The instruction of the 3DPhenoMVS
Acquiring images
A total of 8 tomato samples located inside a greenhouse were collected for the full growth
period covering 7 time points, seven point cloud models were reconstructed for each tomato
sample. After the fruit was ripe, 5 tomato fruits were randomly picked from each sampling
plant, so we have 56 original point clouds and 40 tomato fruits point clouds for further process
and analysis.
Challenges in the extraction of tomato phenotype
In terms of data collection, the high price of a LIDAR system limits its application in agriculture.
In terms of phenotype extraction, most of previous work focused on tomato seedling stage, the
steps were complicated, and three is no open source for point cloud data processing. Therefore,
we developed a low-cost, open-access pipeline to extract 3D phenotypic traits covering the
whole growth periods of tomato.
Reconstruction Solution and technology roadmap
Our goal is actually to solve the phenotypic trait extraction problem on the generated 3D point
clouds of tomato plants during the whole growth period. The image acquisition is conducted
by moving a camera around the tomato plant, and produce the point cloud through three-
dimensional reconstruction. Based on the Li-Medial Skeleton of stalk point cloud [1], the node
detection and internode length calculation regarding the stalk of one individual tomato plant
at different time points were completed in a fully automated way. In other words, it is not
necessary to build the correspondences for certain organs, such as node and leaf, at different
growth stages in order to investigate the temporal trait changes regarding one plant organ. The
results showed that R? values between the phenotypic traits and the manually measurements
of stem length, plant height, internode length and transverse diameter were more than 0.85.

The detailed technical roadmap is as follows (Figure S1):

A Environmental B Image data collection C 3D reconstruction D Point cloud alignment

monitoring Different

— heights and
wﬁ

[

E Segmentation G Internode length, H 14 Structural traits

leaf length, stem length extraction
and node number

I Image data collection J 3D reconstruction K Point cloud alignment L 5 Fruit traits extraction

2

Different angles

Figure S1. Technology roadmap of using 3DPhenoMVS

Detailed methodological information

Our project mainly consists of 12 parts: (1) Environmental monitoring. A distribution map of
environmental differences is illustrated for tomato plant sample selection in Figure 1A. (2)
Multiple-image data collection covering the whole life cycle of tomato plants, as shown in
Figure 1B. (3) 3D point cloud generation through the combined SfM-MVS algorithms. (4)
Alignment of point clouds regarding one tomato plant. For large tomato plants, image data are
collected at two height levels, and the generated point clouds need to be aligned and registered
together to produce a complete representation of the whole tomato plant. (5) Segmentation of
stalk and leaf point clouds. (6) Skeletonization of stalk point clouds for structural phenotypic
trait estimation. (7) Node detection on the skeletonized stem point clouds. Node detection is
conducted on the skeletonized points; hence, the phenotypic traits, including node number,
internode length, and stem length, are calculated automatically. (8) 3D structural phenotypic

trait calculation and analysis. (9) Multiple-image data collection of tomato fruits. (10) 3D point

cloud generation through the combined SfM-MVS algorithms. (11) Alignment of point clouds
regarding one tomato fruit. (12) Tomato fruit phenotypic trait calculation and analysis.

Part 1 Image Acquisition

A digital camera is used to take multi-angle and multi-layer shooting around a single plant. In
the early stage of tomato plant, each image was taken at about every 4-6°. The overlap between
two adjacent images was guaranteed to be more than 70%, and the whole plant accounted for
more than 80% of each image, and a total of around 100 multi-view images were obtained. In
the later stage of tomato growth, layered multi-angle shooting was adopted, and a total of more
than 300 multi-view images were obtained. Similarly, high degree of overlap between two
adjacent pictures in each layer, and at the same time, there should be more than 50% overlap
between two upper layer and lower layers, which is helpful for subsequent point cloud
alignment to generate complete tomato plant clouds (Figure S2A and S2B).

For each tomato fruit, it was picked when it was mature for image acquisition. The fruit was
placed on the table in the forward and lateral directions (Figure S2C and S2D), and image
acquisition as described above.

A

Figure 52. Image acquisition

Attention

1) Markers should be placed next to the plant, and both the image and maker should be taken

in the image, which will help for the subsequent ratio conversion between the estimated
phenotypic trait parameters and the real ones. In this experiment, the planting trough was
used as a marker.

2) The image quality affects the quality of the reconstructed point cloud directly. Please tune
the camera parameters according to the actual situation.

3) The overlap between the images mentioned above is suggested as Figure S3.

)

Figure S3. Adjacent image sequence

Part 2 Three-dimensional reconstruction

Procedure

Use Visual SEM+CMVS/PMVS to perform 3D reconstruction to generate the original point
cloud [2,3]. The general process is: The scale-invariant feature transformation (SIFT) algorithm
is used for feature extraction [4], and the kd-tree model is used for feature point matching. For
each image matching pair, the fundamental matrix is estimated, and the matching pair is
optimized and improved by the RANSAC algorithm. Nonlinear least squares are used to
calculate the camera parameters and scene geometric information, a sparse 3D point cloud is
generated. Finally, a dense point cloud is generated for each image cluster acquired by CMVS
through the PMVS patch reconstruction method. All these procedures were assembled in the
free and academic software, VisualSFM.

Install

Visual SFM+CMVS/PMVS (http://ccwu.me/vsfm/)

Run

1) Import multi-view image sequences.

2) Perform feature extraction and feature matching.
3) Sparse reconstruction.

4) Dense reconstruction.

http://ccwu.me/vsfm/

/. VisualSFM - [Sparse Reconstruction] - [0] - [] - O X
File SfM View Rep Swp Tools Help

D"%ﬁ' oo D 3»3+Hi5°.@|§||%|#mll & AW
3 4

1 2

Figure S4. Software interface and its use process

Attention

1) In the later stage of tomato plants, two layers of the plants were reconstructed separately
using the two sets of images.

