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Abstract: Aiming to determine the inaccurate image segmentation of strawberries with varying matu-
rity levels due to fruit adhesion and stacking, this study proposed a strawberry image segmentation
method based on the improved DeepLabV3+ model. The technique introduced the attention mecha-
nism into the backbone network and the atrous spatial pyramid pooling module of the DeepLabV3+
network, adjusted the weights of feature channels in the neural network propagation process through
the attention mechanism to enhance the feature information of strawberry images, reduced the
interference of environmental factors, and improved the accuracy of strawberry image segmentation.
The experimental results showed that the proposed method can accurately segment images of straw-
berries with different maturities; the mean pixel accuracy and mean intersection over union of the
model were 90.9% and 83.05%, respectively, and the frames per second (FPS) was 7.67. The method
can effectively reduce the influence of environmental factors on strawberry image segmentation and
provide an effective approach for accurate operation of strawberry picking robots.

Keywords: improved DeepLabV3+; attention mechanism; image segmentation; strawberry

1. Introduction

Strawberry has been planted worldwide due to its strong environmental adaptability
and high economic benefits, among which China ranks first in the world in terms of
strawberry cultivation area [1]. With the increasing scale of strawberry cultivation, the
traditional manual picking can no longer meet the harvesting/picking demand of the
strawberry industry, and the automation of strawberry picking has become the focus of
research in many countries [2]. Strawberry ripeness determination is used as a judgment
condition for automated strawberry picking.

Researchers around the world have investigated various techniques to determine
strawberry ripeness classes, including spectroscopic techniques and machine vision [3].
Spectroscopy mainly used optical information to obtain information about the chemical
composition and physical properties of strawberry fruit, which is used as input data for
classification models to determine strawberry fruit ripeness classes. Raj et al. [4] used a
narrowband hyperspectral radiometer to collect the reflection characteristics of strawberry
fruits of different maturity levels and subsequently took the drying method to obtain the
water content of ground strawberries. They used the above two sets of data as input data for
a linear support vector machine model. It was able to achieve 98% accuracy in strawberry

Agronomy 2022, 12, 1875. https://doi.org/10.3390/agronomy12081875 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12081875
https://doi.org/10.3390/agronomy12081875
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-3276-9589
https://orcid.org/0000-0002-5009-4135
https://orcid.org/0000-0003-1507-4718
https://doi.org/10.3390/agronomy12081875
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12081875?type=check_update&version=2


Agronomy 2022, 12, 1875 2 of 15

maturity classification; The classification accuracy of strawberry maturity is 71% when only
the data set of strawberry fruit moisture content was available. Su [5] used a hyperspectral
imager to collect one-dimensional spectral and three-dimensional spectral images and
used the above data as input data in the residual network to build a one-dimensional
model. Constructed networks for strawberry fruit classification at different maturity levels
showed the accuracy of both networks reached 84%. However, this paper mainly adopted
machine vision to obtain the image information of strawberry to determine the ripeness of
strawberry fruit. Meanwhile, the strawberry fruit is in an unstructured environment, and
there are factors such as dense distribution among fruits, leaf shading, and fruit stacking
which make it difficult for the existing image recognition algorithms to perform accurately.
Therefore, the research on strawberry image recognition, segmentation and localization
methods with high recognition accuracy and strong environmental adaptability is the focus
of this paper.

In recent years, as the research on deep learning technology in the field of computer
vision has become very active [6,7], its recognition and segmentation of strawberry images
has gradually become a hot topic for domestic and international research [8]. Semantic
segmentation and instance segmentation are more popular in deep learning segmentation,
and semantic segmentation networks mainly use models such as FCN [9,10], PSPNet [11],
U-Net [12], SegNet [13], and DeepLab [14–16], while instance segmentation often uses
Mask R-CNN [17–20] models. Ilyas [21] proposed a novel convolutional encoder/decoder
network model, which combines dilated residual blocks (DRB), bottleneck blocks (BB)
and an adaptive receptive field module (ARFM), reduces the network computational
complexity, and enhances the network feature extraction capability. However, because
the dataset is too small and usually does not contain occluded strawberry images, it is
still necessary to increase the number of strawberry images and enrich the diversity of
strawberry images to verify the general applicability of the model. Yu [22] proposed to
use the Mask R-CNN model for recognition and segmentation of strawberry images in
unstructured environments, combining Resnet50 with Feature Pyramid Network (FPN) as
the backbone network to extract feature maps, then inputting the feature maps to a Region
Proposal Network (RPN) to generate a Region of Interest (ROI), and finally inputting the
region of interest to FCN; the target mask image was generated and the experimental
results of this method for the masked strawberry image showed that the average detec-
tion accuracy is 95.78%; Jia [23] used the U-Net model as a prototype, and selected the
convolution with the same improved VGG16 model to extract image feature information
and retain more feature information to improve the model segmentation accuracy, and
the experimental results of this method for obscured strawberry images showed that the
average detection accuracy is 96.05%; Ge [24] proposed to use the Mask R-CNN model
with DCNN network backbone to segment strawberry images. For the strawberry fruit
occlusion problem, the occluded strawberries were detected and the occluded part was
compensated by the enclosing box; the experimental results of this method on the occluded
strawberry images showed that the average detection accuracy was 94%. The models in the
literature [22–24] were focused on high detection accuracy when identifying images with
occluded strawberries, but the real-time detection efficiency of the models was not men-
tioned, and experiments on model detection speed are still required to verify the feasibility
of model integration into strawberry picking robots.

