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Abstract: Blast is one of the most significant wheat diseases, causing high yield losses in susceptible
varieties under favorable conditions in Latin America, Southeastern Asia and Eastern Africa. The
disease is caused by the ascomycetous fungal pathogen Pyricularia oryzae Triticum lineage (PoTl).
Chemical control with fungicides has been used as a management strategy; however, the effective-
ness of the major classes of high-risk site-specific systemic fungicides has been reduced due to the
widespread prevalence of resistance, especially in Brazil. Biological control is seen as a highly impor-
tant and sustainable strategy to minimize the impact of yield losses associated with wheat blast in
areas where fungicides are ineffective. In our study, we specifically aimed to determine the biological
control potential of the three isolates of fluorescent Pseudomonas and three of Trichoderma as the antag-
onists of PoTl, both in in vitro and under greenhouse conditions. Additionally, we aimed to describe
the ultrastructural interactions among the biocontrol agents and the pathogen in vitro by means
of scanning electron microscopy (SEM). Fluorescent P. wayambapalatensis ‘Amana’ or Pseudomonas
sp. nov. ‘Yara’, both from the P. putida group, and Trichoderma koningiopsis ‘Cachara’ significantly
reduced PoTl in vitro mycelial growth and the blast disease severity on wheat plants. The SEM
analyses revealed ultrastructural antagonistic mechanisms: biofilm formation, direct antagonism and
mycoparasitism. Further research on the topic should include the development of stable formulations
of the Pseudomonas- and Trichoderma-based biocontrol agents selected in our study for managing the
wheat blast disease and the field tests of the biofungicide formulations obtained thereafter.

Keywords: biocontrol; antagonism; Pseudomonas; Trichoderma; Pyricularia oryzae Triticum lineage

1. Introduction

Wheat blast is one of the most significant cereal diseases in countries from Latin Amer-
ica (Brazil, Bolivia, Paraguay and Argentina), Southeast Asia (Bangladesh) and Eastern
Africa (Zambia), causing high yield losses on susceptible varieties under favorable weather
conditions [1,2]. In certain Northern America and the European Union countries, wheat
blast has been designated to be a major quarantine disease [3]. The pathogen associated
with wheat blast is the ascomycetous fungus Pyricularia oryzae Triticum lineage (PoTl) [4,5].
PoTl mainly attacks the heads and spikelets of wheat plants. Initial symptoms on heads
begin as bleached-centered elliptical lesions on glumes. The fungus may infect the rachis,
resulting in the partial or total sterility of the heads and empty grains. The spikelets above
the infection point in the rachis die and become white bleached. Sporadically, under highly
favorable conditions, leaf spots may also be detected on infected wheat plants [6].
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The integrated disease management (IDM) of wheat blast precludes the adoption
of several strategies, including crop rotation to minimize fungal infection from primary
inoculum derived from perithecia formed on crop residues; the use of certified pathogen-
free seeds; changing the sowing dates to avoid coincidence of the plant’s flowering stage
with disease-favorable weather conditions; regional diversification of cultivars based on
the pathogen’s predominant virulence groups; and fungicide sprays [7]. However, due to
the pathogen’s high genetic and virulence diversity, resistance to wheat blast is not durable,
rendering IDM fully dependent on chemical control based on spraying systemic fungicides
on the plant ears [7]. However, the effectiveness of the major site-specific systemic fungicide
classes labeled for wheat diseases management (such as strobilurins, triazoles and succinate
dehydrogenase inhibitors) is considered very low due to the widespread distribution of
resistance in the country [8–11]. Therefore, considering the serious scenario of the lack
of durable resistance combined with the ineffectiveness of systemic fungicides, biological
control emerges as an important sustainable management strategy against wheat blast
and its resulting high yield losses. So far, there have been no biofungicides labeled by
the Ministry of Agriculture, Livestock and Supply (MAPA) [12] for managing wheat blast
in Brazil.

Fungal and bacterial antagonists play an important role as microbial biocontrol
agents (BCAs) in managing plant pathogens and diseases and can be delivered as
biofungicides [13–15]. Biofungicides used for the biological control of plant pathogens
are microorganisms-based formulations, which include antagonistic fungi [16,17] and
bacteria [18–22]. Among fungi-based formulation, species from the genus Trichoderma
are the most common biocontrol agents [23–26]. In comparison, fluorescent species
from the genus Pseudomonas are the most common antagonists among bacteria-based
formulations, with emphasis on the P. fluorescens and P. putida groups, which are also
reported as plant growth promoting bacteria [27–30]. The development of biofungicides
for managing wheat blast aims to meet the growing demand of modern society for more
sustainable, less environmentally impactful agriculture and higher food safety derived
from agricultural produce with lower pesticide residues [22,31].