2) The reconstruction efficiency of this step is closely related to the number of images and
computer performance. Usually, more images would lead to more time consumption.
However, reconstruction would fail if there were no enough overlap between adjacent
images.

Part 3 Point cloud preprocessing

Install

CloudCompare (http://www.danielgm.net/cc/release/)

Run

1) Import the point cloud into CloudCompare, and segment the plant point cloud and the

marker point cloud by using

A. Original point cloud B. Plant point cloud C. Marker point cloud

Figure S5. Original point cloud and the result of manual segmentation

2) Use the point list picking function, select the two endpoints of the marker separately to

calculate the Euclidean distance between two points (Figure S6).

ol v F @ xS E+E EEE omam e @ Wi

Figure S6. Calculate the Euclidean distance between two points
3) For two sets of point clouds, the alignment algorithm is used for point cloud registration
to produce a complete point cloud for one individual tomato plant. Then merge point

clouds and remove duplicate points.

sal

» oo - 2

4z 2 1 1;1 G
o :
* ;
¢ g
| 5 4+ Lewel
+ & Point picking
all e e e

[==rE il b Sand box (research) 1
A. Align point cloud B. Remove duplicate points

Figure S7. The alignment algorithm

4) Use the 7 tool to segment the point cloud into leaf point clouds (excluding petiole part)
and stalk point clouds.
5) The stem point cloud (including the petiole) was down-sampled using This helps to

improve skeletonization efficiency.

1@ ' TARTARE A | .SOR ¥ & o %

1

r 2
Sampling parameters *
method | Space v |
large small

min. space between points|| 0.0100 3 ||le@—— 0 3

Use active SF

SF value Spacing value

min O 0. 000000

“

max 100 1. 000000 =

4 —» 0K Cancel

Figure S8. Point cloud down-sampled
Attention
1) In order to estimate the accuracy of leaf area and leaf length, all leaf points are also
clustered into individual ones, which is very fast because almost one cluster of point clouds
represent one individual leaf. The segmented stalk point cloud contains not only the petiole,

but also a part of the leaf tip as shown in Figure S9C.

Lecaf tip P

B. Leaf point cloud C. Stem point cloud

Figure S9. Tomato point cloud and its organ point cloud
2) In the later stage, due to self-occlusion and old leaf abscission, a small number of leaves
will be missing. In order to record the phenotypic trait parameters accurately regarding
one leaf at different growth time points, it is necessary to manually record the number of

the missing leaf. The numbering sequence is 0, 1, 2...along the direction of the main stem

from bottom to top.
3) Alignment is implemented to produce a complete point cloud about the entire fruit. The

point cloud registration of the reference plant, the process as shown in Figure S10.

Scal: 10185 (aready integrated in sbove mtrx)

e 10 Consal (8} for mor detais

=3

A. Select homonymous point B. Align point cloud

Figure 510. The registration of a tomato fruit
Part 4 Skeletonization
We use an Li-medial skeleton algorithm [1] to derive a skeleton for stalk. The code should be
able to run without any setup, and it only takes 1-2 minutes to process 10k points. The code is

implemented in MATLAB R2018a (https://www.mathworks.com/products/matlab.html).

More details about the code can be found in:

https://github.com/ataiva/cloudcontr/blob/master/matlab/readme.txt .

Install
Download Zipped Source Code by the link as follows, including skeletonized source code and
KDTree Library.

(https://github.com/ataiva/skeletonization/raw/master/Downloads/cloudcontr 2.0.1.zip)

(https://github.com/ataiva/skeletonization/raw/master/Downloads/kdtree.rar)

Run and result

1) Unzip kdtree.rar and copy it to cloudcontr_2.0.1\matlab\ toolbox

cloudcantr 2.0 » matlab > toolbax

ER

svn

kdtree

Figure S11. The file path of kdtree

2) Change the Current Folder to the cloudcontr_2.0.1\matlab.

https://www.mathworks.com/products/matlab.html
https://github.com/ataiya/cloudcontr/blob/master/matlab/readme.txt
https://github.com/ataiya/skeletonization/raw/master/Downloads/cloudcontr_2.0.1.zip
https://github.com/ataiya/skeletonization/raw/master/Downloads/kdtree.rar

FILE | VARIABLE I CODE
LD a | » C: » Users » Administrator » Desktop » code » cloudcontr 2 0 » matlab »
Current Folder ® Command Window

Figure S12. The result of current folder
3) Double-click the eg skeleton_laplacian_rosa.mlx, change the point cloud reading path
and the result saving path, and then click Run, the result will be displayed on the right

side.

B Live Editor - C:\Users\Admini

| eg_skeleton_laplacian_rosa.mlx [contraction_by mesh_laplacian.m :-:]

strator\Desktop\code\cloudcontr_2 O\matlab\eg_skeleton_laplacian_rosa.mlx

Step 0: read file (point cloud & local feature size if possible), and normalize the modle.

