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Abstract: Manual phenotyping of tomato plants is time consuming and labor intensive. Due to the
lack of low-cost and open-access 3D phenotyping tools, the dynamic 3D growth of tomato plants
during all growth stages has not been fully explored. In this study, based on the 3D structural data
points generated by employing structures from motion algorithms on multiple-view images, we
proposed a 3D phenotyping pipeline, 3DPhenoMVS, to calculate 17 phenotypic traits of tomato
plants covering the whole life cycle. Among all the phenotypic traits, six of them were used for
accuracy evaluation because the true values can be generated by manual measurements, and the
results showed that the R2 values between the phenotypic traits and the manual ones ranged from
0.72 to 0.97. In addition, to investigate the environmental influence on tomato plant growth and
yield in the greenhouse, eight tomato plants were chosen and phenotyped during seven growth
stages according to different light intensities, temperatures, and humidities. The results showed that
stronger light intensity and moderate temperature and humidity contribute to a higher biomass and
higher yield. In conclusion, we developed a low-cost and open-access 3D phenotyping pipeline for
tomato and other plants, and the generalization test was also complemented on other six species,
which demonstrated that the proposed pipeline will benefit plant breeding, cultivation research, and
functional genomics in the future.

Keywords: 3D phenotyping; 3D reconstructed point cloud; structure from motion; growth analysis;
whole growth stages; tomato

1. Introduction

The tomato, as the most popular vegetable crop, is widely cultivated worldwide under
outdoor and indoor conditions due to its high nutrition and health benefits [1]. It is essential
to estimate the phenotypic traits of tomato plants and explore phenotypic trait variation
during different growth stages, which can help to address and understand the relation
between tomato plant growth and the surrounding environment. Although great advances
have been made in tomato breeding, more efforts should be made to characterize objective,
reliable, and informative measurements of phenotypic traits to push breeding further [2].
Thus, a sustainable breakthrough in tomato phenotyping is urgently needed.

In the past decade, various phenotyping technologies have drawn much attention in
the agricultural field because of the rapid development of new sensors and correspondingly
high automation technology in the urgent need of non-destructivity [3]. Two-dimensional
imaging technologies have been applied in structural trait estimation, growth analysis,
and yield estimation at different time points [4–7]. Although many image processing
and analysis algorithms have been developed on various crops, several defects cannot be
avoided, such as the ambiguity of plant size caused by camera viewpoints and camera-
object distance, the lack of 3D information regarding plant volume, and self-occlusion
problems caused by the complex structure of plants [6].
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Thus, 3D phenotypic techniques have gradually become a powerful tool for obtaining
phenotypic traits due to their noninvasive and noncontact properties and in particular their
advantages in obtaining 3D geometric structural information compared to conventional 2D
technologies [6]. The superiority of using 3D information in the calculation of phenotypic
traits, such as plant volume, plant height, and leaf length, has been demonstrated [8]. As
3D point clouds are becoming a standard data type for digitizing plant architecture in the
laboratory or in the field, generating 3D points of crop plants is the essential challenge
encountered in 3D phenotyping that needs to be addressed first. The most commonly used
technologies for generating 3D points can be divided into two categories, namely, passive
and active solutions [9]. For the last decade, 3D point clouds of plants have been able to be
created by active sensors, such as in laser scanning. Laser scanning often outputs a complete
and accurate 3D point cloud of one plant or plants at field scale [10]; however, the high cost
of laser scanners is the main bottleneck that limits their wide application. Compared to
laser scanning technologies, passive reconstruction methods, usually camera-based, are
still the most competitive and widely applicable technologies for reconstruction solutions
because only one or multiple easily accessible and affordable camera is needed.

Generating the 3D structure of objects from a series of 2D images is the first task that
needs to be addressed before extracting 3D phenotypic traits. Multiview stereo (MVS)
technology is the mainstream algorithm. Compared to binocular stereo vision, a method
to derive 3D information based solely on the relative positions of the object in the two
cameras, multiview stereo technology is more applicable because a complete point cloud
of an object can be generated [11]. Data collection can be completed in two scenarios:
a fixed-camera scenario, in which one or multiple cameras are fixed in the scene, and a
moving-camera scenario, in which a camera moves around the object in the scene. In the
fixed-camera scenario, the camera remains in one location, and auxiliary equipment, such
as a turn stand, is needed to take multiple images of one object from different viewpoints.
Alternatively, multiple cameras can be equipped at different viewpoints with respect to the
object in order to create a complete representation of the object. The earlier reconstruction
process for plants usually used this strategy. Calibration is the most important prerequi-
site work, followed by different reconstruction strategies, mainly correspondence-based
methods [4,9,11–16] and carving-based methods [17–24].

In the moving-camera scenario, a camera is moved around an object to capture multiple
images from different viewpoints. In this case, structure from motion (SfM) and MVS are
combined together to generate a dense point cloud for objects, such as wheat and rice
plant [25], Arabidopsis [12], tomato plants [11], Scindapsus and Pachira macrocarpa [11],
maize plants [9,14], sweet potato plants [6], and even plant roots [26].