In summary, previous studies conducted valuable research on image segmentation
of strawberry with different maturities to reduce the influence of environmental factors
and improve the strawberry image segmentation accuracy, but have not considered im-
proving the image segmentation accuracy without losing the model detection efficiency.
Even though the image segmentation accuracy of the proposed method is acceptable, the
recognition efficiency could not meet the real-time requirement of automatic strawberry
picking. To address this issue, this paper proposes a method to improve DeepLabV3+
for strawberry image segmentation with different maturities, introducing the attention
mechanism in the backbone feature extraction network and ASPP module, respectively,
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and adjusting the weights of feature channels in the neural network propagation process
through the attention mechanism, which could enhance the feature information of straw-
berry images with different maturities using fewer parameters, reducing the interference of
environmental factors. The accuracy of strawberry image segmentation can be improved
without losing the efficiency of model detection.

2. Materials and Methods

The overall workflow of this paper is shown in Figure 1, which mainly consists of
2 parts: (1) constructing the strawberry image dataset; (2) training the strawberry image
segmentation model.
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Figure 1. Overall workflow diagram.

2.1. Construction of Strawberry Image Dataset

Since there is no publicly available image dataset for strawberry cultivation on high
shelves, this paper needed to construct an image dataset for strawberry cultivation on high
shelves for research purposes. The strawberry image data in this paper were collected
from the elevated strawberry cultivation base of Guoxin Modern Agriculture Company in
Changchun, Jilin Province, China. A total of 1000 images of strawberries at different growth
stages, different fruit numbers, different shading levels, and different light intensities were
collected with a 40-megapixel HD camera, as shown in Figure 2, where Figure 2a–c show
strawberry fruits at different growth stages and Figure 2d–f correspond to strawberry fruit
images at different shading levels, respectively. During strawberry production, when the
percentage of the red colored area is more than 75%, the fruit can be picked. Therefore, we
classify the strawberry maturity into 3 stages: ripe (s > 75%), semi-ripe (25% < s < 75%), and
unripe (s < 25%), according to the fruit coloring area (s), as shown in Figure 2a–c. The original
image size of the acquired strawberry was 4624 × 3468 px, and to reduce the computational
effort, we compressed the image size to 512 × 512 px during the training model.

The LabelMe [25] annotation tool was used to manually annotate each strawberry
sample image to generate a Json file containing a large amount of label image informa-
tion (location information of all annotated points, image size, and image category). We
transformed each Json file into a masked label image by the Json command, as shown in
Figure 3a. The immature strawberry mask image is green, the near-mature strawberry
mask image is yellow, and the mature strawberry mask image is red, as shown in Figure 3b.
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Figure 3. Labeled sample data set. (a) Strawberry image dataset and labeled images; (b) strawberry
mask images.

