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Abstract: Among the solutions to climate change’s harmful effects, AS (Adaptation Strategies) are
more feasible. In this study, four AS, Changing Cultivation Dates (CCD), Deficit Irrigation (DI),
Improving Irrigation Performance (IIP), and Optimizing the Crop Pattern (OCP), were investigated.
The results showed that the WUE (Water Use Efficiency) was declined when the cultivation date was
changed for all crops in the baseline and increased after the cultivation date was brought forward to 7,
14, 14, 28, 28 days for tomato, wheat, corn, barley and cucumber, respectively, in the future period. Deficit
irrigation of 30% increased the WUE in all crops. A 48% increase in irrigation performance reduced
demand by 10%. Following the OCP and diminishing the cultivation area by 30% increased farmers’
total profit and reduced the water consumption volume by 9% and 11%, respectively, in the baseline and
future periods. To study the effect of these AS on crop yield and allocated volume, a combination of crop
model programming and the MOEPO (Multi-Objective Emperor Penguin Optimizer) was employed to
minimize Vulnerability and maximize Reliability Indexes (Performance Indexes). In the supply section,
three scenarios were examined. The results showed that DI, IIP, CCD and OCP were classified from the
most to the least option based on improving the Performance Indexes.

Keywords: deficit irrigation; irrigation performance; cultivation date; crop pattern; adaptation
strategies; agricultural resilience; multi-objective optimization

1. Introduction

Global warming and climate change are important topics that have been studied by
researchers around the world in recent decades [1]. In the Karaj (Iran) basin, various studies
on climate change have shown that the average annual temperature and precipitation will
have significant upward and downward trends, respectively [2,3]. Comprehensive research
on water consumption has shown that a balance between resources and consumption can
only be achieved if the performance of the agricultural sector increases [4–6]. As a result,
it is necessary to simultaneously identify the effects of climate change on the irrigation
system at the basin level in both the consumption and resource sections. To increase the
resilience of water projects, Adaptive Strategies (AS) are proposed, which have not been
given enough attention so far.

This study aimed to increase the resilience of the Karaj Dam reservoir in supplying
water demand to agricultural sections against the effects of climate change. Operational
policies that increase reliability and reduce the vulnerability of the water resources sys-
tem can help to increase its resilience [7]. In this regard, this study tried to provide a
comprehensive hybrid model of decision support, a model that can estimate the effects of
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climate change, temperature, precipitation, available water and demands of the basin with
reasonable certainty and manage water supply and demands to increase the WUE, reduce
consumed water, and minimize reservoir deficits.

The complexity of the relationship, similar to this study’s issues, the time constraints,
and the spread of technology, has led scientific studies to be directed to methods that, while
increasing speed and using minimal facilities and information, can reliably estimate the
required parameters. The use of modern metaheuristic algorithms to solve these multi-
objective problems is one of these solutions. So far, multi-objective algorithms have been
employed in solving problems such as Water Resources Allocation [8–11], Water Treatment
Operations [12–15], Groundwater Management [16–19], Irrigation Purposes [20–23], Water
Distribution Systems [24–27], Energy-Water Nexus [28–31], and Reservoir Operations [32–35].

Previous research has shown that the MOEPO algorithm has not been used in any of
the studies related to water resources and agricultural optimization. In addition, none of
the studies provided a comprehensive model as a proposed model for the multi-objective
optimization of supply and demand in the agricultural section. Therefore, in this study,
both supply and demand optimization were performed for the first time using MOEPO
and crop model programming for the first time.

2. Materials and Methods
2.1. Study Area

In this study, Karaj Dam was considered a source of water supply, and the irrigation
network covered agricultural lands as water consumers. Figure 1 shows the location of the
study area and the farming lands. Among the 30,000 hectares covered by this network, only
23,000 hectares can be irrigated. Most crops, such as wheat, barley, fodder corn, alfalfa, tomato
and cucumber, have been cultivated in this plain. The irrigation season typically begins in
the first decade of March and continues through the end of the first decade of December.
Table 1 summarizes the crop patterns and cultivated areas. In addition, information about the
cultivation date of each crop based on field studies is presented in Table 2.
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Figure 1. Karaj dam as a source of water supply and agricultural lands as water consumers.

Table 1. Under cultivation area of each crop in the Karaj plain irrigation network.