Considering the pressing need for a sustainable management strategy to control wheat
blast in Brazil, the present study aimed to determine the potential of antagonistic bacteria
and fungi for the biocontrol of the disease caused by PoTl. Three fluorescent Pseudomonas
species [P. wayambapalatensis and two Pseudomonas sp. nov. (one from the P. putida group and
another from the P. asplenii group] and three Trichoderma species (Trichoderma koningiopsis, T.
lentiforme and T. virens), all obtained from naturally suppressive Amazon soils from Brazil,
were selected for this study. Their role as biocontrol agents of another foliar disease on a
Poaceae host have been previously characterized by Nunes [32] and Vicentini et al. [30]
using foliar sprays of formulations. Our intent was to explore ways to expand their scope
as biocontrol agents against wheat blast. We hypothesize that these bacteria and fungi have
extended biocontrol capabilities, which include the wheat blast disease. If this hypothesis
holds true, follow up developments on formulations could result in the labelling of the first
biofungicide for wheat blast control in South America.

2. Materials and Methods

For this study, fluorescent Pseudomonas bacteria and fungal antagonists from the genus
Trichoderma were bio-prospected from naturally suppressive Brazilian Amazon soils in
Paranaita County, Mato Grosso State. They were previously characterized as effective
biocontrol agents against the leaf blight and sudden death diseases of the forage grass
pasture Urochloa brizantha, caused by the basidiomyceteous fungus Rhizoctonia solani AG-1
IA [30,32,33] (Table 1).
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Table 1. Fluorescent Pseudomonas bacteria and fungal antagonists from the genus Trichoderma used in
this study.

Isolates Species References

Amana Pseudomonas wayambapalatensis (P. putida group) Vicentini et al. [30]
Poti Pseudomonas sp. nov. (P. asplenii group) Vicentini et al. [30]
Yara Pseudomonas sp. nov. (P. putida group) Vicentini et al. [30]

Cachara Trichoderma koningiopsis Nunes [32]
Jaú Trichoderma virens Nunes [32]

Jurupoca Trichoderma lentiforme Nunes [32]

2.1. In Vitro Antagonism of Fluorescent Pseudomonas against the Wheat Blast Pathogen

The PoTl colonies were grown on potato dextrose agar medium (PDA: potato dex-
trose, 20.8 g L−1; agar, 15 g L−1) supplemented with chloramphenicol and streptomycin
(50 µg mL−1 of each) and incubated at 25 ± 0.2 ◦C for 15 days and 12-h photoperiod. Three
fluorescent Pseudomonas spp. strains (Amana, Poti and Yara) were grown in a liquid Luria-
Bertani culture medium (LB, 20 g L−1) in a shaker for 12 h at 28 ◦C and 200 rpm, when the
final optical density at 620 nm (OD620) of the culture was measured and adjusted to ≈0.8.

The in vitro antagonism experiment was established in a completely randomized de-
sign, with 4 repetitions, by pairing 7-mm-diameter mycelial colony disks from 3 individual
PoTl isolates available in our fungal collection (12.1.146, 12.1.207, and 12.1.047, obtained
in 2012 from infected wheat plants sampled in Mato Grosso do Sul, Rio Grande do Sul
and Brasilia, respectively) with 3 strains of the antagonistic bacteria from fluorescent Pseu-
domonas species. The antagonist bacteria inoculum consisted of 1 mL of LB liquid medium
containing the antagonist at OD620 ≈ 0.8). The pairings were set on Petri dishes containing
King B medium by positioning the individual PoTl isolate in the center of the plate and the
three bacterial strains on a triangle shape with each edge at 0.5 cm from the plate’s margin.
A negative control was included (LB medium only). The pairings between PoTl and the
antagonists were incubated for 7 days at 25 ◦C.

The fungal pathogen mycelial growth (C) was measured 7 days after the pairings,
using the methodology of Camporota [34] adapted by Vicentini et al. [30], in which
C = DT/DE*100, where DT is the growth radius of the PoTl colony towards the antag-
onistic Pseudomonas bacteria and DE, the distance separating the two colonies. The data
were analyzed using the F test to detect the significance of the treatment effect and the
Tukey test at 5% for comparison between means. The experiment was repeated once.

