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Abstract: Cannabis breeders are combining several genes to develop economically valuable fiber,
seed, and medicinal hemp. This study analyzed the characteristics and selection of traits based on
cannabidiol production of medicinal cannabis lines successfully grown under artificial light and
nutrient solution cultivation conditions in smart farm conditions. Sixteen female plants were selected
by seeding medical hemp F1 hybrid specimens obtained by randomly crossing Cherry Wine and
native hemp from each country. The F1 generation was treated with 12 h light to induce flower
differentiation. CBD production peaked on day 50 of the treatment, and this was selected as the
harvesting day. All F1 hybrids were separated by leaf and inflorescence after collecting morphological
data, and fresh and dry weights were measured. The CBD production of leaf and inflorescence
per cubic meter was calculated. The CW21-5 line produced a total of 53.002 ± 0.228 g of CBD per
cubic meter, the highest CBD producer. In addition, heatmap correlation analysis showed that most
morphological data were not related to cannabinoid content. Principal Component Analysis (PCA)
and Self-Organizing Map (SOM) analysis showed that CW21-5 is an arbitrary line that does not
cluster with other lines, and the reason for its excellent CBD yield per cubic meter is that it has a
narrow plant diameter and a high CBD content at the same time.

Keywords: Cannabis sativa L.; hemp; hydroponic system; breeding; cannabinoid; cannabidiol

1. Introduction

Cannabis sativa L. (2n = 20), called hemp or cannabis, has an upright stem and is 1–6 m
high, depending on the phenotype and chemical type. The roots are from 30–60 cm to about
2.5 m deep, and the lateral root is well developed. The leaves are palmate and the number
of leaflets varies. The leaf surface is covered with white to yellowish-brown resinous glands.
The flowers are divided into staminate (male) or pistillate (female) [1]. The plants can be
hermaphroditic or dioecious, depending on genetic factors or the environment in which
they are grown.

The hemp plant contains more than 500 secondary metabolites such as polyketides,
terpenoids, polyphenolics, alkaloids, flavonoids, stilbenoids, quinones, and terpenopheno-
lics [2]. Cannabinoids (terpenophenolic C21 or the neutral C22 form) are only observed in
C. sativa [3].

To date, more than 100 types of cannabinoids, one of the most prominent components
of hemp, have been identified. Additionally, neutral cannabinoids (∆9-tetrahydrocannabinol
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(∆9-THC) and cannabidiol (CBD)) are activated from acidic cannabinoids (∆9-tetrahydrocannabinolic
acid (∆9-THCA) and cannabidiolic acid (CBDA)) through the decarboxylation process [4].
∆9-THC is a major psychotropic cannabinoid, causing transient psychotic and anxiety
symptoms [5] and mental illness, even in adults without major psychosis [6]. From 1995
to 2015, the THC content of hemp for psychoactive purposes increased by 212%, and
concentrated THC products resembling regular products, such as chocolate and jelly, have
been produced. This has resulted in a significant increase in accidental exposure and
overdose in children [7]. ∆9-THC is also used for medicinal purposes, depending on its
purpose, but in this study, the purpose was to produce CBD. Conversely, CBD has positive
effects on schizophrenia [8], reduces the incidence of seizures in epilepsy [9], improves
sleep in patients with Parkinson’s disease [10], reduces anxiety, and has antipsychotic and
neuroprotective effects such as improving cognitive processes [11].

Biosynthesis of cannabinoids begins with the prenylation of olivetolic acid (OA) to
produce cannabigerolic acid (CBGA). CBGA is then converted to different cannabinoid
carboxylic acid forms. Tetrahydrocannabinoic acid (THCA) is converted to cannabidiolic
acid (CBDA) by THCA synthase, and cannabichromenic acid (CBCA) by CBDA synthase
and CBCA synthase [12,13]. In addition, acidic cannabinoids decompose into a neutral
form through heat, and also, the additional decomposition reaction of metabolites is caused
by exposure to light, UV-B irradiation, oxidizing agents, and high temperatures. It is known
that 95% of cannabinoids in undried hemp are in an acidic precursor state [14].