Crop/Fruit Crop Wheat Barley Corn Alfalfa Cherry Apple Tomato Cucumber

Under Cultivation Area (%) 27 14.7 30 2.8 10 12.7 1.4 1.4
Under Cultivation Area (ha) 6210 3381 6900 644 2300 2921 322 322
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Table 2. Cultivation date of each crop.

Alfalfa Summer
Cucumber

Spring
Cucumber Tomato Corn Barley Wheat

Cultivation
Date 13th 13th 1st 7th 15th 21st 12th

Month Growth Period

October Init * Init-Dev **
November Dev Dev
December Dev Dev

January Dev Dev
February Dev Dev

March Dev-Mid *** Mid
April Mid Late **** Init Init-Dev Init-Dev
May Late Harvest Init-Dev Dev Dev Dev-Mid
June Harvest Dev-Mid Dev-Mid Dev-Mid Init-Dev Mid
July Mid Mid Late Dev Late Season

August Late Late Dev-Mid Harvest
September Harvest Harvest

* Initial; ** Crop Development; *** Mid-Season; **** Late Season.

To provide adaptation strategies and increase regional resilience, the first step is to
identify and evaluate the effects of climate change on the basin and determine the input
parameters. Data for temperature, precipitation and runoff were obtained from recent
research [36]. The Penman–Monteith formula was used to calculate the ET0 (Reference
Evapotranspiration). Four strategies were considered in managing agricultural water con-
sumption (Changing Cultivation Dates (CCD), Deficit Irrigation (DI), Improving Irrigation
Performance (IIP), and Optimizing the Crop Pattern (OCP)). To study the effect of these
strategies on water consumption and crop yield in the baseline and future periods (un-
der the influence of climate change), a combination of crop model programming and a
multi-objective optimization algorithm (MOEPO) was employed.

Finally, to manage the optimal supply of water from the dam reservoir, minimize the
Vulnerability, and maximize the Reliability Indexes, the MOEPO optimization algorithm
was used, and the optimal allocation rules were obtained. Below are a few brief descriptions
of the formulas and methods used in this study.

2.2. Models

The model related to the four AS was prepared as a single-objective non-linear program
to maximize WUE (Equation (1)).

W1 = Max(WUEi) = Ya/IRi,j (1)

where Ya is crop yield in kilograms, IRi,j indicates irrigation water allocated to crop in cubic
meters.

The OCP optimization model was defined as a dual-objective model based on optimal
allocation between different plants and crop profit maximization. The period of the balance
equations was considered fixed for the whole model and was equal to the irrigation cycle of
the region (10 days). The objective functions were maximizing the total gross income and
minimizing the volume of water released from the dam reservoir (Equations (2) and (3)).

Z1 = Max
n

∑
i=1

[Pi(YC)i −Ci]Ai (2)

Z2 = Min
(
IRi,j

)
(3)

where

n: Number of crops,
i: Crop index,
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Z1: Total farmers’ income (Rial),
P: Crop production price (Rial/Kg),
C: Crop production cost (Rial/ha),
A: Under cultivation area (ha),
YC: Relative yield (dimensionless), which was calculated using seasonal production.

The optimization of this part was done using the MOEPO algorithm. The amount of
evapotranspiration was calculated by employing the methods provided in Appendix C.
Utilizing the plant coefficient and related correction methods (provided in FAO 56 and
24), the ET0 was calculated for each product. Model performance is adapted to actual
conditions by determining the constraints of each objective function. The constraints used
in this study included water moisture in the soil, plant water requirement, irrigation water
allocated to the plant, water allocation to the plant, actual evaporation and transpiration,
water balance and the limitation of the cultivated area. For more information about this
section, refer to Appendix A.

2.3. Supply Section

This study investigated increasing reservoir operation resilience by minimizing the
Vulnerability (Equation (4)) and maximizing the Reliability Indexes (Equation (5)).

Minimize F(u1) =
∑T

t=1(Dt − Ret|Ret < Dt)[
Nt

t=1(Ret < Dt)
]
Dmax

∀t = 1, 2, . . . , T (4)

Maximize F(u2) =
NT

t=1(Dt − Ret|Ret > Dt)

T
∀t = 1, 2, . . . , T (5)

In the above equations:

F(u1): Objective function related to the Vulnerability Index,
F(u2): Objective function related to the Reliability Index,
Dt: Demand volume in the t period,
Dmax: Maximum demand in the t period,
Ret: Released volume from the reservoir in the t period,

For more information on calculating the parameters and constraints intended for the
objective functions, refer to Appendix B.