Phenotyping methods of tomatoes have also been studied in several literatures. In
the conventional 2D imaging scenario, image analysis was mainly conducted on fruits
and seeds [2]. In addition, unmanned aerial vehicle (UAV)-based imagery and random
forests were used for biomass and yield prediction at the field scale [27]. Regarding the
3D reconstruction of tomato plants, virtual dynamic models of tomato development was
presented using GREENLAB dual-scale automation [28] and a parametric L-System [29,30]
at the organ level. To produce an accurate 3D model of tomato plant canopies, a close-
range photogrammetric package, which is basically a correspondence-based method, was
used to generate 3D points of large tomato plant canopies for volume estimation [31]. A
correlation of R2 values of 0.75 between the measured volumes and manually derived
reference volumes was found, and the correlation of R2 values between the leaf area index
(LAI) and manual volume was found to be 0.82. A combined SfM and MVS technique
was carried out in 2015 [8]; the phenotypic traits, including leaf area, main stem height,
and convex hull, of the complete plant were estimated and compared to the reference data
acquired by a laser scanner, and high R2 values were found, greater than 0.9. In addition,
Nguyen built a system by integrating five stereo camera pairs, a structured light system,
and software algorithms to model plants [32], which was basically a correspondence-based
approach. The results reached a recall of 0.97 and a precision of 0.89 for leaf detection and
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less than a 13-mm error for plant size, leaf size, and internode distance. However, most of
the previous algorithms mainly take the certain growth stages of plants into consideration.
In other words, the potential of 3D phenotyping technologies has not been fully exploited
on tomato plants over the full life cycle.

Thus, 3DPhenoMVS, a low-cost and open-access 3D tomato phenotyping and growth
analysis pipeline using a 3D reconstruction point cloud based on multiview images, was
proposed to address the abovementioned issues. In addition, with 3D traits, we investigated
the environmental influence on tomato plant growth and yield in greenhouses.

2. Materials and Methods
2.1. Pipeline of 3DPhenoMVS

Considering the advantages of image-based reconstruction approaches, such as nonin-
vasiveness, flexible data collection, and low cost, we present a spatial-temporal method
called 3DPhenoMVS to reconstruct 3D point clouds of tomato plants; this method covers
the full life cycle of tomato plants based on the SfM-MVS approach, uses multiple images
captured by a consumer camera, and calculates 3D tomato phenotypic traits. The proposed
3DPhenoMVS consists of 12 modules, as shown in Figure 1 and listed as follows: (1) Envi-
ronmental monitoring. A distribution map of environmental differences is illustrated for
the tomato plant sample selection in Figure 1a. (2) Multiple-image data collection covering
the whole life cycle of tomato plants, as shown in Figure 1b. (3) Three-dimensional point
cloud generation through the combined SfM-MVS algorithms. (4) Alignment of point
clouds regarding one tomato plant. For large tomato plants, image data are collected at two
height levels, and the generated point clouds need to be aligned and registered together to
produce a complete representation of the whole tomato plant. (5) Segmentation of stalk and
leaf point clouds. (6) Skeletonization of stalk point clouds for structural phenotypic trait
estimation. (7) Node detection on the skeletonized stem point clouds. Node detection is
conducted on the skeletonized points; hence, the phenotypic traits, including node number,
internode length, and stem length, are calculated automatically. (8) Three-dimensional
structural phenotypic trait calculation and analysis. (9) Multiple-image data collection of
tomato fruits. (10) Three-dimension point cloud generation through the combined SfM-
MVS algorithms. (11) Alignment of point clouds regarding one tomato fruit. (12) Tomato
fruit phenotypic trait calculation and analysis.

2.2. Environmental Conditions of Plant Material and Image Collection

Due to the superiorities of the image-based reconstruction method mentioned above, a
consumer-cost digital camera (EOS 77D, Canon Corporation, Tokyo, Japan) was employed
in our study. The tomato plants were planted in troughs in a form of soilless culture in
a greenhouse that was approximately 400 m2. Tomato seedlings were transplanted into
the greenhouse on 1 August 2020, which is located in Liaocheng City, Shandong Province,
China (Figure 2). The greenhouse was equipped with common management facilities,
including reservoirs, drip irrigation and drainage components, draught fans, wet curtains,
and vents. The reservoir and wet curtains were located at one end of the greenhouse, and
the draught fan was located at the other end. There were two vents, upper and lower vents,
allowing for air circulation. A total of 35 rows of plants were planted, with 55 plants in
each row. The row spacing was 0.8 m, and the plant spacing was 0.16 m. The plant height
was approximately 0.3~0.4 m, and the seedlings were hung 17 days after planting. The
planting scenario is illustrated in Figure 2.

Ideally, the environmental conditions inside the greenhouse would be consistent;
however, there were still some local microenvironment differences (microclimates) in the
greenhouse. Hence, the local environmental parameters, including temperature, humidity,
and light intensity, in the greenhouse were measured. The temperature and humidity
were measured by a RENKE COS03 Temperature data logger (Shandong Renke Control
Technology Co., Ltd., China), and the light intensity was measured by an EVERFINE
PLA-20 plant lighting analyzer (EVERFINE Corporation, China). To avoid differences due



Agronomy 2022, 12, 1865 4 of 17

to manual intervention, 40 sample locations of environmental factors were first monitored
and recorded evenly in the greenhouse. The measurement work lasted for 8 consecutive
days. The change in the environmental parameters for the 40 sample locations is illustrated
in the 3D scatter plots shown in Figure 2b.