Analyzing the cannabinoid profile of plants over time showed that the concentration of
cannabinoids increased when the flowering period was reached [15]. Changes in these con-
centrations are dependent on moisture [16], geographical location [17], mineral quality [18],
UV-B [19], temperature and humidity, fertilization status, breeding method [20], and variety.
In addition, CBC and CBG gradually decreased from seedling state to harvest, and the
THC content gradually increased from germination to flowering. To maximize the ∆9-THC
yields, crops should be harvested during the flowering period. The relatively high ratio of
CBC and CBG to THC was maintained for approximately 146 h in the seedling state and
up to 29 days in the vegetative state [15].

Cannabinoids are secondary metabolites synthesized and stored in trichomes mainly
found in female flowers [21]. Trichomes are divided into six types, i.e., unicellular non-
glandular trichomes, cytolytic trichomes, capitate-stalked trichomes, capitate sessile tri-
chomes, simple bulbous trichomes, and complex bulbous trichomes [22]. However, they are
generally called capitate-sessile, capitate-stalked, and bulbous types. Usually, the stalked
type trichome is dominant along the leaf veins, and the sessile type is dominant in the
non-vein parts [23]. The stalk type has more cannabinoids and terpenes than the sessile
type [24].

Cannabinoid biosynthesis in trichomes follows the same initial pathway (Figure 1) [14].
Hexanoic acid is produced through the oxidative cleavage of fatty acids in the cytoplasm,
and geranyl diphosphate (GPP), which converts olivetolic acid to cannabigerolic acid
(CBGA), is derived from the MEP pathway in chloroplasts [12]. The produced CBGA
produces acidic precursor cannabinoids by the respective synthases (cannabidiolic acid
synthase, tetrahydronnabinolic acid synthase, and cannabichromenic acid synthase) [25].
The biosynthesis of these cannabinoids involves movement between the cytosol, plasmid,
and apoplast, but the migration method of the precursors has not yet been identified [26].

The ‘Cherry Wine’ variety used in this experiment is a hybrid of The Wife × Char-
lotte’s Cherries and is a CBD-only variety with a total THC content of less than 0.3% [27].
Initially, wild cannabis provided beneficial seeds, fibers, and drugs for humans. Cannabis
breeders combine several genes to develop economically valuable fiber, seed, and medicinal
hemp [28].
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Figure 1. Cannabinoid synthesis pathway.

Cannabis is dioecious, with separate male and female plants. However, crossbreeding
also produces hermaphroditic lines with male and female flowers on the same plant [29].
Due to the cross-fertilization requirements and its high heterozygosity, it takes a long time
to breed [25]. However, CBDA synthase has a higher affinity for the precursor molecule
CBGA than THCA synthetase, and more CBGA substrate is converted to CBDA than
THCA [28]. Therefore, the potential for medicinal hemp breeding is high.
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In vitro studies have shown that CBDA synthase produces CBDA and THCA at a ratio
of approximately 20:1, implying that the higher the CBD content, the greater the likelihood
that the THC content will exceed legally acceptable standards [30].

In general, if the THC content of an inflorescence is less than 0.2–1.0%, it is classified
as hemp, and if it exceeds that, it is classified as marijuana [31,32]. Cannabis with these
characteristics is listed as a schedule-1 illicit drug by the UN [33]. It can be grown under
highly restricted conditions in Korea and Singapore, the only Asia-Pacific region licensed for
growing cannabis for medical use in Australia, New Zealand, and Thailand [34]. Similarly,
in the United States, many states still classify cannabis as an illegal drug [35]. Owing
to the characteristics of cannabis, smart farms are considered suitable for the production
of medicinal hemp. This is because security is periodically upgraded [36], space can be
used efficiently, environmental factors can be adjusted [37], and yield predictions are more
accurate [38].

Kanjilal et al. (2014) described the smart farm as an automated system that extended to
the farm level, with automatic lighting, climate control, fire and smoke detection, auto-lock
and release doors, humidity and moisture control, pre-set wash times, feeder control, and
remote mobile connectivity. Smart farms can be controlled remotely using the Internet of
Things (IoT) and smartphone technology [39,40].

This study focused on analyzing the characteristics and selection of traits involved
in cannabidiol production of medicinal hemp lines that were successfully grown under
artificial light and nutrient solutions.