As defined in Equation (6), three operation rules (scenarios) were determined.

Reit = git(Qit, Sit, Dit) i = 1, 2, 3 and t = 1, 2, . . . , T (6)

where g1(Q1t, S1t, D1t) was the first operation rule calculated for the baseline conditions
(first scenario), g2(Q2t, S2t, D2t) was applying the baseline rules to calculate water allocation
for the future period, and g3(Q3t, S3t, D3t) was the third calculated rule, in which reservoir
operation rules were calculated for the future period (2020–2040) based on future supply
and demands (using future data).

2.4. MOEPO Algorithm

The MOEPO (Multi-Objective Emperor Penguin Optimizer) extends the capabilities
of the existing Emperor Penguin Optimizer (EPO) to solve multi-objective problems. The
algorithm introduces the concept of the dynamic archive, which has the property of caching
non-dominated Pareto optimal solutions. More information about this algorithm and its
application can be found in [37]’s research.

3. Results

The average water requirement for crops and agricultural demand will increase by
17% to 24% and 27%, respectively, in the future. Meanwhile, the total annual average water
in the reservoir will decrease by 35% (see Appendix C for more information). These results
indicate that if the area under cultivation remains constant or if the current cultivation and
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irrigation methods are continued in the future, the Karaj dam reservoir will not be able to
supply the demands; therefore, in this study, supply and demand management strategies
were employed. The results of these approaches are mentioned.

3.1. Demand Management

Since the irrigation period in this area is seven days, the intervals of CCD were
considered 7, 14, 21 and 28 days. Based on Table 2, CCD in the baseline reduced WUE.
Setting the cultivation date 7, 14, 14, 28, 28 days earlier led to an increase in WUE for
tomato, wheat, corn, barley and cucumber, respectively, in the future period.

According to the Ministry of Agriculture-Jahad announcement, the average perfor-
mance of Iran’s irrigation network is about 30%, while the performance of Karaj’s irrigation
network is about 38%. The results related to the performance change illustrate that, based
on the existing capital constraints and management policies, IIP, to about 48%, will reduce
the water demand in study periods by almost more than 10%.

In this study, DI was considered uniform throughout the plant growth period. DI of
15% and 30% were considered to investigate the effect on WUE. According to Table 3, a DI
of 15% improves WUE in wheat, barley, cucumber and alfalfa. However, the WUEs of corn
and tomato have improved by applying 30%.

Table 3. WUE comparison for two strategies: CCD and DI in the baseline and future.

Crop Time Step
(Days)

WUE Ratio in the New Cultivation Date to the
Primary Date WUE Ratio in the DI to Full Irrigation

Bring Forward Postpone

Baseline Future Baseline Future Percentage of DI Baseline Future

Wheat

7 0.87 1.14 0.72 1.08 0.15 1.2 1.4
14 0.85 1.37 0.68 1.04
21 0.91 1.12 0.66 1.01

0.3 1.14 1.2628 0.83 1.26 0.58 0.78

Barley

7 0.91 1.03 0.9 0.85 0.15 1.23 1.4
14 0.84 1.15 0.82 0.66
21 0.82 1.12 0.91 1.03

0.3 1.16 1.2828 0.73 1.18 0.89 0.72

Corn

7 0.85 1.12 0.72 1.05
0.15 1.17 1.3514 0.92 1.16 0.59 1.03

21 0.76 1.09 0.44 0.9 0.3 1.25 1.43
28 0.68 1.14 0.43 0.85

Tomato

7 0.85 1.23 0.73 0.86
0.15 1.19 1.2714 0.81 1.11 0.72 0.77

21 0.71 1.13 0.74 0.98 0.3 1.2 1.32
28 0.56 1.14 0.61 0.78

Cucumber

7 0.73 1.1 0.74 0.86 0.15 1.22 1.38
14 0.63 1.14 0.73 0.77
21 0.43 1.13 0.72 0.98

0.3 1.15 1.3628 0.41 1.23 0.61 0.78

Alfalfa
Alfalfa is a perennial herbaceous crop, so CCD is not considered for

this crop.
0.15 1.11 1.18
0.3 1.09 1.11

According to Table 4, in the future period, all crops yield will be reduced. In contrast,
irrigation water demands for these crops will increase by about 220 to 580 MCM per hectare.
Therefore, following the current cultivation pattern is not only economically affordable but
also puts intense pressure on the region’s water resources. In this regard, to improve the
region’s resilience to climate change, the optimized crop pattern model results were used.
Based on this model, following the new optimal cultivation pattern and reducing the area
under cultivation by 30% in the basic and future periods will increase the total profit of the
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farmers by 24% and 5%, respectively, and the volume of consumed water will reduce by
9% and 11%, respectively.