To improve the network model training effect and model generalization ability, this
study used the mirror flip method to increase the spatial diversity of strawberry images [26];
and brightness adjustment, adaptive contrast enhancement and Kmeans clustering were used
to increase the diversity of strawberry image samples, as shown in Figure 4. A total of 6000
sample images were enhanced and the dataset was divided into training set (4200 images),
test set (1200 images) and validation set (600 images) according to the ratio of 7:2:1.
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2.2. Improved DeepLabV3+ Strawberry Image Segmentation Model

DeepLabV3+ [27] is a classical semantic segmentation network containing 2 parts:
encoder and decoder. The encoder consists of a backbone feature extraction network and an
atrous spatial pyramid pooling (ASPP) [28] structure, while the decoder obtains low-level
features from the backbone feature extraction network and upsamples them to obtain pixel-
by-pixel classification results of the same size as the input image. The backbone feature
extraction network is an Xception [29] network, which is based on InceptionV3 [30] and
uses depth wise separable convolution to replace the multi-size convolutional kernel feature
response operation in InceptionV3, significantly reducing the number of model parameters,
lowering the computational cost of the model, and improving the operational efficiency of
the model. The ASPP structure consists of one 1 × 1 convolution in parallel, three 3 × 3
null convolutions and one global average pooling operation, where the expansion rates
of the three 3 × 3 convolution operations are 6, 12, and 18, respectively. The structure is
capable of multi-scale sampling of the feature map using null convolution operations with
different sampling rates, expanding the perception of the convolution kernel, avoiding the
loss of image detail features, and enhancing the adaptability to multi-scale targets. In the
decoder part, the low-level features output from the backbone network are spliced and
fused with the high-level features output from the encoder part, and then 1× 1 convolution
and upsampling are performed to obtain a classification result mask image with the same
size as the input image.

The DeepLabV3+ network model was applied to strawberry image segmentation,
and its model structure and segmentation effect are shown in Figure 5. Although the
model can segment the strawberry image regions well, there are mis-segmentation cases
when classifying strawberry images with different maturities, and the overall segmentation
accuracy is low. Since the backbone network Xception and ASPP modules in DeepLabV3+
model adopt depthwise separable convolution and Dilated Convolutions with different
expansion rates (6, 12, 18), respectively, although it improves the overall operational
efficiency of the model, it reduces the extraction ability of target features and affects
the association between local features of the target, thus producing the phenomenon
of target semantic segmentation void; when DeepLabV3+ model deepens the number
of network layers in the forward propagation process, the representation of obscured
strawberry fruit features becomes weaker and weaker, leading to the disappearance of
strawberry detail features in the whole network propagation process and the phenomenon
of missegmentation.
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To address the above problems and considering the deployment of a strawberry image
segmentation model in strawberry picking robots, the segmentation accuracy of the model
needs to be improved without losing model operation efficiency. Therefore, this paper
introduces the attention mechanism into the backbone network and ASPP module of the
DeepLabV3+ model, respectively, and proposes an improved DeepLabV3+ strawberry
image segmentation method. The structure of the improved DeepLabV3+ network is
shown in Figure 6.
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Compared with the classical DeepLabV3+ model, the present study mainly improves
the backbone network and ASPP module in the DeepLabV3+ model. In the backbone net-
work of the DeepLabV3+ model, after each depth-separable convolution, the ECA-SimAM
module was introduced to strengthen the correlation between the feature information
extracted by the network in the spatial domain and the channel domain, which improved
the feature extraction ability of the backbone network and the accuracy of the model image
segmentation. With the ASPP module of DeepLabV3+, after each atrous convolution, the
CBAM module was introduced to adjust the weight share of feature channels to reduce the
interference of environmental factors on strawberry image detection. The results showed
an improvement in image segmentation accuracy.

2.2.1. Dual-Attention Mechanism to Optimize the Backbone Network

In this paper, the dual-attention mechanism is introduced into the DeepLabV3+ back-
bone network Xception to optimize the feature extraction ability of the backbone network,
mine the important information in the feature map with fewer parameter calculations, and
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adjust the proportion of important information weights in the neural network propagation
process so as to enhance the feature extraction ability of the backbone network.

The network structure of the dual-attention mechanism is shown in Figure 7. The
SimAM [31] module mines the importance of each neuron of the feature map by an energy
function; no additional parameters are required to derive 3D attention weights for the
feature map. Therefore, the ECA [32] module was combined with the SimAM module to
construct an ECA-SimAM serial structure to improve the feature extraction capability of
the ECA module without increasing the number of extra parameters for this model. The
structure compresses the feature map F into a one-dimensional feature vector by global
average pooling, then multiplies the convolved one-dimensional feature vector with the
original input feature map F to get the feature map F′; then, it mines the importance of each
neuron in the feature map F′ by a set of energy functions to derive a set of 3D attention
weights for the feature map F′, and finally multiplies the obtained weights with the feature
map F′ to get the final output feature map F′ ′. The energy function equation is as follows:

et(wt, bt, y, xi) =
1

M− 1∑ M−1
i=1 (−1− (ωtxi + bt))