I filename = 'C:\User‘s\Administr‘ator‘\Desktop\code\cloudcontr_z_e\data\S.19_1—1';I

T1ic
P.filename = [filename extension];% point s:\\
% [P.pts,P.faces] = read_mesh(P.filename);

[P.pts] = read_mesh(P.filename); 2
P.npts = size(P.pts,1);
if exist([filename '_fe.txt'],'file') % result of Tamal K Dey's NormFet
P.radis = load([filename '_fe.txt']);
else
P.radis = ones(P.npts,1);

end

% P.pts = GS.normalize(P.pts);

[P.bbox, P.diameter] = GS.compute_bbox(P.pts);
fprintf('read point set:\n');

tod|

save results

default_filename = sprintf('%s_contract_t(%d)_nn(%d)_WL(%f)_WH(%f)_s1(%f)_skeleton.mat’,... 3
P.filename(1:end-4), t, P.k_knn, initWL, WC, sl);

Savaldaf ol £4]onomo ~D- .

dlmwrite('C:\Users\Administrator\Desktop\code\cloudcontr_2_@\result\8.10.txt',P.spls);

dlmwrite('C:\Users\Administrator\Desktop\code\cloudcontr_2_@\result\Adjacency Matrix\8.10_adj.txt',P.spls_adj);

[eg_skeleton laplacian_rosa.mlx 3| contraction_by mesh_laplacianm l + |
34 - if nargin < 1
35 - clear;clc:close all: 4
| 36 — P.filename = C:\Users\Admnxstrator\Desktop\codmata 8.10_1-1.ped :I
37 - options. USING_POINT_RING = GS.USING_POINT_RING:

Figure 513. Change the file path
4) In the result, the generated skeleton nodes are saved in the 8.10.txt, and the adjacency
matrix is saved in 8.10_adj.txt. (In the pop-up figure: Figure 4: Original point cloud (green)

and skeleton (red); Figure 5: skeleton node (pink) and skeleton (red).)

{=] Run Section
=liaccaal = (gt 2 2 g
Run Step

P Run and Advance
< stop

tode || wp 1o Secton
= %7 Break [Z;Runtond

sudcontr 2.0 » matlab »

eg_skeleton_laplacian_rosa.mix +

n: ©.010000
6195

setting
clear;clc;close all;
path(' toolbox',path);
options.USING_POINT_RING = GS.USING_POINT_RING;
extension='.pcd’;
itorate 3 time(s)
Step 0: read file (point cloud & local feature size if possible), and
normalize the modle.
filename = ers\Adninistrator\Desktop\code\cloud e
tic
P.filename = [filename extension];
[P.pts,P.faces] h(P.fil
[P.pts] = read_mesh(P.
P.npts = size(P.pts,1)
if exist([filename xt'], a e e
P.radis = load([filename '
Figure 4 P Figure 5 POy
. -
. /
& g
- ' o e A ~7
~. - b r r e [~
" ¥ 4 . oo % f
~ 1/ ¢ \ | W /
N\, / \, g /
N, \h / » \ / /
N, 4 \ V /
N\ Vi g, | /
N/ N S
¥ / L /
. 1
15 W4
!s ;‘\,/
: / }
W 1
/ 1/
] 1,
'I
¢ /
7 7/
/a’ P
P ///
’ pd
4 /

Figure 514. The result of Li-medial skeleton algorithm

5) Open the skeleton node in CloudCompare, and use the point list picking to view the

number information (Index) of the two ends of the main stem as input for subsequent

organ segmentation.

@ Fle Edit Tools Display Plugins 3D Views Help
t Cal E o 19BN 2 2 + @ SEEE S | NiC s
D8 Tres
&
v 1p. txt (C:/Vsers/Administrator skto']
o~ v - Cloud
11 v ked
+
4~
8 1
Point #1
5 &
Q
P
o
"" Properties
B |Property State/Value
o0
Neme 8- Cloud
Visible 7
Show name (in 30) (]
X: 56693 5
Box dimensions Y: 5.1826 Point #0
2: 40057
X: -2.83465
Box center Y: 25913
2: 200285

Figure 515. Obtain the number information of the two ends of the stem

Attention

marker zize 5 [2

When processing the of stem skeleton node, the skeleton node near ground is set as the
starting point of the stem (Point #0), and another point as the growth point (Point #1), shown
as Figure S15.
Part 5 Organ segmentation
This algorithm uses the skeleton node and node adjacency matrix to count the number of
adjacency points, and classifies, extracts and marks the adjacency points. Finally, it will realize
the segmentation of each internode and each leaf, calculate internode length and leaf length,
and rearrange and visualize the skeleton nodes according to the leaf growth law of tomato.
Herein, the correspondence of one organ at different time points is built automatically.
The detailed information for the algorithm is as follows. Readers can also skip this part and run
the program directly.
The inputs for this algorithm are skeleton points and its adjacency matrix, starting point,
growth point, and missing leaf ID. Then the algorithm builds the adjacency relationship
between points according to the input. The node types re listed as follows:
1) If the number of adjacent points is greater than three, it is considered as
(The point where the petiole and the stem intersect)
2) The point between leaf star point, stem start point and growth point is the . (The
stem point except for the two ends)
3) Except for the main stem node, the adjacent nodes of leaf end points and their subsequent

nodes are (The leaf point except for the two ends)

Figure S16. The type of each node

After classifying the points, the length of the stem can be calculated by summing up all the
Euclidean distances between two adjacent stem points at the same time.

Then, the algorithm segments each leaf through the adjacency relationship between the leaf
start points and the leaf nodes. The leaf length is calculated in the same way as stem length.
Finally, reorder the ID of leaves.

The leaf ID starts with 1. Since the order of leaves regarding one plant was set from bottom to
top along the tomato plant, except for artificial trimming and leaf abscission, remains
unchanged, the leaf ID would keep unchanged in our algorithm. The algorithm can give a same
ID to one leaf at different periods. Through the steps described above, the algorithm outputs
the segmented stems, leaves and their length. After processing all the skeletonized points
regarding one tomato plants at different time points, the correspondence relationship of one
individual leaf at different time point were built as well.

This software can only be used for academic purpose. For any questions on this software, please
contact with author, the email address is: 574849348@qq.com.