2.2. In Vitro Antagonism of Trichoderma against the Wheat Blast Pathogen

The PoTl colonies were grown on PDA culture medium with chloramphenicol and
streptomycin, as described in Section 2.1, and incubated at 25 ± 0.2 ◦C for 15 days for a
12-h photoperiod. Antagonistic Trichoderma spp. isolates [32] were initially reactivated and
then also cultivated for inoculum production in PDA medium with chloramphenicol and
streptomycin and incubated at 25 ◦C for a 12-h photoperiod for 5 days.

The experiment was set up in a completely randomized design, with 4 repetitions, by
pairing 4-mm-diameter mycelial colony disks from 3 individual isolates of PoTl (12.1.146,
12.1.207, 12.1.047) with T. koningiopsis Cachara, T. virens Jaú and T. lentiforme Jurupoca.
A negative control without the antagonistic fungi was also included. The pairings were
set on Petri dishes containing PDA medium by positioning the individual PoTl isolate in
the center of the plate and a mycelium disc from a single antagonistic Trichoderma isolate
positioned on the opposite side at 0.5 cm from the plate’s margin.

The fungal pathogen mycelial growth (C) was measured 7 days after the pairings, using
the methodology of Camporota [34], as described in Section 2.1. The data were analyzed
similarly to the method described in Section 2.1. The experiment was repeated once.
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2.3. Scanning Electron Microscopy Analyses of In Vitro Pathogen–Biocontrol Agents Interactions

The samples chosen for the ultrastructural studies of the interactions between bio-
control agents and PoTl comprised the treatments from the in vitro experiments described
in the Sections 2.1 and 2.2: (1) Amana vs. PoTl; (2) Poti vs. PoTl; (3) Yara vs. PoTl and
(4) T. koningiopsis Cachara vs. PoTl. Colony disks from these antagonism experiments were
sampled at 7 days after the pairings, fixed in 70% formalin acetic alcohol (FAA) [35] and
stored under refrigeration. The fixed samples were dehydrated in ethanol series treatment
(at 70, 80, 90 and 99.5%), dried at critical point and metallized with gold. The images were
acquired using a Zeiss EVO/LS15 Scanning Electronic Microscope at the Chemistry–Physics
Department (at Unesp Ilha Solteira Campus). The scanning electron microscopy analyses
were conducted to characterize the biocontrol agents antagonist action against PoTl.

2.4. Potential of Pseudomonas and Trichoderma as Biocontrol Agents Controlling Wheat Blast

Seeds of wheat plants cv. TBIO Sossego (Biotrigo Genética) with no fungicide treatment
were sown in 700 mL pots containing the plant substrate Topstrato HT Vegetables and kept
at greenhouse conditions at 26 ± 2 ◦C and 70% relative humidity. The pots were irrigated
daily and fertilized every 20 days with 0.7 g N-P-K (10-10-10) per pot. Thinning was carried
out at 15 days after emergence (DAE) leaving only three plants per pot.

The inoculum of the antagonistic fluorescent Pseudomonas isolates [30] (Table 1) were
prepared in Erlenmeyer containing 20 mL of liquid LB culture medium, kept at 28 ◦C
under agitation at 190 rpm for 16 h, until the bacterial suspension reached OD620 ≈ 0.8
(equivalent to 6.2 × 108 cfu mL−1). The bacterial suspensions were then centrifuged for
15 min at 5000 rpm, the supernatant LB medium drained and the resulting bacterial pellet
resuspended in similar volume of sterile distilled water and finally adjusted to a final
suspension with OD620 ≈ 0.8.

The inoculum of the antagonistic Trichoderma spp. isolates [32] (Table 1) were grown
on PDA with chloramphenicol and streptomycin and incubated for 7 days at 25 ◦C and for
a 12-h photoperiod. Fungal spores were harvested using distilled water and 0.01% tween
20 and the final conidia suspension was adjusted at 109 conidia mL−1 based on counts from
a Neubauer chamber.

The inoculum of the fungal pathogen was obtained by harvesting spores from 50 Petri
dishes for each isolate, half of which (N = 25 plates) containing oat medium (60 g L−1 of
oat flour, 15 g L−1 agar) and another half containing rice–bran–oat–meal medium (15 g L−1

of rice bran, 15 g L−1 of oat flakes, 5 g L−1 of dextrose and 20 g L−1 of agar), both with
chloramphenicol and streptomycin (50 mg mL−1 of each). The plates were incubated for
15 days at 25 ◦C and 12 h photoperiod. The conidia of the pathogen produced on both
culture media were harvested and a mixed inoculum suspension that included PoTl isolates
12.1.146, 12.1.207 and 12.1.047 was prepared. The conidia suspension was prepared in
sterile distilled water plus 0.01% Tween 20 and adjusted to ≈104 conidia mL−1 using a
Neubauer chamber for the subsequent spraying of the leaves and ears of wheat plants.