Table 4. Comparison of profit and released water for current and optimized crop patterns in the
baseline and future period.

B
as

el
in

e C
ur

re
nt

Si
tu

at
io

n

Crop Wheat Barley Corn Alfalfa Tomato Cucumber Sum

Crop Production
cost (Rial) 30,214.3 14,384.6 18,233 17,562 15,560.8 20,509.7 116,464

Sales Price (Rial) 75,000 34,000 35,250 58,000 36,780 39,652 278,682
Average Annual

Crop Yield (Kg/ha) 3737.8 3689 35,065 10,099 34,042.4 45,071.6 131,484

Irrigation Water Per
Hectare (MCM) 995.8 825.3 1354.7 1885.1 1336.1 2066.7 8463.7

Cultivated Land (ha) 6210 3381 6900 644 322 322 17,779
Initial profit (Rial) 1.74 × 1012 4.24 × 1011 9 × 1012 4 × 1011 4 × 1011 5.7 × 1011 1.2 × 1013

Total Released
Water (MCM) 6,183,838 2,790,188 9 × 106 1 × 106 430,215 665,486 2.1 × 107

O
pt

im
iz

ed
Pa

tt
er

n

Cultivated land (ha) 14.9 4.1 924.7 1918.6 7625.4 1791.3 12,279

Initial profit (Rial) 4.18 × 109 5.17 × 108 1 × 1012 1 × 1012 9.5 × 1012 3.2 × 1012 1.5 × 1013

Total Water released (MCM) 14,832 3401.4 1 × 106 4 × 106 1 × 107 3,702,191 1.9 × 107

Fu
tu

re

C
ur

re
nt

Si
tu

at
io

n

Crop Production
cost (Rial) 30,214.3 14,384.6 18,233 17,562 15,560.8 20,509.7 116,464

Sales Price (Rial) 75,000 34,000 352,50 58,000 36,780 39,652 278,682
Average Annual

Crop Yield (Kg/ha) 3678.3 3676.3 34,624 9997.3 33,923.5 44,968.9 131,090

Irrigation Water Per
Hectare (MCM) 1257.7 1054.1 1774.1 2507.5 1685.4 2648.6 10,927.4

Cultivated Land (ha) 6210 3381 322 644 322 6900 17,779
Initial profit (Rial) 1.71 × 1012 4.23 × 1011 4 × 1011 4 × 1011 4 × 1011 1.1 × 1013 1.4 × 1013

Total Released
Water (MCM) 7,810,602 3,564,025 852,848 2 × 106 542,701 1.2 × 107 2.7 × 107

O
pt

im
iz

ed
Pa

tt
er

n

Cultivated land (ha) 51.2 41.9 942.7 1937 7661 1874 12,507.8

Initial profit (Rial) 1.41 × 1010 5.23 × 109 1 × 1012 1 × 1012 9.6 × 1012 3 × 1012 1.5 × 1013

Total Water released (MCM) 64,434.8 44,145.2 2 × 106 5 × 106 1.3 × 107 3,324,551 2.4 × 107

The amount of water demand was calculated based on the selected CCD, DI, IIP
and OCP in the long-term baseline and future series and entered into the MOEPO as an
independent variable along with other independent variables; the optimal operation rules
of the reservoir were extracted. The results of this section are presented as follows.

3.2. Demand Management

A multi-objective water allocation model was employed to manage the supply from the
reservoir by applying four AS to minimize the Vulnerability and maximize the Reliability
Indexes. Figure 2 illustrates the results of the Pareto curves for future and baseline periods,
considering the application and non-application of AS in the agricultural section.
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Consideration of AS decreased the Vulnerability Index and increased the Reliability
Index, as shown in Figure 2. In the next step, the optimal rules for the baseline and future
conditions for water demand were evaluated. A comparison was made in this section between
the optimal rules obtained from the baseline conditions (scenario 1), applying optimal baseline
rules for the climate change conditions (scenario 2), and applying optimal rules for the climate
change conditions (scenario 3). In Figure 3, the first and third scenarios’ results of 45%
vulnerability, considering or without considering four AS, are provided, respectively.