Install

The program is a C + + program written with Visual Studio 2019 on Windows10-64bit. Some
functions for automatic node detection are encapsulated in Io_ frame_ Matrix.lib, so you need

to add this library as follow:

D

NS
Debug
Get_stem

=2} Get_stem.sin

2)

3)

)

Configuration: | Active(Debug)

4 Configuration Properties A
General
Advanced
Debugging
VC++ Directories
4 C/C++
Optimization
Preprocessor
Code Generation
Language
Precompiled Heac
Output Files
Browse Infarmatic
Advanced
All Options
Command Line
b Linker
b Manifest Tool

b XML Document Gene v
< >

5)

the IO_frame_matrix resides;

Double click Get_ Stem.sln open the vs project file;

Click Project and open Settings;

solution

Add Modu
Add

Add New |

Add Existing ltem... hift+Alt+A

Exclude From Pr

how All Files

ow:

Add Connes

Export Template.

Manage NuGet
Nsight User P

Get_stem Properties

Open C/C++ in the Settings page and select General;

Find the Additional Include Directories, click Edit;

| Platform: |Active(Win32) ~

| Additional Include Directories st\TestCpp\other;% (Additionalinclud

Configuration Manager...

)~

Additional #using Directories =Edi
Additional BMI Directories <inheri

rom parent or project defaults»

Additional Module Dependencies
Additional Header Unit Dependencit
Debug Information Format Program Database for Edit And Continue (/ZI)
Support Just My Code Debugging Ves (/JMC)

Common Language RunTime Suppo
Cansume Windows Runtime Extensic
Suppress Startup Banner Ves [/nologa)
Level3 (yW3)

No (/WX-)

Warning Level
Treat Warings As Errors
Warning Version

Diagnastics Format Column Info (/diagnastics:column)

SDL checks Yes (/sdl)
Multi-pracessor Compilation
Enable Address Sanitizer No

Additional Include Directories
Specifies one or more directories to add to the include path. Separate with ;' if mare than
(f[path])

one.

Click New Line to add a new Additional Include Directories and select the directory where

D:\Files\Test\TestCpp\other

6)

Build

Click Build to build the solution;

D ! e = Tools Extensions Window

Build Solution l

uild Solution

n Solution
Build full pr

m da olution

7) Open the Debug directory and run Get_ stem.exe.

I3 Get_stem.ilk
& Get_stem.pdb

FRo o

Run and result

You only need to provide a couple of inputs in the console window to get the results:

1) The file path of the skeleton point

2) The file path of the adjacency matrix

3) The sequence numbers of the start point in the skeleton point file

4) The sequence numbers of the growth point in the skeleton point file

Due to leaf trimming and leaf abscission, some leaves would be missed in the later progress.
To solve this problem, we record the leaf IDs to build leaf correspondences automatically. If
there are missing leaves in the node, enter the leaf ID from bottom to top along tomato plants.
If there are multiple leaves, enter multiple values, separated by spaces. If there are no missing
blades, enter - 1.

Then press Enter key after input. If the input is correct, all the results will be printed out in the

console window. (The console will print all the results.)

oL
2
i
L
L
L
| X
I
i
L
L
I

Ee——

e

Figure S17. The result of organ segmentation
1) The result is: output the main stem node and its coordinates
2) Nodes: internode lengths along main stem
3) Leaf: leaf length
Finally, the main stem points and all leaf points are printed out in the console window.

You can check the output files in your project. This file stores the reordered skeleton points.

You can use any point cloud software that supports out.txt for visualization, or you can directly
open it to see whether the data itself meets your expectations. In out.txt, each point is affiliated
with nine values, which are listed as follows:

|)Zf¢(F) RHRE B/RO) =BV =HH
-4.5548,3.6857,4.9408,0,31,-2,0,0,0

-4.5801,3.561,4.9447,0,32,-2,0,0,0 XYZ
-4.6159,3.3591 ,4.9351 33,157,0,0,0
1|0
0,

-4.6204,3.1542,4.90510/34,-2,0,0,0

-4.6591,3.0238,4.8806]0/35,-2,0,0,0 o
-4.7067,2.8946,4.8917,0,36,-2,0,0,0

-4.77,2.7722,4.9054,037,-2,0,0,0

-4.7565,2.6379,4.8774,0,-1,-2,0,0,0

-3.1815,5.3502,3.4008139,-2,128,128,128
-3.2225,5.3082,3.5203(1/40,-2,128,128,128
-3.2573,5.2685,3.6484|1/41,-2,128,128,128
-3.2819,5.2437,3.7815|1|42,-2,128,128,128
-3.2992,5.2283,3.9181,7,43,-2,128,128,128 No.1 Leet
1-3.3015,5.2156,4.0558,1,44,-2,128,128,128
-3.2742,5.1882,4.188,1,45.-2.128,128,128 . . k
-3.2035,5.1529,4.2973,1,46,-2,(128,128,128 index of adjacency list
-3.1055,5.1165,4.3873,1,47,-2,128,128,128 (-2 means None)
-2.994,5.0533,4.4369,1,48,-2,128,128,128
-2.8668,5.0067,4.4664,1,49,-2,128,128,128
-2.734,5.0312,4.4652,1,50,-2,128,128,128
-2.6077,5.0762,4.4357,1,51,-2128,128,128 | ————— Point Color
2.4912,5.1236,4.3793,1,-1,-2,128,128,128
-3.8024,5.2424,3.5078[2]53,-2,055,128,64
-3.9368,5.2203,3.5334{2/54,-2,255,128,64
-4.0657,5.1932,3.5508[2/55,-2,255,128,64
1-4.2009,5.1692,3.5545(2)56,-2,255.128,64 No.2 Leaf
-4.3374,5.1475,3.546,2,57,-2,255,128,64
-4.4686,5.1192,3.531,2,58,-2,255,128,64

e b

Figure 518. The result of reordered skeleton points

Current point information:
1) Value 1: point cloud coordinate X
2) Value 2: point cloud coordinate Y
3) Value 3: point cloud coordinate Z
4) Value 4: point type (0 for main stem, y ~ x for y ~ x leaf)
The next point information:

If the current point is the stem node or leaf node:
5) Value 5: the index of the next point (-1 represents the leaf end point or growth point)
6) Value 6: -2
If the current point is the leaf start point:
5) Value 5: the index of the next point on the stem (-1 represents growth point)
6) Value 6: the index of the next point on the petiole (-1 represents the leaf end point)
Color information of current point:
7) Value 7: Red value ranges from 0 to 255

8) Value 8: Green value ranges from 0 to 255

9) Value 9: Glue value ranges from 0 to 255

Figure S19. The visualization of reordered skeleton points
We tested the skeletons of 56 tomato plants, and the average number of skeletons was about
120. The results show that visualization results of the extracted stems and leaves regarding one

plant at different time points.

\4

Days after transplanting(d)

Figure 520. The visualization results of organ segmentation in the whole growth stages
Part 6 Phenotypic parameter extraction
Algorithm details
1) Volume estimation
The smallest convex polygon that generates a three-dimensional point cloud is the convex hull.
The spatial distribution of the three-dimensional point cloud directly affects the generation of
the convex hull, so this study uses the volume of the convex hull as the plant volume. At the
same time, the functions for batch calculation, saving and output are realized. The whole

algorithm is realized in Visual Studio 2019 (https://visualstudio.microsoft.com/downloads/)

https://visualstudio.microsoft.com/downloads/

and PCL-1.12.0- win64 (https://github.com/PointCloudLibrary/pcl/releases/). Before running

this algorithm, the users need to complete the PCL configuration in Visual Studio.

Prepare

i) Open convex hull.sIn. Change the solution platforms to x64. Open Property Manager, add

PCLdebug.props to Debug | x64.

- B -2 e - ~ P Local Windows Debugger ~ ~ Debug - [x64 |

Properties Solution Explorer Property Manager - convex hull + X RV 4T
F rH :
4 convex hull
b ¥ Debug | Win32 2

4 & Debug | x64
& Microsoft.Cpp.x64.user
J Application
Unicode Support
J Core Windows Libraries
b 1 Release | Win32

ii) Open solution explorer, add convex hull.cpp to source file.

@ o--aBd o &

Search Solution Explarer (Ctrl+:)

R Selution ‘convex hull' (1 project)
4 [convex hull
b i External Dependencies
o s
4 o Eh

b S convex hull.cpp

Run and result

i) Modify the path, including the input path of the point cloud, the out path of the saved
convex hull.

ii) Runs. The convex hull model in the result can be viewed in CloudCompare, and the output
of the convex hull volume (area) is in volume.txt (area.txt). Since this experiment is a

reconstructed point cloud, it needs to be scaled to real size by the scale conversion.

D10s327-1miply [@
L2 203wmply | upn gae mmo
0221wy [

2028 261 wuply |57 03¢
2028262 muply (3065679
8.697297
11.62476

17 30-4_16-4_wu.ply
30-52_15-5_wu.ply
) 30-52_18-2 wu.ply
] 30-52.21-1_wuply
30-52.21-2 wu.ply
[30-52.21-3 wu.ply
1) 35-22_20-1_wu.ply
1) 35-22.20-2 wu.ply
1) 35-22_20-3 wu.ply 4225673
35-22.22-1 wupl
35:22 222 wu.

6.597098
5.956277

Figure S21. The result of volume and area estimation

The core source code is:

https://github.com/PointCloudLibrary/pcl/releases/

13 Hint main{int arzc, char¥x arzyv)

14 {

18 /freadPCDInformation

16 string filePath = "H: = H#E RV RE-FhH2E tonato_traits:

17 Sirinz command = Ot + L1l1eFath + no%.ped J0 5 F LilePath + . inanes. tit

18 systen(command. c_str()):

19 ifstream fin{filePath + "'\names. txt");

20 int pointcloud = 0;

21 string s

22 vector<string> pointcloudPath;

23 vector<string> fileHame:

24 B while (getline(fin. s)) {

25 pointeloudt+:

28 pointcloudPath. push back(s) :

27 string names = s.substr(0, s find last of (*.*)):

28 fileName. push_back (nanes) ;

28 }

30 fin. close():

3

32 pel::FointCloud<pel: : FointX¥IRGE>: :Pir cloud (new pel::PointCloud<pel: : Poimt¥TIRGES)
13 vector<float>Hull;

kT vector<float>Hulls:

35 = for {int i = 0; i < pointcloud:; i+H)

38 {

37 peli:PCDReader reader:

38 reader. read(filePath + "\\" + pointcloudPath[il, *cloud):

LI ffreader. read ("E: /¥52019/Project 1finput/ 3. ped”, *cloud):

40 ffmmmmmm e #HEdam s

41 pel::ConvexHull<psl: - PointXVIRGE> hull; //BIEMEI R

42 pel::Folygonliesh triangles: /fSave the convex hull model

43 hull. setTnputCloud (cloud) ; SIRERIADE

44 tmll. setDinension(3) £/ BBV E (2DE3D)

45 wector<pel: :Vertices> polygons: F/ERpcl: Terticest HPIME AT RTFOENS
48

47 pel::PointCloudépel: : Foimt¥¥IRGE>: :Ptr surface_hull (new pel::PointCloud<pel:: Poinmt¥TIRGED) :// %
48