As illustrated in Figure 2a, draught fans were equipped at the east end of the green-
house, and wet curtains were equipped at the west end. In addition, the upper vents were
mounted in the northern area, and the lower vents and drainage pipes were set in the
southern area. All the conditional parameters were measured under the same controlled
conditions, i.e., the vents were closed, and the draught fans and wet curtains were open.
Due to the effect of the wet curtain and the draught fan, the closer to the wet curtain, the
higher the humidity was, and the closer to the draught fan, the higher the temperature
was. Similarly, drainage troughs would lead to higher humidity in closer areas, and vents
would lead to lower temperatures. In addition, occlusion of the shelter would cause lower
light intensity. A closer look at Figure 2b shows that gradual changes occurred for all three
environmental parameters. Based on the discussion above, 8 tomato plants located in the
8 positions where environmental conditions obviously varied were selected as the target
samples in this study, and they are illustrated by circles in Figure 2b.

For convenience of description, the notation “plant i-j” is used to represent one plant,
where i represents the number of the row in which the tomato plant is located, which
ranges from 1 to 35, and j represents the number of the column in which the tomato plant is
located, which ranges from 1 to 55. The selected target samples were as follows: plants 1-1,
1-55, 10-53, 30-4, 30-52, 35-22, 10-3, and 20-28.

Figure 1. 3DPhenoMVS: A structural phenotypic trait estimation and growth analysis pipeline for
tomato plants, covering the whole life cycle. (a) Environmental monitoring to determine the target
plants, (b) image data collection to obtain multiview image sequences, (c) 3D reconstruction from
images to generate 3D point clouds, (d) point cloud alignment to output a complete tomato plant
model, (e) stalk and leaf point cloud segmentation to separate stalk point clouds and leaf (except
petiole) point clouds, (f) skeletonization of stalk point clouds, (g) phenotypic trait extraction and
visualization based on the skeletonization results, (h) extraction and analysis of structural phenotypic
traits, (i) image data collection to obtain multiview image sequences, (j) 3D reconstruction, (k) point
cloud alignment to obtain a complete tomato fruit model, (l) extraction of 5 fruit phenotypic traits.
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Figure 2. The plant scenario in the greenhouse. (a) Top view of the greenhouse and the locations of
draught fans, reservoirs, wet curtains, drainage pipes, and vents. (b) The environmental parameters
vary in different locations with light intensity changes (left), temperature changes (middle), and
humidity changes (right). The yield for each individual tomato plant is also shown.

For each plant, the user moved the camera around the tomato plant in a circular
fashion, and approximately 100 images were taken for each tomato plant. Image collection
started on the 14th day after transplantation. When the tomato plants grew very quickly in
the early stage, images were collected every 6 days. Since the growth rate of the tomato
plants decreased in the later period, images were taken every 15 days until the tomato
fruits were mature. As the plant grew, self-occlusion often occurred because the bottom
parts could be occluded by the top parts. In this case, the digital camera needed to be set at
different height levels, and two sets of images were collected in a circular fashion. When
the tomato fruits were mature, fruits were randomly picked from each target individual
plant for 3D phenotypic trait calculation. To produce a complete point cloud of one tomato
fruit, the data collection was conducted from two different viewpoints. Generally, around
100 images were taken for one fruit. First, the fruit was placed on the table with the pedicle
at the top. Then, it was placed with the pedicle at the front. Thus, two point clouds
were generated regarding one plant, and the alignment was further carried out to create a
complete point cloud regarding one tomato fruit. The data collection scenario and point
cloud alignment are illustrated in Figure 1i–k.

2.3. Three-dimensional Reconstruction of Tomato Plants by SfM

SfM is a photogrammetric range imaging technique for estimating 3D structures from
image sequences. It takes multiple images as input and outputs the camera parameters
for each image as well as the coarse 3D shape of the object; that is, it performs sparse
reconstruction. Usually, key point feature detection algorithms, such as the scale-invariant
feature transform (SIFT) image feature descriptor [33] or variations of it, were implemented
on the input images and later used for key point matching, and bundle block adjustment
from the photogrammetry community was also introduced to estimate the accurate camera
parameters for each image [34]. Through these procedures, the intrinsic and extrinsic
parameters for each image were calculated properly, and the sparse points of tomato plants
were also generated. The MVS algorithm then used the calibrated images to derive a very
dense point cloud, which was color-coded using the original image data, by adopting
epipolar geometry. The above procedures can be implemented with the free academic
software VisualSFM [34,35]. Theoretically, all the images including the upper and lower
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parts of tomato plants at the later growth stages can be used for 3D point cloud generation
simultaneously by inputting all of them. In practice, due to the limitation of the computing
power, if the number of images was too large, the computer would crash. Thus, the upper
part and lower part were reconstructed separately. In cases where two sets of point clouds
for the upper and lower parts of one tomato plant were generated, the complete point
cloud could be created by aligning the two sets of point clouds by locating 3 or more
correspondences between them.