2. Materials and Methods
2.1. Generating the F1 Population

About 1000 F1 hybrid seeds collected from open-pollinated Cherry wine variety were
used to select excellent clones with high CBD and low THC under the LED smart farm
and hydroponics conditions. The Pollen parent was a native hemp randomly collected
from USA, UK, Latvia, Lithuania, France, India and Portugal. The F1 hybrid seeds were
received from the Chuncheon Bio-Industry Foundation (Chuncheon, Korea). They were
sown in media mixed with bio-soil (Heungnong Jongmyo Co., Pyeongtaek, Korea) and soil
(Taeheung F&G, Bucheon, Korea) in a 2:1 ratio and light conditions of 16 h/day were used
for 2 weeks. About 100 lines with strong germination force, overall vitality, and which were
highly branched were selected from among the sown F1 individuals. The selected excellent
lines were transferred to LED and artificial nutrient medium for cultivation adaptation
tests. Of these, 60 individuals grew well in artificial cultivation conditions. All unnecessary
male lines and morphologically inferior female lines were removed during LED Smart
Farm cultivation. After eliminating inferior lines under smart farm cultivation conditions,
16 female individuals (named clones in CW21-1 to CW21-16) were finally selected as
superior clones with desirable morphological characteristics with the mother plant.

2.2. Cultivation Conditions

The hydroponic system consisted of 75 × 75 mm growth blocks (Gordan Co., Roer-
mond, The Netherlands). The nutrient solution was supplied every 30 min for 30 s.

The composition of the nutrient solution followed that in the previous study on
the cultivation of hemp nutrient solution [41]. Nutrient solution composition is shown
in Table 1 and all fertilizers used for hydroponic cultivation were products of DOFagro
(Pyeongtaek, Korea). The LED (Bissol LED, Seoul, Korea) conditions were: brightness
40,076 ± 307 lux, PPFD 692.4, PFD-R 291.2, PFD-G 254.8, and PGF-B 146.5. The spectrum is
shown in Figure 2. Reproductive growth was induced at 16 h/day for 60 days, and flower
differentiation was induced by switching to 12 h/day (short daylight treatment) on day 60.
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Table 1. Nutrient solution composition.

Nutrient Name A Solution (50 L) B Solution (50 L)

Ca(NO3)·4H2O 1.50 kg
KNO3 3.79 kg 3.79 kg

(NH4)H2PO4 1.60 kg
MgSO4 4.30 kg

Fe-EDTA 460.0 g
MnSO4 30.8 g
H3BO3 57.2 g
ZnSO4 3.6 g
CuSO4 1.3 g

(NH4)6Mo7O24·4H2O 0.4 g

Solutions A and B were mixed to maintain an EC range between 1.2 to 1.7 (dSm−2), pH 6.0.
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2.3. Sample for F1 Hybrid Selection

Samples were collected on days 21, 35, 44, and 50 of the flowering treatment (short-
daylight treatment), and leaf and inflorescence parts were sampled. Samples from the
top, middle, and bottom were collected and freeze-dried (ilSinBioBase Co., Dongduchoen,
Korea). After drying, the sample was pulverized to a homogeneous particle size of 12 mesh
using a chopper (YPT-1402; Young Polymer Tech Co., Incheon, Korea), and 0.1 g of the
sample was added to 30 mL pure-grade MeOH (Daejung Chemicals and Metals Co., Ltd.,
Siheung, Korea). Ultrasonic extraction using JEIO TECH ultrasonicator (Daejeon, Korea)
was performed at 23 ± 2 ◦C for 30 min. The extracted supernatant was filtered through a
0.45 µm syringe filter (Advantec, Tokyo, Japan) and transferred to HPLC vials. Components
were analyzed by HPLC at a wavelength of 220 nm with an LC-20AD (Shimadzu Co., Kyoto,
Japan) instrument, using internal standards (CBDA (Cerilliant, Round Rock, TX, USA)
49-THCA (Sigma-Aldrich Co., St. Louis, MO, USA), and ∆9-THC (CAYMAN, Ann Arbor,
MI, USA)). HPLC conditions are shown in Table 2. The gradient conditions were as follows:
70% B initially, 70% B for 2 min, 85% B for 6 min, 70% B for 1 min, and 70% B for 3 min.
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Table 2. HPLC conditions.

Equipment Condition

Instrument Shimadzu LC-20AT HPLC system
Column Reverse phase Zorbax SB-C18 (4.6 mm × 100 mm, 3.5 µm)
Detector UV-Vis detector (220 nm)

Elution type Gradient

Mobile phase Solvent A: Water containing 0.05% TFA
Solvent B: Acetonitrile containing 0.05% TFA

Flow rate 1.5 mL/min
Oven 27 ◦C

Injection volume 10 µL

Plant height, leaf length, leaf width, branch number, stem diameter, inflorescence
number, petiole color (red%), stem color (red%), and plant diameter were evaluated when
samples were collected on day 50 of the flowering treatment. The redness was calculated
as the ratio of the red part area to the green part area, and the CBD production per cubic
meter was calculated using Equation (1).