48

50 hull. setConputeireaVolumes (trus) ; JAOBEAE. MARarEX+ENBME®EITnED
51 hull. reconstruct (*surface_hull, polygons):/ it E3DfE% R

52 hull. reconstruct (triangles)

53

TR S fOutput convex hull

55 - - : - - = T
56 Jekfetring outPath = “H 0 EmM-#E82 BEX-FehS9 BB tonato_traitz . Fim comvex hllyy”;
57 LS B b i e e e o o) o i 3 210120

58

59 float Area = hmll. zetTotaldrea(); SEROENSER

60 float Volume = hull. zetTotalVolune () //REIOE ol

Figure S22. The source code of volume and area estimation
Attention
The imported leaf point cloud format must be PCD format. If not, please perform format
conversion before this procedure.
2) Calculation of plant length, plant width and plant height
Use PCA (Principal Component Analysis) to analyze the main direction of the point cloud to
generate the bounding box of the point cloud. The length of the side parallel to the stem in the
bounding box is taken as the plant height, the larger side of the remaining two sides is taken as
the plant length, and the smaller one is taken as the plant width. The entire algorithm is

implemented by Visual Studio 2019 (https://visualstudio.microsoft.com/downloads/) and PCL-

1.12.0-win64 (https://github.com/PointCloudLibrary/pcl/releases), so users need complete the
PCL configuration before running. After that, users only need to change the input path of point
cloud.

Prepare

i) Open PCA+Bbox.sln. Change the solution platforms to x64. Open Property Manager, add

PCLdebug.props to Debug | x64.

https://visualstudio.microsoft.com/downloads/

E EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW

v 3 -2 W - &'« P Local Windows Debugger ~ (/ - Debug ~ _ M

Properties Solution Explorer Property Manager - PCLdebug + X ‘
P HE v W :
4 [%] PCA+Bbox

b ¥ Debug | Win32
4 .| Debug | x64
2 PClLdebug
M Microsoft.Cpp.x64.user

F Application

& Unicode Support

K& Core Windows Libraries
b 18 Release | Win32
b 1 Release | x64

ii) Open solution explorer, add PCA+Bbox.cpp to source file.
Properties Ewm Property Manager - PCLdebug

@ o-- @@ o &=

Search Solution Explorer (Ctrl+;)
R Solution 'PCA+Bbox’ (1 project)
4 [&] PCA+Bbox

P {5 External Dependencies
s
ol
b *++ PCA+Bbox.cpp
Ll vty

4

Run and result
i) Load the point cloud files. Use PCA to generate the centroid and covariance matrix of the
point cloud, calculate its eigenvalues and eigenvectors, where the eigenvector is the main

direction. The core source code is:

pcl::PointCloud<PointType>::Ptr cloud(new pcl::PointCloud<PointType>());

TPUt point cloud i i
7Tnput point h_udd<— Change the input path of point cloud

cl::io::loadPCDFile "C:\\Users\\Administratur\\Desktce\\data\\l-l vclumz\\ingut\\z.p(d", rc

//The PCA principal component analysis method is used to obtain the three main directions of the point cloud, obtain the centroid, calculate the covariance,
//obtain the covariance matrix, and obtain the eigenvalue and special feature vector of the covariance matrix. The eigenvector is the main direction.
Eigen::Vectoraf pcaCentroid; //centre of mass

pcl: :compute3DCentroid(*cloud, pcaCentroid);

Eigen::Matrix3f covariance;

pcl: :computeCovarianceMatrixNormalized(*cloud, pcaCentroid, covariance);//Calculate the normalized covariance matrix

//Calculate the main direction: eigenvectors and eigenvalues

Eigen::SelfadjointEigensolver<Eigen: :Matrix3f> eigen_solver(covariance, Eigen::ComputeEigenvectors);

Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors();

Eigen::Vector3f eigenValuesPCA = eigen_solver.eigenvalues();

//Correct the vertical between the main directions (the feature vector direction: (e@, el, e@ X el) --- note: e@ X el = +/- e2)
ig torsPCA.col(2) = eig: torsPCA.col(@).cross(eigenVectorsPCA.col(1));

eigenVectorsPCA.col(@) = eigenVectorsPCA.col(1).cross(eigenVectorsPCA.col(2));

eigenVectorsPCA.col(1) = eigenVectorsPCA.col(2).cross(eigenVectorsPCA.col(@));

std::cout << "eigenvectors va(3x1):\n" << eigenValuesPCA << std::endl;
std::cout << “"eigenvalues ve(3x3):\n" << eigenVectorsPCA << std::endl;
std::cout << "centre of mass(4x1):\n" << pcaCentroid << std::endl;

Figure 523. The core source code of calculating eigenvalues and eigenvectors
ii) Point cloud transformation. Using the main direction and center of mass, the input point
cloud is transformed to the origin of the reference coordinate system, and the main
direction is aligned with the coordinate axis of the reference coordinate system to establish

a bounding box of the point cloud. The core source code is:

//Go to the reference coordinate system and align the main direction of the point cloud with the coordinate axis of the reference coordinate system
Eigen::M 4f tm = Eigen: w4f i Tdentity();

Eigen:: ixaf tm_inv = Eigen::Matrixaf::Identity();
tm.block<3, 3>(@, @) = eigenVectorsPCA.transpose(); //R. [R*(-1) = R*T]

tm.block<3, 1>(®, 3) = -1.8f * (eigenVectorsPCA.transpose()) *(pcaCentroid.head<3>());// -R*t [t*(-1) = -R*T * t]
tm_inv = tm.inverse();

lat

out << "Transformation matrix tm(4x4):\n" << tm << std::endl;

ricout << "Inverse transformation matrix tm'(4x4):\n" << tm_inv << std::endl;

yper::Ptr transformedCloud(new pcl::PointCloud<PointType>);//Transformed point cloud
pcl::transformPointCloud(*cloud, *transformedCloud, tm);