2.4. Fruit Point Cloud Acquisition and Processing

In order to generate a complete point cloud regarding tomato fruit, image data collec-
tion was conducted from two viewpoints, and correspondently, two sets of point clouds
consisting of fruit and tables were produced. First, the table points were removed while
only the fruit points were kept. Then, the fruit point cloud with the pedicle at the top was
set as the reference, and the other point cloud with the pedicle at the side was aligned
together. After that, the normal was calculated by fitting the table points in the reference
frame, and it was used to rotate the fruit point clouds into a reference frame with the
vertical upward direction as the prime direction. Through these procedures, the direction
of the vertical diameter was consistent with the vertical upward direction, and the distance
between the maximum and minimum value along the prime direction was calculated
as the vertical diameter. Meanwhile, the maximum distance along the projected area at
the horizontal plane was set as the transverse diameter. The measurements of vertical
diameter and transverse diameter are shown as Figure 1l, and the source code and detailed
implementation are described in Supplementary Note S1.

2.5. L1-Medial Skeleton of the Stalk Point Cloud

Minor manual work was involved to separate the leaf points and stalk points, as
shown in Figure 1e. Then, based on the stalk points, extracting a skeletal representation
was an effective tool for geometric analysis and manipulation. In addition, a significant
decrease in the time cost for the geometric analysis of the skeletal representation could be
achieved compared with the analysis of the original point cloud. An L1-medial skeleton
algorithm [36] was demonstrated to be an effective method without prior assumptions
and prior processing, which may include denoising, outlier removal, normal estimation,
data completion, or mesh reconstruction. It adapted L1-medians locally to a point set
representing a 3D shape, giving rise to a one-dimensional structure, which was seen as the
localized center of the shape. Thus, this would be an appropriate skeleton algorithm for
use on the reconstructed point cloud, which might be uneven and incomplete. Although
competitive skeletal results can be derived, time efficiency is seriously affected by the
data size of the input point cloud. During SfM-MVS reconstruction processing, many
redundant points were produced, which would lead to low efficiency for phenotypic
trait estimation. Therefore, the original point cloud was downsampled through an octree-
based methodology to balance the trade-off between efficiency and performance. The
downsampled point cloud was set as the input for the skeletonization process. Diagrams
showing the original point cloud and the generated skeleton are provided in Figure 1e,f.

2.6. Structural Phenotypic Trait Estimation

Structural phenotypic traits represent the morphological characteristics of tomato
plants, such as plant volume, plant height, canopy height, canopy area, node number,
and internode length, and the definitions and abbreviations of the phenotypic traits are
illustrated in Table 1.

Plant height: Plant height is defined as the vertical distance from the ground to the
highest point of the plant in its natural state, which can be represented by the height of the
minimum bounding box (MMB), HB.

Plant volume: Plant volume can be represented by the volume of the convex hull
and the minimum bounding box (MMB). The convex hull is the smallest convex set that
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contains all the points, while the MMB is defined as the minimum box that contains all the
points of the tomato plant. Figure 1h shows the 3D tomato plant model enclosed by the
MMB and convex hull. In this paper, we choose the convex hull volume to represent the
plant volume.

Stem length: Stem length is defined as the sum of all internode lengths.
Canopy area: The canopy area is defined as the multiplication of the plant width and

plant depth.
Node number and internode length: The main stem of the tomato plant is not typically

straight, which will make the measurement of plant height difficult. A series of nodes are
located around the main stem. The internode length is defined as the Euclidean distance
between two adjacent nodes. The length together with the number of internodes determines
the length of the main stem. Hence, an alternative strategy for stem length calculation is
adopted in the study. The skeleton of the stalk is already generated on the point cloud, and
it depicts the morphological structure. The nodes located in the main stem can be found by
using a suitable search strategy. In this way, the internode length, representing the distance
between two nodes along the main stem, can be calculated, and the stem length can be
determined by summing all the internode lengths.

Table 1. Seventeen 3D phenotypic traits measured by the 3DPhenoMVS pipeline.

Trait Abbreviation

Plant height: height of the minimum bounding box PH
Plant width: width of the minimum bounding box PW
Plant depth: depth of the minimum bounding box PD

Stem length: sum of all internode lengths SL
Canopy area: product of plant width and depth CA

Primary ratio: ratio of plant height to plant width RP
Secondary ratio: ratio of plant height to plant depth RS

Internode length: Euclidean distance between two adjacent nodes IL
Node number NN
Leaf number LN

Leaf length: sum of all the Euclidean distances between two ends LL
Leaf width: width of the minimum bounding box of the leaf LW

Fruit volume: convex hull volume FV
Fruit area: convex hull area FA

Vertical diameter: maximum diameter on X-axis VD
Transverse diameter: maximum diameter in YOZ plane TD

Fruit shape index: ratio of vertical diameter to transverse
diameter FSI

Number of leaves, leaf length and leaf area: The number of leaves denotes the total
number of leaves in the plant, and it indicates the tomato plant’s physiological age; thus, it
is also involved in phenotypic trait estimation. In the early growth period of the tomato
plant, it is identical to the number of nodes; however, it is different in the late growth period
due to the pruning of old leaves. Leaf length measures the length of the leaf in 3D space,
and it is estimated by summing all the Euclidean distances between two leaf ends. One
end is the starting point of the petiole located at the main stem, and the other end is located
at the end of the leaf. Leaf area is the most closely related and variable factor of yield. It
measures the surface area of leaves in 3D space. To estimate one leaf area accurately, a
mesh model for the 3D points representing this leaf is generated, and the sum of the area of
all the meshes is the leaf area.