The biocontrol agents were sprayed on the entire wheat plant at 60 days after emer-
gence at the Feeks’ head stage 10.5 [36], 7 days before the inoculation of the pathogen. The
following treatments were applied: (1) Amana; (2) Poti; (3) Yara; (4) Cachara; (5) Jau;
(6) Jurupoca; (7) Amana + PoTl; (8) Poti + PoTl; (9) Yara + PoTl; (10) Cachara + PoTl;
(11) Jau + PoTl; (12) Jurupoca + PoTl; (13) negative control (no PoTl) and (14) positive
control (+PoTl).

Soon after the application of the biocontrol agents, the plants were transferred to a
growth chamber set at 25 ◦C, adjusting the relative humidity to 90% with nebulization,
for 24 h, under complete darkness. Subsequently, the 12 h photoperiod was reestablished.
Seven days later, the pathogen was inoculated, and the plants were kept in the same growth
chamber for another 14 days under the same incubation conditions of 25 ◦C and for a 12-h
photoperiod, until the evaluation of the treatments effect was performed.

The evaluation of the biocontrol treatments effect was carried out 14 days after in-
oculation by determining the severity of blast symptoms on wheat ears, which were
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digitally photographed. The heads infected area was measured with the aid of the image
analysis software Assess from APS (ASSESS: Image Analysis Software for Plant Disease
Quantification, Department of Plant Science, University of Manitoba, Winnipeg, Manitoba,
Canada) [37]. Data were analyzed using the F test to detect the significance of the treat-
ment effect and the 5% Scott–Knott test to compare between means. The experiment was
repeated once.

3. Results

Initially, Pseudomonas and Trichoderma isolates were evaluated for antagonism to the
causal agent PoTl through in vitro experiments and for the biocontrol potential of wheat
blast in vivo.

3.1. In Vitro Antagonism of Fluorescent Pseudomonas against the Wheat Blast Pathogen

While the mycelial growth of PoTl isolates was significantly reduced (p ≤ 0.05) by
the three strains of fluorescent Pseudomonas species tested (Table 2, Figures 1 and 2), the P.
wayambapalatensis strain ‘Amana’ resulted in the highest in vitro inhibition of the fungus
relative mycelial growth, ranging from 33 to 52%.

Table 2. Analysis of variance of the in vitro antagonism effect of fluorescent Pseudomonas strains
against Pyricularia oryzae Triticum lineage.

Source of Variation df SS MS F p

Treatments 3 8381.53 2793.84 180.60 0.0000 ***
Error 28 433.16 15.47
Total

CV(%): 5.09 31 8814.69

*** Significance by the F test at p ≤ 0.001.

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 

24 h, under complete darkness. Subsequently, the 12 h photoperiod was reestablished. 

Seven days later, the pathogen was inoculated, and the plants were kept in the same 

growth chamber for another 14 days under the same incubation conditions of 25 °C and 

for a 12-h photoperiod, until the evaluation of the treatments effect was performed. 

The evaluation of the biocontrol treatments effect was carried out 14 days after inoc-

ulation by determining the severity of blast symptoms on wheat ears, which were digitally 

photographed. The heads infected area was measured with the aid of the image analysis 

software Assess from APS (ASSESS: Image Analysis Software for Plant Disease Quantifi-

cation, Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Can-

ada) [37]. Data were analyzed using the F test to detect the significance of the treatment 

effect and the 5% Scott–Knott test to compare between means. The experiment was re-

peated once. 

3. Results 

Initially, Pseudomonas and Trichoderma isolates were evaluated for antagonism to the 

causal agent PoTl through in vitro experiments and for the biocontrol potential of wheat 

blast in vivo. 

3.1. In Vitro Antagonism of Fluorescent Pseudomonas against the Wheat Blast Pathogen 

While the mycelial growth of PoTl isolates was significantly reduced (p ≤ 0.05) by the 

three strains of fluorescent Pseudomonas species tested (Table 2, Figures 1 and 2), the P. 

wayambapalatensis strain ‘Amana’ resulted in the highest in vitro inhibition of the fungus 

relative mycelial growth, ranging from 33 to 52%. 

Table 2. Analysis of variance of the in vitro antagonism effect of fluorescent Pseudomonas strains 

against Pyricularia oryzae Triticum lineage. 