As shown in Figure 3a, in 171 months of the baseline period, reservoir storage in
the non-AS state ranged from 28 to 112 MCM. In contrast, using AS, the storage volume
reservoir ranged between 116 and 205 (max reservoir capacity) MCM in 188 months (on
average). As a result, about 80% less water was released from the reservoir than if AS was
not used. This indicated the reservoir’s ability in the baseline period (1985–2005) to meet
the demands and showed the superiority of the multi-objective optimization solution over
the current management solution in allocating water from the dam reservoir.

As shown in Figure 3b,c, without AS for 161 months, reservoir storage was between
16 (dead volume) and 30 MCM. Under the second scenario, in 200 months, the storage
volume in all four AS was between 20 and 80 MCM, and under the third scenario, in
230 months, it was between 20 and 100 MCM. The storage volume reached more than
200 MCM in just six months for both scenarios. The maximum released volumes for the
OCP were 204 and 206 million cubic meters, respectively, for the second and third scenarios.
Based on the figures, it can be stated that the total average released volume in scenario three
was reduced by 14, 15, 11 and 13%, respectively, compared to scenario two, corresponding
to CCP, IIP, DI and CCD. Accordingly, the allocation rules derived from the third scenario
were superior to those of the second scenario. In addition, employing AS reduced the
released volume and increased reservoir capacity in all scenarios.
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Figure 3. Investigation of released and storage volume: (a) first scenario; (b) second scenario;
(c) second scenario.
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Table 5 compares the results of the Pareto point corresponding Vulnerability Index
of 45% in the three scenarios with/without four adaptation solutions. Comparing the
objective functions in the first and second scenarios shows that the rules derived from
the baseline are not appropriate for future conditions. In comparing the second and third
scenarios, it was found that the first and second objective functions would be improved if
future rules (dam operation in climate change periods) were applied in the third scenario.

Table 5. Comparison of the three scenarios: Reliability Index corresponding to a Vulnerability Index
of 45%.

Scenario State Reliability Index (%) Changes to No AS State (%)

First

OCP 56 16.67
IIP 69 43.75
DI 74 54.16

CCD 71 47.91
Without AS 48 —

Second

OCP 25 31.57
IIP 27 42.10
DI 38 100

CCD 27 42.10
Without AS 19 —

Third

OCP 41 41.37
IIP 48 65.51
DI 53 82.75

CCD 45 55.17
Without AS 29 —

According to Table 5, the DI is the most appropriate among all AS. In baseline condi-
tions, considering the Vulnerability Index of 45%, the Reliability Index of DI, IIP, CCD and
OCP increased by about 54, 44, 48 and 17%, respectively, compared to without AS.

4. Discussion

Climate change in this study area reduced crop yield and increased the consumed
water volume. These results are consistent with [38–40]’s studies.

Using AS (optimize the cultivation pattern, change the cultivation date and reduce irri-
gation) helps to reduce the amount of water consumed and increase WUE in the agricultural
section. These results are consistent with those of [39,41]’s studies.

Using a management strategy in the supply section (multi-objective optimization of
dam reservoir operation) improves two Indexes of Vulnerability and Reliability in the
baseline and future. These results were confirmed in [42,43]’s studies.

5. Conclusions

Investigation of crops’ water demand and supply indicated that in the period
(2020–2040), all crops would face an increase in water demand, and the system will likely
face stress in meeting the needs. In this regard, a series of demand and allocation manage-
ment strategies were applied, and the results showed the following:

• During the baseline period, the WUE declined when the cultivation date was changed
for all crops. However, it increased after the cultivation date was brought forward to
7, 14, 14, 28, 28 days for tomato, wheat, corn, barley and cucumber, respectively, in the
future period.

• The DI application showed that wheat, barley, cucumber and alfalfa have a more
pleasing WUE of a 15% DI, while corn and tomatoes have a higher WUE of a 30%.

• IIP to about 48% also reduced water demand by 10% in both study periods.
• The results related to crop pattern optimization and area under cultivation also showed

that following the new optimal cultivation pattern and reducing the under-cultivation
area by 30% in the base and future periods increased the total profits of farmers by
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24 and 5 percent. Additionally, this optimized state reduced the volume of water
consumption by 9 and 11 percent, respectively.