2.7. Fruit Phenotypic Trait Estimation

Fruit phenotypic traits represent the morphological characteristics of tomato fruits,
such as transverse diameter, vertical diameter, the fruit shape index, fruit volume, and fruit
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area, as shown in Figure 1l. The definitions and abbreviations of the fruit phenotypic traits
are also illustrated in Table 1.

Fruit volume: Fruit volume can be represented by the volume of the convex hull of
the generated fruit 3D point clouds.

Fruit surface area: Fruit surface area can be represented by the sum area of the surface
meshes.

Vertical diameter: It is defined as the distance between the pedicle and the other end
of the tomato fruit.

Transverse diameter: The diameter of the largest transverse section perpendicular to
the vertical diameter.

Fruit shape index: Fruit shape index is defined as the rate between the vertical and
transverse diameter.

2.8. 3D Point Cloud from Active Sensors

To evaluate the performance of the reconstructed point clouds from images, LiDAR
and structured light scanner were used to collect point clouds as reference data for compar-
ison. As to the LiDAR system, a FARO Laser Scanner (FARO Focus S70, FARO Corporation,
Lake Mary, Florida, America), following the indirect time of flight principle, was used for
data collection in the greenhouse. A group of 3 target balls with a diameter of 0.15 m were
placed in the scenario, and the sensor was mounted on a tripod at a consistent height. A
total of 6 LiDAR frames covering the area of 10 m × 1.5 m were collected. Two LiDAR
frames were registered and aligned together first with the aid of the target balls to produce
one set of point cloud consisting of the first two LiDAR frames. Later, the other LiDAR
frames were registered and aligned with the produced point clouds following the same
procedures one by one. All the procedures were implemented by using the commercial
software packages SCENE provided by FARO. A complete point cloud was generated,
with an average error of 3.4 mm, which depicted the distance between the points from two
LiDAR scans.

In regard to the structured light sensor, a 3D structured light scanner (Reeyee Pro,
Wiiboox Corporation, Nanjing, China), leveraging white light into accurate measurements,
was adopted for data acquisition of individual plant or tomato fruit in the indoor scenario.
One tomato plant or fruit was placed on a rotary table with fluorescent targets controlled
by a step motor. The rotation angle was set at 20◦, and the commercial software Reeyee-
Pro-v2 managed the data collection and point cloud generation in an automatic fashion.
A complete point cloud of individual plant was created with error around 0.15 mm, and
tomato fruit with error around 0.12 mm.

Based on the discussion above, both the accuracy of the point clouds generated by a
LiDAR sensor and a structured light sensor were quite high, and thus, they were used as
reference data for later accuracy evaluation.

2.9. Evaluation Indexes of Phenotypic Trait Extraction

To evaluate the accuracy of the reconstructed point cloud in our pipeline, we used the
point clouds created by a LiDAR scanner and structured light scanner as the reference data,
and the Hausdorff distance between the two sets of point clouds were calculated [37]. The
Hausdorff distance, which described the distance between proper subsets in the metric
space, was defined as Equation (1).

H(A, B) = max(h(A, B), h(B, A)) (1)

h(A, B) = max
a∈A

{
min
b∈B
‖ a− b ‖

}
(2)

h(B, A) = max
b∈B

{
min
a∈A
‖ b− a ‖

}
(3)
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where A and B denotes two sets A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bm}, h(A, B) is
called the one-way Hausdorff distance from set A to set B, and vice versa.

Compared with manual measurement, R2 and MAPE were used to evaluate the
performance of the phenotypic trait extraction. The MAPE of the automatic measurement
versus manual measurement was defined in Equation (4).

MAPE =
1
N

N

∑
i=1

∣∣∣∣ tm − tc

tm

∣∣∣∣× 100% (4)

In Equation (4), N denotes the number of times the summation iteration occurs, tm
denotes the measurement value, and tc denotes the value calculated from the 3D models.

3. Results
3.1. 3D Reconstructed Point Cloud of Tomato Plants Covering Different Life Cycle

For each individual tomato plant, one group of images was collected during the earlier
growth stage, while two sets of images, for the upper part and lower part, were acquired
once occlusion occurred during the later growth stage. Alignment was implemented to
produce a complete point cloud with respect to the whole plant, as shown in Figure 3a–c.
Time series 3D models of tomato plants covering the full growth period were created
with high-quality and rich color information, and the structural changes of tomato plants
during the different growth and development stages were also visualized, as shown in
Figure 3d. After removing the leaf points manually, only the stalk points were retained, and
the skeletonization algorithm was implemented on the downsampled stalk points to output
skeletonized stalks with nodes. Figure 3e shows a side view of the skeletonized results.
Node detection was conducted in an automatic way for node number and internode length
calculation. The source code and detailed implementation are described in Supplementary
Note S1.

Figure 3. Visualization of reconstruction and stalk skeletonization. Point clouds for (a) the upper
part and (b) lower part of one tomato plant and (c) a complete tomato plant model after alignment.
(d) All growth stages of one tomato plant at 7 time points. (e) The stalk skeletonization results of one
tomato plant at 7 time points.
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3.2. Comparison of the Generated 3D Point Cloud from Images and Active Sensors

To evaluate the reconstruction result, active sensors, LiDAR and structured light
scanner, were used to collect point clouds as reference data due to the high accuracy of
them. The data collection was implemented at greenhouse scenario and individual plant
level.