Source of Variation df SS MS F p 

Treatments 3 8381.53 2793.84 180.60 0.0000 *** 

Error 28 433.16 15.47   

Total 

CV(%): 5.09 
31 8814.69    

*** Significance by the F test at p ≤ 0.001. 
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Figure 1. Boxplot distribution of the relative mycelial growth of Pyricularia oryzae Triticum lineage
(PoTl) under in vitro antagonism by three strains of fluorescent Pseudomonas species. Each boxplot
represents the distribution of values from 3 PoTl isolates (12.1.047, 12.1.146, and 12.1.207). Means
followed by the same letters (a–d) are not significantly different using the Tukey test at p ≤ 0.05.
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Figure 2. In vitro antagonism by strains of fluorescent Pseudomonas species against Pyricularia oryzae
Triticum lineage (PoTl). (A–C): PoTl isolates only (12.1.146, 12.1.047 and 12.1.207). (D–F): P. wayamba-
palatensis ‘Amana’ (blue mark; P. putida group); Pseudomonas sp. nov. ‘Poti’ (black mark; P. asplenii
group) and Pseudomonas sp. nov. ‘Yara’ (red mark; P. putida group) paired with PoTl (colony in
the center).

3.2. In Vitro Antagonism of Trichoderma against the Wheat Blast Pathogen

The three antagonistic Trichoderma species significantly reduced PoTl mycelial growth
(at p ≤ 0.05) (Table 3, Figures 3 and 4). While T. koningiopsis ‘Cachara’ and T. lentiforme
‘Jurupoca’ caused the highest inhibition of the pathogen’s relative mycelial growth, their
inhibitory effects were significantly different from T. virens ‘Jaú’. The general inhibitory
effect by Trichoderma species ranged from 67 to 81%.

Table 3. Analysis of variance of the in vitro antagonism effect of Trichoderma species against Pyricularia
oryzae Triticum lineage.

Source of Variation df SS MS F p

Treatments 3 33,858.42 11,286.14 1287.57 0.0000 ***
Error 28 245.43 8.77
Total 31

CV(%): 6.20
*** Significance by the F test at p ≤ 0.001.
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Figure 3. Boxplot distribution of relative mycelial growth of Pyricularia oryzae Triticum lineage (PoTl)
under in vitro antagonism of three Trichoderma species. Each boxplot represents the distribution of
values from three PoTl isolates (12.1.047, 12.1.146 and 12.1.207). Means followed by the same letters
(a–c) are not significantly different using the Tukey test at p ≤ 0.05.
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Figure 4. In vitro antagonism of Trichoderma species against Pyricularia oryzae Triticum lineage (PoTl).
(A–C): PoTl isolates only (12.1.146, 12.1.047 and 12.1.207); (D–F): PoTl isolates paired with T. konin-
giopsis ‘Cachara’; (G–I): PoTl isolates paired with T. virens ‘Jau’; (J–L): PoTl isolates paired with T.
lentiforme ‘Jurupoca’.

3.3. Scanning Electron Microscopy Analyses of In Vitro Pathogen–Biocontrol Agents Interactions

The scanning electron micrographs (SEM) from the antagonistic in vitro tests al-
lowed the observation of bacterial cells’ (from the Amana, Poti and Yara Pseudomonas
strains) colonization on the PoTl hyphae surface, with biofilm development (Figure 5). The
Amana strain aggressively grew over the PoTl hyphae, with extensive biofilm formation
(Figure 5A,B). Both Poti and Yara strains also developed biofilm over the PoTl hyphae
surface (Figure 5C–F). In addition, the interaction with the Yara strain led to PoTl hyphae
damage (Figure 5F, arrow).
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Figure 5. In vitro antagonism by strains of Pseudomonas species against Pyricularia oryzae Triticum
lineage (PoTl) on PDA medium. (A,B): Bacterial biofilm formation by Pseudomonas wayambapalatensis
‘Amana’ (PsA.bf.) completely covering the PoTl hyphae. (C,D): the bacterial cells of Pseudomonas sp.
nov. ‘Poti’ (PsP) growing and colonizing PoTl hyphae (PoTl.hy.). (E,F): Colonization of Pseudomonas
sp. nov. ‘Yara’ (PsY) above PoTl pathogen, with hyphae damage (PoTl.hd.) (F). Scale bars: 5 µm.