Total CBD production per cubic meter (g) =
a× b

Width2 × height
(1)

a, Total CBD concentration (ppm; µg/g).
b, dry weight of leaf or inflorescence (g).
The width and height were used in centimeter

2.4. Statistical Analysis

All data were analyzed in triplicate and expressed as the mean ± standard deviation.
One-way analysis of variance (ANOVA) and Duncan’s multiple range test (DMRT) were
used to confirm the significance of the differences between groups (* p < 0.05). All statistical
analyses were performed using SAS software (Ver. 9.4, SAS Institute Inc., Cary, NC, USA).

Principal component analysis (PCA), heatmap, and clustering analysis were per-
formed from normalized mean values using MetaboAnalyst 5.0 (www.metaboanalyst.ca,
accessed on 3 March 2022). Hierarchical cluster analysis was conducted using the Euclidean
distance algorithm.

3. Results and Discussion
3.1. Selection according to Cannabidiol Content

The terminal stems of the mother plant and 16 specimens of F1 generation hemp that
had adapted to the transition from growing in soil to LED smart farming are shown in
Figure 3.

The cannabinoid content depends on the time of harvest, the environment [42], and the
characteristics of the variety [43]. Therefore, it is essential to analyze the content. Analysis
of CBDA + CBD during the flowering treatment showed a similar cannabinoid pattern in
all plants. The CBDA + CBD content of the leaves was 0.7586 ± 0.3549% on day 21, the
lowest at 0.6061 ± 0.2747% on day 35 day, 0.3659 ± 0.1962% on day 44, and the highest
at 1.7316 ± 0.7442% on day 50 (Figure 4A). The CBDA + CBD content of inflorescences
increased to 2.6513 ± 0.6371% on day 21 and 5.0402 ± 1.6898% on day 35, then decreased
to 2.2593 ± 0.9702% on day 44 and peaked at 5.4966 ± 1.5041% on day 50. Ref. [43] also
reported that the highest CBD content was found 6–7 weeks after flowering, which is
consistent with our results (Figure 4B).

www.metaboanalyst.ca
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Figure 3. Branch tip shape of hemp mother plant and F1 hybrids. The samples were collected on day
50 of the flowering treatment (short light length, 12 h light/day). (A) Mother plant; (B) CW21-5 line;
(C–Q) F1 generation except CW21-5 line.

∆9-THCA + ∆9-THC content in the leaves had a slightly different pattern from the
CBDA + CBD content. The leaf content was 0.1221 ± 0.0325% on day 21, 0.0956 ± 0.0306%
on day 35, 0.0594 ± 0.0270% on day 44, and 0.0471 ± 0.0232% on day 50 (Figure 4C).
The ∆9-THC(A) content of inflorescence was 0.0607 ± 0.0133% on day 21, increased
to 0.1747 ± 0.0607% on day 35, decreased to 0.0583 ± 0.0185 on day 44, and increased
to 0.2214 ± 0.0579% on day 50, which was similar to the CBD(A) trend of the inflores-
cence (Figure 4D). The lowest ∆9-THC content and the highest CBD content in the leaf
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were observed on day 50, and the plant harvest time was set on day 50 of the short-day
length treatment.
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Figure 4. Cannabinoid content by strain and date. (A) CBD + CBDA of leaf, (B) CBD + CBDA of
inflorescence, (C) ∆9-THC + 9-THCA of leaf, (D) ∆9-THC + ∆9-THCA of inflorescence. Indications of
21st–50th represent the days of short daylight treatment.

Table 3 shows the morphological data collected prior to harvesting. The mother plant
was fixed as ‘Cherry wine’ variety, but had various traits, including cannabinoid content.
All petioles and the stems of most plants of the F1 line were red. The morphological
data were important for further evaluation of CBD production per unit and correlation
with cannabinoids.
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Table 3. Morphological characteristics of the Cherry Wine F1 generation.