• Optimizing dam allocation showed that DI, IIP, CCD and OCP improved the Vulnera-
bility and Reliability Indexes.

• The results of the scenario comparison indicated that the third scenario performed better
than the first one. In addition, the objective function values in the first and second
scenarios suggested that the baseline rules were not suitable for use in the future.

• Out of the four AS, the DI was the most appropriate.

As a continuation of this research, the combined effect of AS can be examined on the
water consumption efficiency index. Other factors, such as changes in fertilizer consump-
tion amount and type, can also be investigated as influencing product performance. To
make this study more practical, farmers’ levels of readiness and interest in implementing
and applying each of these strategies can be evaluated with a questionnaire as part of a
statistical study.
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Appendix A.

Appendix A.1. Crop Model

The sensitivity and evapotranspiration coefficients were taken into account in the
calculation of the crop irrigation function based on seasonal production. The relationship be-
tween YC (relative yield) and relative evapotranspiration is presented in
Equation (A1) [44].

YC =
Ya

Yp
=

n

∏
i=1

(
ETa

ETmax

)λi
(A1)

In the above equation, parameters are defined as below:

Ya: Actual yield (kg/ha),
Yp: Maximum yield under management conditions that can be received with unlimited
water supply potential (kg/ha),
ETa: Actual evapotranspiration (mm),
ETmax: Maximum evapotranspiration (mm),
λi: Sensitivity index to water stress (Equation (A2)).

The problem with such models is the existence of sensitivity coefficients at different
stages of growth. To resolve this problem, Ky coefficients for different stages of growth of
many plants are reported in the 33rd Journal of Food and Agriculture Organization (FAO).

λ = 0.2418K3 − 0.1768K2 + 0.9464K− 0.0177 (A2)

where K is yield reaction coefficient to water stress in different growth stages and is
presented in the FAO-56 magazine.
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Appendix A.2. Constraints

The following constraints were used in the crop model:

• Soil moisture: At the beginning of the irrigation season, it was assumed to be at the
field capacity for all soils and crops. The soil water balance equation was employed to
calculate soil moisture at other time intervals.

• Water requirement: Maximum water requirement of the crop was calculated based
on the soil moisture depletion factor (which can be extracted from FAO 24), effective
rainfall, maximum evapotranspiration, soil moisture and amount of total available
soil water accessible to the plant.

• Reservoir release: Releasing water from the reservoir to meet irrigation requirements
should always be less than the maximum release from the reservoir.

• Reservoir storage: The amount of water stored in a reservoir should be between the
maximum and minimum storage volumes (dead volume), which is determined by the
continuity of the storage volume.

• Actual evapotranspiration: Actual evapotranspiration is always less than or equal to
maximum evapotranspiration. In this study, the maximum evapotranspiration was
determined based on [45]’s method.

• Cultivated area: Each crop should have a specific range of cultivated areas (must
remain within a certain limit).

For more information about the model and constraints, please refer to [41].

Appendix B.

Appendix B.1. Simulation and Optimization of Dam Operation

To simulate the behavior of the dam reservoir, the continuity equation (Equation (A3))
was used. In this equation, the time steps were considered monthly.

St+1 = St + Qt − LEt − SPt − Ret (A3)

where St+1 and St are reservoir storage volumes at the beginning and end of t and t + 1
periods, respectively, Qt is amount of inflow volume to reservoir during the t period, Ret is
the volume of release from the reservoir during the t period, SPt is the amount of overflow
volume from the reservoir at the beginning of the t period (Equation (A4)) and LEt is the
volume of losses due to evaporation from reservoir surface during the t period.

SPt =

{
St+1 − Smax St+1 ≥ Smax

0 St+1 < Smax
(A4)

where Smax is the maximum volume of reservoir capacity and St+1 is reservoir storage
volume at the beginning and end of the t + 1 period.

To achieve this maximum resilience, two objective functions were introduced in
Equations (4) and (5).

Appendix B.2. Constraints

The constraints applied to reservoir operation are presented in Equations (A5) and (A6).

St ≥ Smin ∀t = 1, 2, . . . , T (A5)

Ret ≥ 0 ∀t = 1, 2, . . . , T (A6)

where Smin is the minimum volume or dead volume of the reservoir.
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In this study, penalty values were added to the objective functions if the constraints
are violated, as shown in Equations (A7) and (A8).