In comparison, we also performed SEM analyses of the in vitro interaction of the
T. koningiopsis Cachara isolate against PoTl. Extensive hyphae growth and abundant
sporulation of Trichoderma over the PoTl aerial mycelium were observed (Figure 6A,B,D–F).
Mycoparasitism was also detected, which was characterized by Trichoderma forming a
hyphal coiled structure to parasitize PoTl (Figure 6C).
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Figure 6. In vitro antagonism by the antagonistic fungus Trichoderma koningiopsis ‘Cachara’ (Tr.)
against Pyricularia oryzae Triticum lineage (PoTl) on PDA medium. (A,B): Trichoderma hyphae (Tr.hy.)
growth above PoTl hyphae. (C): Trichoderma parasitizing PoTl hyphae. (D–E): Trichoderma conidia
(Tr.co.) produced from conidiophores (Tr.cd.). (F) Abundant Trichoderma conidia (Tr.co.) in detailed
close-up. Scale bars: 100 µm (A,B), 10 µm (C–E), 5 µm (F).

3.4. Potential of Pseudomonas and Trichoderma as Biocontrol Agents Controlling Wheat Blast
In Vivo

The two in vivo experiments of wheat blast biocontrol were analyzed together because
there were no significant differences between replicates and the interaction between treat-
ments and experiments was not significant, indicating the complete reproducibility of the
observations, regardless of the experiment (Table 4). The joint analysis of the experiments
indicated significant differences among biocontrol treatments (p ≤ 0.05) in reducing blast
severity (Table 4).



Agronomy 2022, 12, 2003 10 of 17

Table 4. Analysis of variance of the biocontrol potential of Pseudomonas and Trichoderma species in
reducing blast severity in wheat cv. Sossego.

Source of Variation df MS F p

Treatments 13 7087.59 29.01 0.0000 ***
Experiments (1 and 2) 1 0.62 0.003 0.9606 NS

Blocks 2 145.24 0.59 0.5636 NS

Treatments*experiments 13 562.36 2.30 0.0582 NS

Treatments*blocks 25 70.30 0.29 0.9974 NS

Error 16 244.34
Total 70 105.407.43

CV(%): 52.51

*** Significant by the F test at p ≤ 0.05 and not significant (NS). The experiment was repeated once.

A significant reduction in head blast severity was observed in wheat plants treated
with the fluorescent P. wayambapalatensis ‘Amana’ or Pseudomonas sp. nov. ‘Yara’, both from
the P. putida group, or with the antagonist T. koningiopsis ‘Cachara’. These treatments did not
even differ significantly from the non-inoculated check (Figure 7). For the remaining Pseu-
domonas (Pseudomonas sp. nov. ‘Poti’ + PoTl) or Trichoderma treatments (T. virens ‘Jau’ + PoTl
and T. lentiforme ‘Jurupoca’ + PoTl), the average head blast severity was above 60%. These
two Trichoderma isolates did not differ from the non-treated positive check inoculated only
with PoTl.
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Figure 7. Severity of head blast on wheat cv. Sossego inoculated or not with Pyricularia oryzae
Triticum lineage (PoTl), individually treated with three strains of fluorescent Pseudomonas species
(strains ‘Amana’, ‘Poti’ and ‘Yara’) or three strains of Trichoderma species (strains T. koningiopsis
‘Cachara’, T. virens ‘Jau’ and T. lentiforme ‘Jurupoca’) as potential biocontrol agents. The plants were
inoculated with a mixed inoculum composed of three PoTl isolates (12.1.047, 12.1.146 and 12.1.207)
at ≈104 conidia mL−1. Means followed by the same letters (a–d) are not significantly different ac-
cording to the Scott–Knott test at p ≤ 0.05.
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All non-inoculated plots (represented by yellow or light green boxplots) treated only
with the potential bacterial or fungal biocontrol agents, had significantly lower severity
values, also not significantly distinct from the non-inoculated negative check. The only
exception was the treatment with T. lentiforme ‘Jurupoca’, which showed a slightly higher
disease severity, though significantly different from the positive check (Figures 7 and 8).
The incidence of head blast in this particular treatment may be associated with seedborne
inoculum, since we opted for not treating the seed lot with fungicides.
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Figure 8. Heads of wheat cv. Sossego inoculated or not with Pyricularia oryzae Triticum lineage (PoTl),
and treated with bacterial and fungal antagonists, which included fluorescent Pseudomonas species
(strains ‘Amana’, ‘Poti’ and ‘Yara’) (A–C,H–J) or Trichoderma species (strains ‘Cachara’, ‘Jaú’ and
‘Jurupoca’) (D–F,K–M). (G): Negative check. (N): Positive check inoculated only with PoTl. Bleached
ears depicted in M and N had partial or total sterile spikelets from the infection point in the rachis
with empty grains.

