
YOLOv4 model is significantly higher than that of MobileNetV3-YOLOv4. This indicated
that GhostNet-YOLOv4 has higher detection accuracy and better performance.
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4.5. Different Scenarios Comparison

This paper performs detection and recognition of kiwifruit for different scenes to verify
the effectiveness of the improved network model. In order to visually compare the detection
effect, we used the original image annotation for comparison (Figure 10). In the close-up
scenes, the kiwifruit surface is evenly illuminated and detection is less difficult; in the
distant scenes, the kiwifruit targets are small and dense, and the recognition accuracy of the
images is lower; in the cloudy days, the light is weaker, the kiwifruit has dark shadow areas,
and the features of the target fruit become blurred. The YOLOv4 model algorithm had
missed detection in all cases of occlusion, dense, and insufficient illumination, and some
small target fruits were not recognized, while the GhostNet-YOLOv4 detection effect was
closer to the original image annotation. Compared with the YOLOv4 detection algorithm,
the GhostNet-YOLOv4 model had better detection results and can effectively identify
both large and small target fruits under the conditions of overcast, fruit overlap, shading
and density. The improved algorithm in this study is not only applicable to images with
uniform light on sunny days, but also gets better recognition results for images under low
light conditions on cloudy days. The improved GhostNet-YOLOv4 network has a larger
perceptual field and is more capable of recognizing kiwifruit in natural environments.

4.6. Comparison Experiments of Different Models

To verify the performance of the improved kiwifruit target recognition algorithm,
the four object detection algorithms were evaluated by training different object detection
models YOLOv3, SSD, and YOLOv4 on a desktop computer using the same kiwifruit
dataset, using the best weights and the same test set for comparison tests (Figure 11). It can
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be seen from Figure 11 that the detection of both YOLOv3 and SSD algorithms showed a
missed recognition of the distant fruit, the main reason for this result is the small size of the
distant fruit. In addition, some kiwi fruits were not recognized due to severe covered by
the branches and leaves, as only a limited number of kiwifruits’ features could be detected
by the feature extraction network. MobileNetV3-YOLOv4 had good detection results with
only a few fruit misidentifications, which were due to branch shading and insufficient light
on cloudy days. As can be seen from Table 4, the mAP, Recall, and F1 value of the improved
GhostNet-YOLOv4 were higher than the other object detection algorithms at an overlap
threshold of 50%. The improved GhostNet-YOLOv4 object detection algorithm occupies
42.5 Mb of memory in space, while the other unimproved object detection algorithms in the
comparison test had a minimum of 101 Mb, and the YOLOv4 algorithm was six times the
volume of the improved algorithm. In terms of detection time, the detection speed of the
YOLOv4 model was 36 frames/s, the YOLOv3 model was 41 frames/s, the SSD model was
58 frames/s, and the improved model was 53 frames/s. The mAP value of the YOLOv4
model is higher than the other three object detection models (SSD, YOLOv3, MobileNetV3-
YOLOv4), but the YOLOv4 model occupies more memory, the average detection speed was
slower, and the relatively large number of parameters was not recommended for porting to
embedded devices. In summary, GhostNet-YOLO4 model occupied less memory and has
obvious advantages in terms of detection speed and recognition accuracy.
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Table 4. Performances of different algorithms.

Network Model mAP Recall F1 FPS Weights Precision

MobileNetV3-YOLOv4 91.44 86.45 88 47 53.7 90.04
GhostNet-YOLOv4 93.07 92.43 92.0 53 42.5 90.62

YOLOv4 91.79 87.94 87.0 36 244 85.26
SSD 85.10 82.88 82.0 58 101 80.69

YOLOv3 90.95 86.49 85.0 41 235 84.5
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5. Conclusions

(1) In this study, we proposed an object detection model based on GhostNet to improve
YoloV4 by replacing the backbone network of YoloV4 with GhostNet network, intro-
ducing feature layers adapting to small object detection in the feature fusion layer of
the convolutional neural network, and using a combination of 1 × 1 convolution and
depth-separable convolution to replace part of the normal convolution in the neck
network. The improved GhostNet-YoloV4 network has better robustness with fewer
weight parameters and improved the detection speed while ensuring the accuracy of
kiwi recognition.

(2) The performance of the GhostNet-YoloV4 network model was evaluated, and the
object detection algorithm was able to complete the recognition of kiwifruit under
complex situations such as cloudy sky, shading from branches, and fruits’ dense
adjacency. The improved network model has a volume of 42.5 Mb, a detection speed
of 42 frames/s, and an average accuracy of 93.07%, which meets the operational
requirements and facilitates the application on embedded devices.

(3) Based on the actual picking environment of the orchard, an image dataset of kiwifruit was
produced and the superiority of the model was verified through a pairwise comparison
test. Compared with YOLOv4, GhostNet-YoloV4 compresses the network model size and
improves the detection of model fine-grained by replacing the backbone network and
improving the part-neck network. Using MobileNetV3_YoloV4, SSD, and YoloV4 models
for testing respectively, the network model detection speed and model compression
volume are better than other models with guaranteed detection accuracy.
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