Plant Line
Plant

Height
(cm)

Leaf
Length

(cm)

Leaf
Width
(cm)

Branch
Number

Stem
Diameter

(mm)

Inf.
Number

Inf.
Length (1)

Petiole
Color

(Red%)

Stem
Color

(Red%)

Whole Plant
Diameter

(cm)

Mother
plant 78.1 ± 5.1 12 ± 2 1.1 ± 0.3 17 ± 2 10.17 ± 3.70 410 ± 112 ++++ 40 0 60 ± 11

CW21-1 44.1 ± 4.3 18 ± 2 3.2 ± 0.6 12 ± 3 15.40 ± 3.12 198 ± 25 ++ 60 5 66 ± 5
CW21-2 52.5 ± 8.1 12 ± 3 3.0 ± 0.6 10 ± 2 8.62 ± 2.75 320 ± 49 +++ 95 75 68 ± 13
CW21-3 50.2 ± 3.2 23 ± 4 5.1 ± 0.6 26 ± 4 14.86 ± 3.34 76 ± 14 + 15 5 37 ± 18
CW21-4 84.0 ± 8.4 14 ± 4 2.5 ± 0.4 23 ± 6 10.44 ± 3.11 146 ± 43 ++ 50 5 50 ± 16
CW21-5 68.2 ± 4.5 15 ± 5 3.1 ± 0.5 19 ± 3 13.06 ± 2.02 205 ± 51 ++++ 30 5 43 ± 11
CW21-6 69.3 ± 4.4 12 ± 2 1.4 ± 0.2 20 ± 3 7.04 ± 3.55 330 ± 44 ++ 40 50 58 ± 21
CW21-7 78.9 ± 5.7 14 ± 4 1.8 ± 0.2 20 ± 5 10.50 ± 2.13 460 ± 37 +++ 40 20 78 ± 17
CW21-8 38.5 ± 6.1 12 ± 2 1.5 ± 0.4 12 ± 2 10.09 ± 4.00 248 ± 44 ++ 5 0 87 ± 21
CW21-9 62.1 ± 6.6 11 ± 3 1.3 ± 0.2 17 ± 6 13.27 ± 2.76 512 ± 85 ++++ 5 0 90 ± 18
CW21-10 47.0 ± 4.3 19 ± 8 2.1 ± 0.4 14 ± 5 8.15 ± 1.11 245 ± 64 ++++ 85 80 70 ± 20
CW21-11 72.0 ± 11.1 13 ± 1 2.0 ± 0.3 14 ± 5 6.84 ± 1.04 179 ± 51 ++ 80 80 70 ± 11
CW21-12 54.2 ± 5.3 15 ± 4 1.8 ± 0.6 16 ± 4 8.51 ± 1.31 295 ± 52 ++++ 75 60 73 ± 17
CW21-13 59.0 ± 4.0 15 ± 4 2.8 ± 0.5 14 ± 6 11.06 ± 2.34 349 ± 105 ++ 15 0 50 ± 12
CW21-14 61.2 ± 7.7 10 ± 2 1.2 ± 0.4 11 ± 4 8.39 ± 1.08 300 ± 13 ++++ 30 30 89 ± 11
CW21-15 88.9 ± 6.0 19 ± 5 4.0 ± 0.8 17 ± 3 11.23 ± 3.11 201 ± 91 ++ 30 0 58 ± 21
CW21-16 69.3 ± 3.1 18 ± 6 3.1 ± 0.5 15 ± 7 7.51 ± 2.53 85 ± 37 ++ 40 0 68 ± 16

Data were selected based on the females that successfully survived the transition to the nutrient solution conditions.
(1) +: very short, ++: short, +++: long, ++++: very long. The diameter and length of the leaf are expressed as the
average of the top, middle, and bottom of the plant, on the basis of three identical clones.

The number of branches showed a higher number (16.25) than the ‘NB100′ variety
(7.67) investigated in the previous study [44]. However, considering that the number
of branches varies depending on the cultivation environment or the number of days of
vegetative growth, comparison with the mother plant is preferable to comparison with
other plants [45]. Lines CW21-3, 4, 5, 6, and 7 showed a higher number of branches than
the mother plant grown under the same conditions, indicating that it is more advantageous
in the ‘cutting and plant’ propagation of cannabis plants. In addition, the lower the plant
height, the higher the space use efficiency in a multi-floor smart farm. CW21-1, 2, 3, 5, 6, 8,
10, 12, 13, 14, and 16 varieties showed lower plant height than the mother plant.

Table 4 shows the results of measuring CBD production per unit meter based on mor-
phological data, additionally measured dried leaf and inflorescence weight, and average
cannabinoid content of flowers and leaves of the whole plant.