4. Discussion

In this study, three strains of fluorescent Pseudomonas (Amana, Poti and Yara) and
three strains of Trichoderma spp. (T. koningiopsis ‘Cachara’, T. lentiforme ‘Jurupoca’ and
T. virens ‘Jau’) obtained from naturally suppressive soils from the Amazon biome were
bio-prospected for their role as biocontrol agents of the wheat blast disease caused by P.
oryzae Triticum lineage.

The aerial spraying of P. wayambapalatensis ‘Amana’ or Pseudomonas sp. nov. ‘Yara’,
both from the P. putida group on the leaves and heads of wheat plants resulted in significant
disease control, causing a high reduction in the severity of the wheat head blast disease
(from 100% of diseased area in the positive check to a maximum of 5% in plots treated
with the biocontrol agents). These two strains of fluorescent Pseudomonas inhibited 33 to
52% of fungal mycelial growth (Figures 1 and 2) and grew aggressively, with extensive
biofilm formation, over the PoTl hyphae, resulting in hyphae damage, as detected by the
SEM analyses (Figure 5).

Under field conditions, ears of winter wheat were found to be consistently colonized
at a high density by Pseudomonas species at the late milk dough stage. These Pseudomonas
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were able to reduce the production of Alternaria and Fusarium mycotoxins in wheat grains.
However, these naturally occurring bacterial antagonists were found unevenly distributed
in the wheat field [15]. The delivery of the antagonistic fluorescent Pseudomonas, such
as P. wayambapalatensis ‘Amana’ or Pseudomonas sp. nov. ‘Yara’, could also have the
potential as biocontrol agents against the production of mycotoxins and other wheat head
fungal pathogens.

With respect to the general mechanisms of biocontrol, there have been several reports
of biofilm formation by Pseudomonas species, by which bacterial microcolonies attach to
surfaces suitable for growth, including the fungal mycelial mat [38–41]. Biofilm is defined
as a multicellular aggregation of bacteria established on biotic or abiotic surfaces that can
improve their survival under adverse environmental conditions [42]. Bacteria growing in
biofilms are known to have considerable advantages in natural environments, so bacteria
living in biofilms or microcolonies are significantly more tolerant of antibiotics, biocides,
and other forms of environmental stress [43–45]. In addition to cells, the extracellular
matrix, which contains exopolysaccharides, proteins, nucleic acids and lipids, is the main
ingredient for biofilm establishment [46].

Besides the evidence of direct bacterial antagonism against PoTl by parasitism (Figure 5),
it is also probable that it occurred by antibiosis from the secretion of metabolites that cause
fungal hyphae damage [30,47]. Vicentini et al. [30] reported that Amana and Yara strains
of fluorescent Pseudomonas produced siderophores, while only Amana showed protease
and chitinase in vitro activity and none had cellulase activity. As a matter of fact, other
siderophore-producing fluorescent Pseudomonas inhibited the mycelial growth of P. oryzae
Oryza lineage, which causes the rice blast disease, as well as R. solani AG-1 IA, which is
associated with the rice sheath blight disease [48,49]. Anti-fungal metabolites produced by
fluorescent Pseudomonas antagonists of plant pathogens include phenazine-1-carboxylic
acid (PCA), 2,4-diacetylphloroglucinol (DAPG), pyroluteorin, and pyrrolenitrine, which
are among the known metabolites [47]. Beneficial Pseudomonas species from the P. koreensis
and P. putida groups with biocontrol abilities produce an array of antimicrobial secondary
metabolites, such as cyclic lipopeptides (CLPs), that can control the rice blast disease-
induced resistance and by direct antagonism. These CLPs included lokisin, the white
line-inducing principle (WLIP), entolysin and N3 [49]. Fluorescent Pseudomonas also can
promote plant growth [28,29].

Considering the role of Trichoderma species as fungal antagonists against the wheat
blast pathogen, despite the significant in vitro inhibition of PoTl mycelial growth (varying
from 63 to 71% overall) by T. koningiopsis ‘Cachara’, T. virens ‘Jau’ and T. lentiforme ‘Jurupoca’
(Figures 3 and 4), only T. koningiopsis ‘Cachara’ reduced blast severity on wheat cv. Sossego
under greenhouse conditions. In fact, the aerial spraying of T. koningiopsis ‘Cachara’ was
so extremely successful in reducing the blast disease severity that this treatment did not
differ significantly from the non-inoculated check (Figure 7). The efficacy of T. koningiopsis
‘Cachara’ as biocontrol agent is unique for the wheat blast pathosystem and for other
Pyricularia-associated pathosystems as well, such as the rice blast disease (P. oryzae Oryza
lineage). However, other Trichoderma species have been reported as efficacious biocontrol
agents against rice blast. For example, T. asperellum reduced the severity of rice leaf blast
by 85% with curative spraying, utilizing mycoparasitism and antibiosis mechanisms [50].
Trichoderma harzianum was also reported to be effective in controlling rice blast disease by
hyperparasitism [51]. Seed-coating with T. atroviridae induced resistance against P. oryzae in
Lolium multiflorum [52].