Figure 524. The core source code of point cloud transformation
iii) Visualization of the bounding box. Call the getMinMax3D function to obtain the
maximum and minimum values of the transformed point cloud along the coordinate axis,

and calculate the bounding box size, which are the length, width, and height of the tomato

plant, respectively. The core source code is:

Point

ype min pl, max_pl;
Eigen::Vectoraf cl, c;

pel: : getminMax3D(~transformedCloud, min_pl, max_pl);//Boundary value along the coordinate awis of the reference coordinate system
€1 = @.5F*(min_pl.getvector3friap() + max_pl.getVector3fhap());//centre

std::cout << “centre €1(3x1):\n” << €l << std::endl;

Eigen::affinesf tm_inv_aff(tm_inv);
pel::transformPoint(cl, ¢, tm_inv_aff);

Eigen::Vector3f whd, whdl;
whdl = max_p1.getVector3flap() - min_pl.getvector3fiiap();
whd = whdl;

float scl = (whd1(0) + whd1(1) + whd1(2)) / 3; //Point cloud average scale, used to set the size of the main direction arrow
std::cout << *distance_x=" << whdl(

@) << endl;
std::cout << "distance_y=" <¢ whel(1
2
d

)

) < endl;
) << endl;
1

//The transformation relationship from the referance coordinate system to the main direction coordinate system
const Eigen: :quaternion? bboxQl(Eigen: :Quaternionf::Identity());
const Eigen::vector3f bboxTl(el);

std::cout << *distance_z=" << whd1(
std::cout << "scalel=" << scl << en

//The main direction of the point cloud transformed to the origin
PointType op;

op.x = 8.8;
op.y = 0.8;
op.z = 0.8;

Eigen::vectorsf px, py, pz;

Eigen::Affine3f tm_aff(tm);

pel: :transfornvector(eigenvectorsPea. col(e), px, tm_aff);
pel::transformVector(eigenVectorsPCA. col(1), py, tm aff);
pel: :transfornvector(eigenvectorsPea. col(2), pz, tm_aff);
PointType peaX;

peaX.x = se1 * px();

peaX.y = sel * px(1);

peaX.z = se1 * px(2);

PointType peaV;

peaY.x = se1 * py(8);

peaY.y = sel * py(1);

peaY.z = se1 * py(2);

PointType peaz;
cl *

peaZ.x = s pz(8);
peaz.y = sel * pz(1);
peaz.z = sel * pz(2);

//visualization transformenCloud
boost: sshared_ptr< pelssvisualization::PCLVisual
viewer->setBackgroundColor(1, 1, 1);

er > viewer(new pclisvisualizations:PCLV

zer("30 Viewer"));

viewer->addPointcloud(transformedcloud);
viewer->addCube(bboxT1, bboxal, whd1(8), whdl(1), whd1(2), "cube");
viewer->setshapeRenderingProperties(pcl: :vi zati

PCL_VISUALIZER_REPRESENTATION, pcl::visualization:
viewer->setshapeRenderingProperties(pcl

+ :PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "cube");
PCL_VISUALIZER COLOR, 1.0, ©.0, 0.0, "cube");

viewer->addArrow(pcaX, op, 1., 0.0, 0.0, false, "
viewer->addArrow(pca¥, op, 0.6, 1.0, 0.0, false, "
viewer->addArrow(pcaZ, op, 0.8, 8.0, 1.0, false, "

viewer->addCoordinatesystem(e.5fscl);
viewer->setBackgroundColor(1.8, 1.2, 1.8);
while (lviewer->wasStopped())

{

viewer->spinOnce (168) ;

viewer->removeAllPointClouds();
viewer->removeshape ("cube”);
viewer->removeallshapes () ;
viewer->removeAllCoordinatesystems();
return o;

Figure S25. The source code of visualization of the bounding box

The result is:

B 7 2D Viewer

Figure 526. The result of Calculation of plant length, plant width and plant height
Attention
i) In order to ensure the normal operation for the next visualization, users need to close the
3D Viewer first, and then press any key to close the command window.
ii) Perspective projection is used in visualization instead of orthogonal projection, and its

characteristic is “near big, far small”, which is shown in Figure 527.

A. Orthogonal projection B. Object-centered perspective

Figure S27. The difference between orthogonal and perspective projections
3) Leaf area and width calculation
Calculate the leaf width by generating the minimum bounding box of the blade, refer to the

above steps. Use command in Geomagic Studio 2013 (64bit) (www.geomagic.com) for

point cloud encapsulation to produce the meshed model, which are represented by connected
triangles, and then sum up the total area of the triangles to represent the leaf area of each blade.
In order to improve efficiency, this experiment uses the recording macro command to record
the processing steps, and saves the command as . Users only need to

import this command for batch processing of point clouds.

http://www.geomagic.com/

Run and result

i) Load Point cloud slicing.py to realize the encapsulation of the point cloud and generate
the corresponding mesh model.
3
o l © Open x
) “ A > MBE > S code v o =m »
1) Point cloud shcing | an R ™ @
CLS 5 am LEE w2 *h
-
i 3:0m
[Delete] [B
Delete Al | = me k8
@ .
S —— 4T
TR E) | | =
geocompute.wrap(1,0, 1,4, 1. 0.1, 2500000, 4,0, man
;eilmnh_doum('mlkmm', 00001091, L TR ©)
'wdlwﬂnd'uz(‘ 5~A5?¢00? ‘hok&xe_“ - 52 D)
oo [|
S maiComponane) Fdcheck - gl
* 'Syk(hs(k“ “HighCreaseCheck+*, *Update”, - I (G
e o et . 797600 4308, Fotel RABMNK [Poiet doud sicing.py <] [aigesch 3
=l=: =
Figure S28. The step of loading Point cloud slicing.py
ii)