A FARO scanner (FARO Focus s70, FARO Corporation, Lake Mary, Florida, America)
was utilized to scan the plants in the greenhouse. The results of generated point clouds
and LiDAR based point clouds were visualized as shown regarding the tomato plants in
Figure 4a–d. The LiDAR based point cloud of the tomato plants were segmented manually
from the original point clouds as shown in Figure 4b, and the reconstructed point clouds
were shown as Figure 4d. A closer look at the figures showed that the visualization effects
of the reconstructed point cloud were compatible compared to the LiDAR-based point
cloud, and the Hausdorff distance of the two sets of point clouds was below 0.93 cm.

Figure 4. Comparison of point cloud acquired by Different Acquisition Methods. (a) Original
point cloud acquired by laser scanning and (b) different perspectives of a tomato plant model.
(c) Original point cloud acquired by 3D reconstruction and (d) different perspectives of a tomato plant
model. Based on structured light imaging: (e) different perspectives of one tomato plant acquired by
structured light sensor and (f) different perspectives of one tomato plant acquired by 3DPhenoMVS.
(g) Tomato fruit models acquired by structured light imaging and (h) tomato fruit models acquired
by 3D reconstruction.

In addition, more comparison experiments were implemented on different plants
including the seedling state of tomato plant at individual plant level, and also tomato
fruit, in order to demonstrate the effectiveness of the proposed pipeline, as shown in
Figure 4e–h. The reconstructed point clouds were compared to the reference data, which
were generated by a structured light scanner (Reeyee Pro 3D, Wiiboox Corporation, Nanjing,
China). The Hausdorff distance between the two plant point clouds was below 0.74 cm, and
the Hausdorff distances regarding tomato fruits were 0.46 cm, 0.55 cm, 0.74 cm, 0.66 cm,
0.51 cm, 0.42 cm, 0.98 cm, and 0.56 cm, respectively. Although some points were missing in
a small area regarding the reconstructed point clouds, the characteristics of low-cost and
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convenience made the proposed pipeline superior to the expensive LiDAR and structured
light sensors.

3.3. Accuracy Evaluation on Phenotypic Traits

Manual measurements of phenotypic traits were also conducted on tomato plants to
demonstrate the accuracy of the algorithm proposed in this research. Since true values of 6
phenotypic traits including plant height, stem length, internode length, transverse diameter,
vertical diameter, and node number can be measured manually and counted, the accuracy
estimation was conducted on them, and the comparative results are shown in Figure 5a–f.
The results showed that the R2 values of plant height, stem length, internode length, leaf
number, transverse diameter, and vertical diameter of tomato plants were 0.97, 0.86, 0.95,
0.76, 0.93 and 0.72, respectively. The MAPE of the above-mentioned six parameters were
17.23%, 13.89%, 20.62%, 8.20%, 2.69%, and 14.19%, respectively.

Figure 5. The performance evaluation of 3D trait extraction and growth variation with different
environments. (a) Plant height, (b) stem length, (c) internode length, (d) leaf number, (e) trans-
verse diameter, and (f) vertical diameter. (g,h) Influence of light intensity variation on stem length,
(i,j) influence of temperature variation on plant height, (k,l) influence of humidity variation on plant
volume.

3.4. Growth Variation with Different Environments

To investigate the environmental influence on the growth of tomato plants, the growth
variation in different environments was measured and validated. We divided the locations
of each environmental parameter into two categories according to the environmental differ-
ence distribution map (Figure 2b), such as locations with high intensity and low intensity,
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locations with high humidity and low humidity, and locations with high temperature and
low temperature. The tomato samples were classified into two categories by their locations.
All the phenotypic traits were analyzed in combination with the environmental parameters.
Among them, stem length, plant height, and plant volume show great difference as the
environmental parameters varied, and the other parameters did not present such trends.
Thus, we used three of them to analyze the influence of the environmental differences to the
growth of tomato plants. As shown in Figure 5g–l, the three environmental factors showed
various influences on the growth of the tomato plants in the greenhouse. Tomato plants
located in areas with higher intensity and moderate temperature and humidity show longer
stem lengths than plants with lower light intensity, such as plants 1-55, 10-53, and 20-28.
Plants 10-3 and 30-4, located at the other end of the greenhouse, show shorter stem lengths
and lower growth rates of stem length. Considering the influence of temperature, the
tomato plants (plants 1-55, 10-53, and 20-28) in the higher-temperature area show relatively
large plant height, while plants 30-4, 30-52, and 35-22 show lower plant height. Two rows
of plants (rows 30 and 35) were located at the west end of the greenhouse, where a reservoir
and wet curtains were equipped; hence, the temperature was lower than that on the other
side. Regarding humidity, the two plants located in the 30th row with high humidity, plants
30-4 and 30-52, showed lower plant volumes, while the plants located in the area with
lower humidity showed higher volumes, as shown in Figure 5k,l.

In addition, tomato fruit weight for each individual plant was measured to further
investigate the environmental influence. As shown in Figure 2b, higher yields occurred
in plants 1-55, 10-53, and 20-28, while plants 10-3 and 30-4 showed lower yields. Thus,
by testing the eight samples in the greenhouse, it was concluded that higher yield can be
expected for plants with higher light intensity and moderate temperature and humidity.