Penalty1 = A′
{(

Smin − St

Smax − Smin

)2
+ B′

}
∀t = 1, 2, . . . , T (A7)

Penalty2 = C′·
(

Ret

Dmax

)
+ D′ ∀t = 1, 2, . . . , T (A8)

where Penalty1 is the penalty function due to the violation of the constraint of Equation
(A5) and Penalty2 is the penalty function is the specialized problem due to the violation of
the constraint of the Equation (A6) and the coefficients A′ to D′ are the positive constants
of the penalty function. In these cases, the penalty functions were added to the objective
functions as follows (Equations (A9) and (A10)).

F(u1) = F(u1) + Penalty1(and Penalty2) ∀t = 1, 2, . . . , T (A9)

F(u2) = F(u2) + Penalty1(and Penalty2) ∀t = 1, 2, . . . , T (A10)

Appendix C.

Estimation of Irrigation Demand in the Future Period

To calculate ET0t, it is impossible to have access to all of the necessary data, such as
relative humidity and wind speed, in the future. For destemming ET0t, FAO Penman-Monteith
method was employed. This was done by selecting the relationship between temperature and
relative humidity for the baseline period. The highest correlation between the temperature
and the ET0 was obtained using the quadratic polynomial function relation (Figure A1).
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the FAO Penman−Monteith method.

To obtain the amount of relative humidity in the future period, an exponential regres-
sion relationship was followed (Figure A2). It was assumed that the wind speed would
remain similar to its baseline value in the future.
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Figure A2. Correlation of ET0t and RHt in the baseline period.

The amount of future ET0 was calculated using these assumptions, and the crops’ evap-
otranspiration (ETc) was obtained by multiplying the crop coefficient with the estimated
values. Table A1 shows the ETc for past and future periods.

Table A1. Crops’ annual ETc from 1985 to 2005 and 2020 to 2040.

Crop
ETc

Baseline Period
(mm)

ETc
Future Period

(mm)

Future to Past
Ratio

Percentage
Change (%)

Wheat 504.85 594.36 1.18 17.73
Corn 634.32 796.97 1.26 25.64

Barley 440.12 517.55 1.18 17.59
Alfalfa 990.83 1193.44 1.20 20.45

Cucumber 916.86 1104.97 1.21 20.52
Tomato 551.35 664.04 1.20 20.44

The Effective precipitation (Peff) was calculated by the SCS method, and finally, the
annual irrigation demands were obtained (Tables A2 and A3).

Table A2. Average net annual irrigation demands from 1985 to 2005 and 2020 to 2040.

Crop Baseline
Demand (mm)

Future Demand
(mm)

Future to Past
Ratio

Percentage
Change (%)

Wheat 380.97 477.94 1.25 25.45
Corn 530.29 674.14 1.27 27.13

Barley 315.82 400.57 1.27 26.83
Alfalfa 732.08 952.84 1.30 30.16

Cucumber 783.16 1006.47 1.29 28.51
Tomato 513.01 640.45 1.25 24.84
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Table A3. Average total volume of irrigation demands from 1985 to 2005 and 2020 to 2040.

Crop Future Volume
(MCM)

Baseline
Volume (MCM)

Future to Past
Ratio

Percentage
Change (%)

Wheat 78.11 62.26 1.25 25.46
Corn 122.41 96.29 1.27 27.13

Barley 35.64 28.10 1.27 26.83
Alfalfa 16.15 12.41 1.30 30.14

Cucumber 8.53 6.64 1.28 28.46
Tomato 5.43 4.35 1.25 24.83

As shown in the above table, the volume of water demand will for the future period for
all crops. The demand for some crops, such as alfalfa and cucumber, will increase by 30.14
and 28.46 percent, respectively, compared to the baseline period. For further investigation,
the results of comparing the long-term average monthly demand volume in the baseline
and the future with the inflow into the reservoir are presented in Figure A3. In comparison
to the baseline period, the amount of water released from the reservoir to meet demands
will increase in the future. Thus, the total average annual volume of released water to meet
agricultural demands (entire crops and fruit crops) in the baseline and future is 234.82 and
297.55 million cubic meters, respectively. This indicates that the released volume to meet
the demands will increase by about 27%.
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