2 + (1− (ωtt + bt))
2 + λω2

t (1)

where t and xi denote the target neurons and other neurons of the input features, i de-
notes the index on the spatial dimension, M denotes the number of neurons on the
channel, and ωt and bt denote the weights and biases of the neurons when they are
transformed, respectively.
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The dual-attention mechanism optimizes the backbone network as shown in Figure 8,
where the black font indicates the original structure of the backbone Xception network and
the red font indicates the access attention module. Xception consists of Entry flow, Middle
flow and Exit flow, each of which makes extensive use of deep separable convolution to
split the correlation between the spatial dimension and the channel dimension, reducing
the number of parameters needed for convolution calculations, reducing the complexity
of parameter calculations, making the model more lightweight and losing some detection
accuracy. Therefore, after each depth-separable calculation of the Xception network, the
ECA-SimAM module is introduced to strengthen the correlation of the network extracted
feature information in the spatial and channel domains, thus enhancing the feature extraction
capability of the Xception network and providing model image segmentation accuracy.
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2.2.2. Convolutional Attention Mechanism to Enhance ASPP

The ASPP module of the DeepLabV3+ model uses the null convolution with different
expansion rates (6, 12, 18) to process the feature maps output from the backbone network
in parallel to extracting multi-scale target information, but too large expansion rates will
prevent the network from extracting image edge feature information well and also affect
the association between local features of the target, making the expression of the obscured
strawberry image weaker and reducing the strawberry image segmentation accuracy.
Therefore, this paper integrates the CBAM [33] module into the ASPP module, reduces the
interference of environmental factors (fruit adhesion, branch and leaf occlusion, and fruit
stacking) through the attention mechanism, adjusts the weight share of the feature channels,
solves the problem of weak feature expression of the occluded strawberry images, and
improves the accuracy of model image segmentation. Among them, the CBAM module
is an attention module combining both channel and spatial dimensions, and its network
structure is shown in Figure 9; in the channel dimension, the input feature map F is pooled
by the maximum and average values to get two sets of one-dimensional vectors; then,
the multilayer perceptron network (MLP) is sequentially downscaled and upscaled from
the channel dimension, the one-dimensional vector Mc(F) is obtained by summing up the
elements, and finally Mc(F) is multiplied with the input The feature map F′ is obtained by
multiplying Mc(F) with the input feature map F; in the spatial dimension, the feature map
F′ is obtained by average pooling and maximum pooling to obtain 2 feature maps, then the
feature map Mc(F′) is obtained by descending the 3 × 3 convolution kernel, and finally the
output feature map F′ ′ is obtained by multiplying it with the feature map F′.
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2.3. Model Evaluation Metrics

In this study, strawberry ripeness was classified into mature (s > 75%), near-mature
(25% < s < 75%) and immature (s < 25%) based on the strawberry fruits red coloring area
(s). The Mean Intersection over Union (emIoU) and the Mean Pixel Accuracy (emPA) [34]
were selected to evaluate the segmentation accuracy of the strawberry image segmentation
model, and the Frames Per Second (FPS) was selected to evaluate the detection efficiency of
the strawberry image segmentation model, where emIoU can evaluate both missed and false
detection, emPA mainly evaluates the missed detection of the algorithm, and FPS indicates
the number of input image frames per second. The specific formulas of emIoU and emPA are
listed as:

emIoU =
1

k + 1∑ k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(2)

emPA =
1

k + 1∑ k
i=0

pii

∑k
i=0 pij

(3)

where k is the number of categories; pij is the pixel marked as class i, but the prediction
result is class j; pii is the pixel marked as class i, and the prediction result is also class i.

3. Results
3.1. Confirmation of Test Environment and Parameter Settings

The test environment in this paper was divided into the hardware environment and
the software environment, as shown in Table 1.

Table 1. Test environment configuration.

Environment Configuration Parameters

Hardware environment

CPU 4-core Intel(R) Xeon(R) Silver
4110 @ 2.10 GHz

GPU RTX 2080 Ti

Memory 16 GB

Software
environment

System Ubuntu 16.04

deep learning framework Pytorch 1.10.0

programming environment python 3.8

GPU parallel computing
architecture Cuba 10.1

GPU acceleration library Cudnn 7.6.5.