3.5. Measuring Efficiency Evaluation

In this study, a consumer digital camera was used to collect image data for each indi-
vidual tomato plant. While the plant was in the seedling stage, approximately 100 images
were taken, and this took approximately 15 min; in the later stage, two sets of images were
acquired, and approximately half an hour was needed. These procedures were all imple-
mented on a Windows 10 operating system, and the central processing unit (CPU) was an
Intel Core i7-8700 (16 GB of random-access memory). SfM was implemented by VisualSFM,
and approximately 60 min were needed to generate one point cloud for one tomato plant.
Plant volume was represented by the convex hull of the generated 3D points, and approxi-
mately 1 min was needed to calculate the volume of a single plant at 7 time points. Plant
height, plant width, and plant depth were represented by the minimum bounding box of
the generated 3D points, and determining these values took approximately 20 s. Leaf points
were separated from stalk points by minor manual work, which took approximately 2 min.
After that, the L1-median skeletonization algorithm was carried out on the downsampled
stalk points, and it took approximately 1–2 min to process 10k points. Node detection was
conducted on the skeletonized stalk points to calculate internode length automatically (the
source code for node detection can be downloaded as explained in Supplementary Note S1).
Thus, the total time consumption for extracting all the morphological traits for one tomato
plant was 80 min.

Among all the procedures, the 3D reconstruction process took most of the time, which
is mainly due to the structural complexity of tomato plants, as can be seen from the visual-
ization results. Higher reconstruction efficiency would be achieved with a more advanced
computer configuration. In addition, the proposed pipeline has another significant ad-
vantage: all the node detection and internode length calculation procedures regarding
the stalk of one individual tomato plant at different time points are implemented in a
fully automated way. The phenotypic trait calculation regarding leaves follows the same
pipeline. In other words, it is not necessary to build the correspondences for certain organs,
such as nodes and leaves, at different growth stages in order to investigate the temporal
trait changes regarding one plant organ.
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3.6. The Generalization Ability of the Proposed 3D Phenotyping Pipeline

To demonstrate the generalization ability of the proposed 3D phenotyping pipeline,
six other plant species, including maize, cotton, rapeseed, tobacco, chili, and eggplant, were
chosen as the plant samples. The 3D reconstruction and point cloud skeletonization proce-
dures were implemented, and the results shown as Figure 6 demonstrated the potential of
the proposed pipeline on other plants. Additionally, the 3D phenotypic traits can be further
estimated on the generated point clouds and the skeletonized results automatically.

Figure 6. Visualization of reconstructed point clouds and stalk skeletonization results regarding
6 species of plants.

4. Discussion
4.1. Comparison of 3D Data Collection Methods

In this study, three representative 3D data acquisition methods were used to gen-
erate 3D point cloud, including LiDAR-based scanner, structured light scanner, and 3D
reconstruction from images by considering the accuracy of point cloud, post-processing
difficulties, cost, data collection efficiency, and complexity of data collection scenario. As
shown in Figure 4a–h, the accuracy of point clouds generated by LiDAR or structured light
sensor is quite high [9], and the local density of the point cloud is more uniform, which
reduces the difficulty of post-processing, and enables high-throughput data collection. But
the high price of the sensor has limited its wide application (LiDAR: $78,500; structured
light sensor: $20,000; digital camera: $754). Compared to the reconstructed point cloud
from images, structured light sensor shows comparable visualization effect, higher degree
of automation, and higher cost. However, the plants need to be placed on a specific rotary
table, which has certain limitations on the size of the plants and the data collection must be
completed in an indoor scenario. In comparison to the LiDAR and structured light systems,
3D reconstruction from images not only achieved good point cloud quality for tomato
plants, but also show dominant superiorities, such as low cost, high flexibility, and easily
accessible data collection.

Regarding the tomato fruits, the reconstructed point clouds of tomato fruits were
compared with the points generated by using structured light sensors. As shown in
Figure 4, the visualization result of structured light sensor is better in terms of color and
texture. Due to the smoothness of tomato fruit, highlight effects (specular reflection)
happened during the data collection using structured light sensor, and thus, it is necessary
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to use markers as auxiliary apparatus, which increases the complexity of the data collection.
Both the point clouds generated by structured light sensor and images show similar effects
regarding the morphological and structural information of tomato fruits.

4.2. Reconstruction Strategy

To date, the development of 3D reconstruction technology based on multiple images
has promoted a wide range of applications for this technology in 3D plant phenotyping
because of its advantages as a non-contact, low-cost, and high-precision method. Fixed
cameras and moving cameras are the two main scenarios used for plant reconstruction.
In the fixed-camera scenario, the advantage of this approach is its high time efficiency for
3D reconstruction, and fewer images are required as input data in this case than in the
moving-camera scenario. However, some notable types of defects cannot be prevented by
this solution. The prerequisite for fixed-camera reconstruction is to calculate the accurate
position and orientation parameters of all cameras, i.e., the intrinsic and extrinsic parame-
ters of the cameras, which are determined through a calibration algorithm. This increases
the complexity of the approach, especially for researchers who do not have computer
vision experience and backgrounds. Both the correspondence-based and carving-based
reconstruction methods are involved in the calibration procedures; thus, other accessibility
settings, such as a checkerboard [15] or a cube with checkerboard patterns [21], were used
for the calibration procedure. In addition, multiple image data collection was completed
with the assistance of a turntable or stand [12], an electronic rotary [38], and other auxiliary
facilities. Meanwhile, the experiment was limited to specific indoor scenes because of the
utilization of fixed cameras and other accessibility settings.