In terms of mechanisms, the ability of T. koningiopsis ‘Cachara’ to directly antagonize
PoTl was demonstrated by the hyphae of the fungal antagonist engaging the hyphae of
the pathogen (Figure 6). In fact, the SEM analyses of the in vitro interaction between T.
koningiopsis ‘Cachara’ and PoTl indicated extensive hyphae growth, abundant sporulation
and the development of hypha coiled structures (Figure 6), which supported mycopar-
asitism [51,53,54]. By definition, mycoparasitism is the ability of organisms to actively
parasitize fungi [54]. This ability to feed on fungi, dead or alive, has been shown to be an
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ancestral form of nutrition in all species of Trichoderma [55]. Mycoparasitism by Trichoderma
involves a sequence of events, including host location, recognition, contact, coiling, the
formation of hook-shaped structures with appressoria function, direct penetration, folding
and the development of parallel hyphae. All these steps can be detected by scanning
electron microscopy (SEM) [50,56,57].

In addition to parasitism, other direct mechanisms are usually involved in the antag-
onism of Trichoderma against other plant pathogenic fungi by the direct interaction with
plant roots or other organs, such as niche competition, antibiosis, resistance to diseases,
tolerance to abiotic stresses and plant growth promotion [53,58–60]. The antagonistic ac-
tivity may result from the production of metabolites, such as harzianic acid, alamethicins
and tricolines, in addition to the activity of lytic enzymes, such as chitinases, glucanases
and proteases [50,61–63].

Further research on the topic should include the development of stable formula-
tions of the Pseudomonas- and Trichoderma-based biocontrol agents selected in our study
for managing the wheat blast disease and field tests of the biofungicides formulations
obtained thereafter.

The pressing demands for sustainable farming with reduced chemical pesticide (fungi-
cides) input, lower level of residues on pre- and postharvest and a lesser impact on the
environment and food safety [64,65] has led to a substantial increase in biopesticide de-
velopment in Brazil [52]. There are already 65 commercial biofungicides currently labeled
by the Ministry of Agriculture, Livestock and Supply (MAPA) for the biological control
of crop diseases in Brazil [12]. The majority of these biofungicides are Trichoderma-based
actives, including T. afroharzianum, T. asperelloides, T. asperellum, T. atroviride, T. endophyticum,
T. harzianum, T. koningiopsis, T. reesei, T. stromaticum and T. viride, totaling 34 commercial
products. Based on efficacy data, these biofungicides were labeled mostly for managing
diseases caused by soilborne pathogens, such as Fusarium oxysporum, F. oxysporum f. sp.
lycopersici, F. solani f.sp. glycines, F. solani f.sp. phaseoli, R. solani, Macrophomina phaseolina,
Sclerotinia sclerotiorum and Thielaviopsis paradoxa and a single foliar disease (common bean
antrachnosis caused by Colletotrichum lindemuthianum). Considering biopesticides with
fluorescent Pseudomonas as active ingredients, there are only two formulations with P.
chlororaphis or P. fluorescens labeled for controlling the insect pests Bemisia tabaci race B,
Dalbulus maidis and Euschistus heros [12].

Thus far, no Trichoderma- or fluorescent Pseudomonas-based biofungicides have been
labeled in Brazil for the management of wheat foliar and head diseases, which include
wheat blast [12]. Considering that a sustainable management strategy to control wheat
blast is warranted, we foresee that the opportunities for the development, labeling and
marketing of biofungicides for the biocontrol of wheat blast are promising in Latin America,
Southeast Asia and East Africa.

5. Conclusions

Fluorescent P. wayambapalatensis ‘Amana’ or Pseudomonas sp. nov. ‘Yara’, both from
the P. putida group, and Trichoderma koningiopsis Cachara significantly reduced both PoTl
in vitro mycelial growth and blast disease severity in wheat plants. The SEM analyses
revealed ultrastructural antagonistic mechanisms: biofilm formation, direct antagonism
and mycoparasitism.
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