The model uses pre-trained weights from the PASCAL VOC dataset with a freeze
training strategy. First, the backbone network parameters are frozen for training 1000 times,
with 8 images in each batch, and the initial learning rate is set to 0.0003; then the network
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training is unfrozen for 2000 times, with 2 images in each batch, and the initial learning
rate is set to 0.00001, for a total of 3000 iterations.

3.2. Analysis of Strawberry Image Segmentation Models
3.2.1. Ablation Experiments

In this paper, we mainly introduce the attention mechanism to improve the classical
DeepLabV3+ network, optimize the backbone network, and enhance the ASPP module,
respectively, and to improve the model segmentation accuracy without losing the model
real-time detection efficiency. The model performance evaluation is shown in Table 2, where
“
√

” indicates that the marked module is used for the experiment and no “
√

” indicates that
this module is not added.

Table 2. Ablation experiments were performed by adding an attention module.

DeeplabV3+

SimAM
Optimize
Backbone
Network

ECA Optimize
Backbone
Network

CBAM
Enhanced

ASPP

Network
Model

Parameters
MIoU MPA FPS

√
209.70M 74.04% 85.45% 8.52√ √
209.71M 75.12% 86.40% 8.06√ √
209.74M 76.33% 86.33% 8.18√ √
209.77M 75.92% 86.59% 8.37√ √ √
209.75M 80.78% 88.55% 7.71√ √ √
209.77M 77.52% 87.44% 7.83√ √ √
209.80M 78.63% 87.74% 8.01

√ √ √ √
209.81M 83.05% 90.90% 7.67

Note: Bold is the optimal result and also the network proposed in this paper.

In the ablation experiment, compared with the classical DeepLabV3+, DeepLabV3+
with the SimAM module, DeepLabV3+ with the ECA module and DeepLabV3+ with the
ECA-SimAM module, the MIoU was improved by 1.08%, 2.29% and 6.74%, respectively,
and the MPA was improved by 0.95%, 0.88%, and 3.1%, respectively. The experimental
results show that the DeepLabV3+ model with the ECA-SimAM module added has the
highest MIoU and MPA, and the dual-attention mechanism has stronger feature extraction
capability than the single-attention mechanism.

To further analyze the improvement of the model image segmentation accuracy, dif-
ferent attention mechanisms were introduced for experiments, respectively. The experi-
mental results show that the MIoU and MPA of DeepLabV3+ with the introduction of the
ECA-SimAM module and CBAM module are the highest, which are 83.05% and 90.90%,
respectively, and compared with the classic DeepLabV3+ model; MIou and MPA are im-
proved by 9.01% and 5.62%, respectively, compared with the classical DeepLabV3+ model.
Meanwhile, the FPS of the model running in real time is 7.67, which is only 0.85 lower
compared with the classical DeepLabV3+ model, and does not affect the efficiency of
the model running in real time. Overall, the model proposed in this paper can improve
segmentation accuracy without losing real-time detection efficiency.

3.2.2. Performance Analysis of Different Models

To verify the superiority of the model in this paper for the segmentation accuracy
of strawberry images with different maturity, U-Net [35], PSPNet [36], HRNet [37] and
DeepLabV3+ models were selected for comparison tests, and the evaluation indexes of the
segmentation accuracy of different models were obtained as shown in Table 3.
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Table 3. Segmentation accuracy of different segmentation models in strawberry images.

Models
Intersection over Union

emIoU
Pixel Accuracy

emPA
Immature Near-Mature Mature Immature Near-Mature Mature

U-Net 74.14% 70.87% 74.65% 73.22% 83.71% 84.92% 78.83% 82.48%
PSPNet 72.66% 72.84% 75.02% 73.50% 82.60% 89.18% 79.59% 83.79%
HRNet 77.99% 71.32% 77.21% 75.51% 84.22% 83.92% 87.97% 85.37%

DeepLabV3+ 76.95% 69.91% 75.26% 74.04% 86.54% 88.21% 81.59% 85.45%
Proposed 80.59% 82.23% 86.34% 83.05% 90.40% 90.52% 91.79% 90.90%

Note: Bold is the optimal result and also the network proposed in this paper.

As shown in the Table 3, the emIoU and the emPA in this paper are the highest, which
are 83.05% and 90.90%, respectively. Compared with the U-Net, PSPNet, HRNet and
DeepLabV3+ models, the emIoU of the model in this paper is improved by 9.83%, 9.55%,
7.51% and 9.01%, respectively; the emPA is improved by 8.42%, 7.11%, 5.53 and 5.45%,
respectively. Overall, the performance of the model proposed in this paper is optimal.