Regarding the investigation of the environmental influence on tomato plants, all the
environmental conditions should remain the same, and the tomato plants were fixed at
the same locations during all growth stages. Hence, moving-camera solutions were more
applicable in this study. In contrast to the fixed-camera scenario, complicated calibration
procedures were avoided, and the tomato plants could stay in their original environmental
conditions without human intervention.

Previous studies successfully applied 3D reconstruction algorithms, such as Poisson
surface reconstruction [39], and α-shape based algorithm [25,40]. These algorithms mainly
focused on the surface reconstruction of leaves and canopies and output a meshed surface
model. The estimation of phenotypic traits, such as leaf area, was conducted directly on
the surface mesh models. However, this procedure was not applicable for node counting,
internode length estimation. Hence, we use the reconstructed point cloud for the later
procedures rather than surface mesh model.

4.3. The Environmental Influences on the Growth and Yield

It has been demonstrated that environmental differences influence the growth of
tomato plants. No significant growth difference regarding the total plant area, plant volume,
stem length, or canopy area was shown in the early periods, while a great difference was
shown in the late growth stages, especially during the fruit growth periods.

Differences in light intensity, temperature, and humidity can lead to differences in
plant growth. In the northern part of the greenhouse, the light intensity was weak due to
the shelter. Wet curtains led to higher humidity, and draught fans and vents led to lower
temperatures. In the same row, the difference in temperature and humidity was very small.
Interestingly, the plant growth on the south side was better than the plant growth on the
north side. For example, the overall growth of plants 1-55, 10-53, and 30-52 was better than
that of plants 1-1, 10-3, and 30-4, respectively. This may indicate that light intensity has a
greater impact on plant growth. It should be noted that the three environmental parameters
in the central area were not the highest or lowest, but the yield of plant 20-28 was the
highest. The reason was mainly because the environmental changes in the central area
were not as drastic as those on the east or west sides when performing normal switching
operations.
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To investigate the environmental influence on the yield, the fruit number and fruit
weight were also measured manually at the mature stage. As shown in Figure 2b, the yields
of plants 1-55, 10-53, and 20-28 were higher than those of the other 5 plants, indicating
that higher light intensity with moderate temperature and humidity will contribute to
better yield. In other words, slight differences in environmental changes, especially in light
intensity, caused significant differences in individual plant growth and ultimately affected
the yields of tomato plants.

4.4. Outlook and Perspectives

The application of the proposed low-cost and open-access pipeline has been demon-
strated on tomato plants covering all growth stages. At the same time, the pipeline has
been applied to other plants, such as cotton, corn, rapeseed, chili, eggplant, and tobacco.
To further exploit the application of the proposed 3DPhenoMVS, two aspects need to be
considered in future research: (1) The pipelines could be applied to plant roots, in order
to generate a whole plant model combining the above-ground and under-ground parts.
(2) To exploit the relations between plant growth and environmental conditions, further
experiments could be designed, for example, using a controlled light source to monitor
the plant growth, such as leaf color or the rate of photosynthesis. Except the image based
low-cost phenotyping pipeline, the applications of new emerged low-cost LiDAR systems
in phenotyping needs to be further explored.

5. Conclusions

In this work, a low-cost and open-access temporal 3D phenotyping pipeline, 3DPhe-
noMVS, was proposed. Based on the analysis of environmental differences in a greenhouse,
eight tomato plants were chosen to generate 3D point clouds. The 3D reconstructed models
could show the morphological structure covering the whole life cycle. Skeletons of stalks
were also produced on the point clouds to perform accurate phenotypic trait calculations.
Seventeen phenotypic traits were calculated, and the R2 values regarding stem length,
plant height, internode length and transverse diameter were more than 0.85. In addition,
slight environmental differences in the greenhouse had different influences on tomato plant
growth, and the yield difference also demonstrated this. Specifically, stronger light intensity
with moderate humidity and temperature contributed to higher yield. In addition, gen-
eralization potential of the proposed pipeline was also tested and demonstrated on other
species of plants. Overall, the proposed low-cost and open-access phenotyping pipeline
could benefit breeding, cultivation research, and functional genomics in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12081865/s1. Note S1: The instruction of 3DPhenoMVS;
Video S1: Operating procedure for 3DPhenoMVS [33–36,41]; Video S2: The whole grow stages of
plant 1-1 at 7 time points; Video S3: The whole grow stages of plant 1-55 at 7 time points; Video S4:
The whole grow stages of plant 10-3 at 7 time points; Video S5: The whole grow stages of plant 10-53
at 7 time points; Video S6: The whole grow stages of plant 20-28 at 7 time points; Video S7: The whole
grow stages of plant 30-4 at 7 time points; Video S8: The whole grow stages of plant 30-52 at 7 time
points; Video S9: The whole grow stages of plant 35-22 at 7 time points.
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