Batch Processing. Change the input path, select the Import command. Users can choose

whether to save the mesh model, the default format is WRP (format can be changed).

e om

Cooranate || Record Stop
Systems -

-

Macro Name: Point cloud slicing

(V] Save Files

Format: Wrap File ("wrp) +

File

Date &Time: None

Prepend:
Append:

] Save Active Object Only

Directorys (CAUsers\Admini

Figure 529. The step of batch processing

iii) Select the mesh model, compute surface area by Compute in Analysis command. The right

figure is the encapsulated grid and zoom in for visualization.

Define: System Plane

Position: [0.0 mm

Section Area (sq. mm)
1 Total 0.6896

Figure S30. The step of computing leaf area
Attention
i) The imported leaf point cloud format must be PLY format. If not, please perform format
conversion before this procedure.
ii) To estimate the leaf area accurately, a mesh model for the 3D points representing one leaf
is generated, and the summation of the area of all the meshes account for leaf area.
4) Transverse and vertical diameters calculation
Firstly, the RANSAC [5] algorithm is used to fit the tabletop on which the tomato fruit is placed,
and the plane equation of the tabletop is obtained. Then use the Rodrigue rotation formula to
rotate the normal vector of the plane equation to the x-axis direction to obtain the rotation
matrix R. Finally, the rotation matrix R is applied to the tomato fruit point cloud, take the
maximum distance on the x-axis as the vertical diameter, take the maximum distance on the
YOZ plane as the transverse diameter. The entire algorithm is implemented by Visual Studio
2019 and PCL-1.10.0-win64, so users need complete the PCL configuration before running.
Run and result
i) Open random_sample_consensus.sln, and modify the number of loops n and the paths.
Including the input path of the point cloud, the output paths of the point cloud and the

normal vector of the plane equation.

Figure S31. The step of modifying

ii) Run random_sample_consensus.sln. Obtain the PCD file of the fitted plane (Figure S32B,

the blue points) and the coefficient file Normals.txt of the plane equation.

Normals - 2B
23 ARG WO BV DM
-3.60446 5.53813 0.595943 -0.799908
13,8966 2.58289 0.0532639 -0.899154
8.07135 0.00279481 0.929125 -0.943585
3.15789 0.474518 0.634045 -0.916391
12,9899 0.577801 0.437717 0.979038

» 4 . v
A. The coefficient of the B. The normal vector (n) of the
plane equation fitting plane

Figure 532. The steps of the plane fitting and normal vector calculation
iii) Open rotationMatrix.sln and modify the paths. Including the input path of the Normals.txt,

the output path of the rotation matrix R.

Figure S33. The step of modifying

iv) Run rotationMatrix.sln. Obtain the rotation matrix file rotationMatrix.txt.

"
1rotationMatrix - iIZBT
X)) KEE WO BEV RN
D.729172706565434
0.4161169103246457
0.5432806649807355
0.4161169103246457
0.3606505427786047
-0.8347322342735833
-0.5432806649807355
0.8347322342735833
0.0898232493440388

A. The result of the rotation B. The visualization of the normal (n)
matrix (R) rotation to X-axis

Figure S34. The step of the rotation

v) Open Transform.sln, and modify the number of loops and the paths. The paths including

the input path of the tomato fruit point clouds and the rotationMatrix.txt. The output path

of rotated tomato fruit point clouds.

Figure S35. The step of modifying
vi) Run Transform.sln. Obtain the rotated tomato fruit point clouds, and the result of

transverse and vertical diameters.

Revn-al - OB

Tag AR0 W0 BV BB
Loaded 171289 data points from file
BEEN: 350844

BEN: 3.60262

Loaded 224640 data points from file
WEn: 275164

WEN: 254973

Loaded 120240 data points from file
WEEN: 258438

WEn: 235787

Loaded 248717 data points from file
WEn: 221517

WEM: 2.24616

Loaded 152666 data points from file
WEN: 248199

WER: 225743

A. The result of the transverse and B. The visualization of rotating
vertical diameters tomato fruit point clouds

Figure 536. The steps of fruit rotation and traits extraction
Attention
The number of loops involved in the algorithm: Consistent with the number of point clouds to

be processed.

Reference

1.

Huang, H.; Wu, S.H.; Cohen-Or, D.; Gong, M.L.; Zhang, H.; Li, G.Q.; Chen, B.Q. L-1-
Medial Skeleton of Point Cloud. ACM Transactions on Graphics (TOG) 2013, 32, 1-8,
doi:10.1145/2461912.2461913.

Wu, C.C. Towards Linear-Time Incremental Structure from Motion. In Proceedings of the 3DV-
Conference, 2013 International Conference on, Seattle, WA, USA, 29 June 2013 - 01 July 2013; pp.
127-134.

Wu, C.C.; Agarwal, S.; Curless, B.; Seitz, S.M. Multicore bundle adjustment. In Proceedings of the
Computer Vision & Pattern Recognition, Colorado Springs, CO, USA, 20-25 June 2011; pp. 3057-
30064.

Lowe, D. Distinctive image features from scaleinvariant keypoints. International Journal of
Computer Vision 2004, 60, 91-110.

Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with
Applications To Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381-395,
doi:10.1145/358669.358692.