3.2.3. Different Model Segmentation Results

The visualization results of the model in this paper with different image segmentation
models are shown in Figure 10. In the visualization results, the red area is the ripe straw-
berry mask image, the yellow area is the semi-ripe strawberry mask image, and the green
area is the unripe strawberry mask image; the blue boxed area in the figure indicates the
mis-segmentation phenomenon of the model.

From Figure 10a, it can be seen that all models can accurately segment the strawberry
images when the fruits are in the unobstructed situation, and only U-Net is inaccurate in
segmentation of the details. From Figure 10b, it can be seen that U-Net segmentation is
poor when there are adhesions between fruits, and it is difficult to accurately segment the
strawberry images with different ripeness; PSPNet, HRNet, DeepLabV3+ and the models
in this paper can accurately segment the strawberry images with different ripeness.

From Figure 10c, it can be seen that U-Net, PSPNet, HRNet, and DeepLabV3+ all
showed missegmentation when the fruit was obscured by leaves. In sample 4, U-Net could
not accurately segment the strawberry images, and PSPNet, HRNet and DeepLabV3+ had
difficulty in accurately extracting the detailed features of strawberries of different maturity
and failed to accurately segment the strawberry images of different maturity; in sample
5, U-Net and PSPNet incorrectly classified the ripeness of strawberries, and HRNet and
DeepLabV3+ accurately classified the ripeness of strawberries, but failed to completely
segment the strawberry images in the unobscured area, while the model in this paper can
not only accurately classify the ripeness of strawberries but also completely segment the
strawberry images.

From Figure 10d, we can see that U-Net, PSPNet, HRNet, and DeepLabV3+ all show
mis-segmentation when the fruits are stacked, while the model in this paper can accurately
segment the strawberry images.

In summary, compared with the classical image segmentation model, the model in
this paper can effectively reduce the interference of environmental factors, extract more
strawberry image feature information, accurately segment strawberry images with different
maturity, and has stronger robustness.
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4. Discussion

Emerging in smart agriculture research, image segmentation of strawberries at dif-
ferent maturity levels has attracted much interest, which has focused on designing many
image segmentation methods to reduce the interference of environmental factors and im-
prove the segmentation accuracy of images. The ultimate goal of these studies was also
to deploy the methods in strawberry picking robots to provide a basis for their accurate
operation. Therefore, the research on image segmentation methods for strawberries should
improve the image segmentation accuracy without losing the real-time operation efficiency
of the model. In this paper, we propose an improved DeepLabV3+ method for strawberry
image segmentation with different maturity levels, which is based on a DeepLabV3+ net-
work and allows the neural network to ignore irrelevant feature information and focus on
important information through the attention mechanism so as to improve the model image
segmentation accuracy with less computational effort. The method can improve strawberry
image segmentation accuracy on the basis of satisfying real-time operation of strawberry
picking robots.

In the future work, we will conduct experiments on different locations and different
varieties of strawberries, analyze the commonality and characteristics of different locations
and different varieties of strawberries, and build a more universal strawberry image
dataset to make the designed image segmentation model more accurate. At the same time,
considering the deployment of the model in strawberry picking robots, the model should
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be further designed to be lightweight, with reduced internal architecture and components
and reduced computational cost, without losing its recognition accuracy, so as to be better
adapted to strawberry picking robots.

5. Conclusions

In this paper, we propose a method to improve DeepLabV3+ for strawberry image seg-
mentation with different maturity levels. The multi-attention mechanism is incorporated
into the DeepLabV3+ model to increase the weight of strawberry image feature information
and decrease the weight of environmental background feature information so that the
network model pays more attention to the feature information with larger weight and
ignores the feature information with smaller weight during the training process, effectively
reducing the interference of environmental factors (dense distribution of fruits, leaf occlu-
sion and fruit stacking) and improving the accuracy of strawberry image segmentation. The
experimental results show that the proposed method can accurately segment strawberry
images with different maturity, the average pixel accuracy and average intersection ratio of
the model are 90.9% and 83.05%, respectively, and the FPS is 7.67.

The method is based on deep learning to extract digital information of strawber-
ries, which accurately segmented images of strawberries with different ripeness. This
method could be applied to other fruits and vegetables (tomatoes, cucumbers, etc.) after
re-collecting their sample data, building the training data set and training the model to
complete the image segmentation and ripeness judgment. This work provides a real case
study of utilizing machine learning in digital agriculture practice.
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