Table 4. Total CBD content per cubic meter.

Plant Name
Total CBD Content (g, CBD + CBDA)

Leaf Inflorescence Total

Mother plant 2.663 ± 0.211 f 23.612 ± 0.861 c 26.275 ± 0.724 e

CW21-1 7.791 ± 0.354 d 30.310 ± 0.434 b 38.102 ± 0.457 b

CW21-2 1.751 ± 0.133 g 11.913 ± 0.060 f 13.663 ± 0.119 i

CW21-3 8.680 ± 0.297 c 20.916 ± 0.451 d 29.596 ± 0.441 d

CW21-4 9.865 ± 0.188 b 23.440 ± 0.510 c 33.304 ± 0.444 c

CW21-5 14.936 ± 0.266 a 38.066 ± 0.088 a 53.002 ± 0.228 a

CW21-6 0.505 ± 0.037 ij 5.767 ± 0.174 h 6.272 ± 0.145 k

CW21-7 1.823 ± 0.157 g 14.637 ± 0.354 e 16.460 ± 0.316 h

CW21-8 1.040 ± 0.104 hi 8.313 ± 0.396 g 9.353 ± 0.334 j

CW21-9 1.238 ± 0.104 h 14.759 ± 0.069 e 15.998 ± 0.102 h

CW21-10 2.831 ± 0.097 f 15.219 ± 0.160 e 18.050 ± 0.153 g

CW21-11 1.016 ± 0.149 hi 3.619 ± 0.186 i 4.635 ± 0.194 m

CW21-12 4.096 ± 0.128 e 14.991 ± 0.189 e 19.087 ± 0.187 f

CW21-13 4.248 ± 0.096 e 12.104 ± 0.306 f 16.352 ± 0.262 h

CW21-14 0.661 ± 0.011 ij 5.745 ± 0.095 h 6.406 ± 0.078 k

CW21-15 1.840 ± 0.075 g 3.314 ± 0.030 i 5.154 ± 0.066 l

CW21-16 1.184 ± 0.095 h 8.099 ± 0.303 g 9.283 ± 0.259 j

Means with different letters varied significantly with DMRT (Duncan’s Multiple Range Test) at the 5% level
(p < 0.05) within the same part of the plant. After harvesting all leaves or flowers, they were ground and
homogenized, and random sampling was performed using the cone quadrant method. The morphological data
used for calculation were average values.
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The CW21-5 hybrid showed the highest total CBD production per cubic meter at
53.002 ± 0.228 g/m3; the second-highest yielding line was CW21-1 (38.102 ± 0.457 g/m3),
and the third was CW21-4 (33.304 ± 0.444 g/m3). As a result of breeding for the F1
generation for the purpose of CBD production under artificial nutrient solution culture
conditions, the CW21-5 line among the clones provided the most suitable results.

3.2. Component and Morphological Correlation

We compared the morphological and compositional data to determine why the CW21-
5 line could have such a high total CBD content per meter. On day 50 of the flowering
treatment, morphological investigations of all hemp F1 plants were conducted. Heatmap
analysis of the analyzed plant height, branch number, cannabinoid ratio (total CBD/total
∆9-THC) of the leaves, stem diameter, leaf length, and leaf width formed one cluster group.
The cannabinoid ratio (total CBD/total ∆9-THC) of inflorescences, total CBD concentration
of inflorescences, total CBD concentration of leaves, and total ∆9-THC concentration of
leaves constituted a second cluster group. The redness percentage of petioles, redness
percentage of stems, total ∆9-THC concentration of inflorescences, count of inflorescences,
and plants constituted a third cluster group. According to the heat map analysis, total CBD
content and plant diameter showed a strong inverse relationship on CW21-5. As a result,
the CW21-5 line occupies less space, but has a high cannabinoid content, increasing the
total CBD production per unit meter.

Several morphological features and cannabinoid content were classified into different
clusters, indicating very little or no correlation. In addition, Vergara et al. (2021) investi-
gated the correlation between cannabinoids and the morphological characteristics of the
leaves of 297 types of hybrid hemp but found no correlation [46].

The results from the principal correlation heatmap showed that the number of flowers
and the plants’ diameter was proportional (Figure 5). Many morphological parameters,
such as stem diameter and leaf length, were inversely proportional to the diameter of the
plant. In addition, most of the morphological data and cannabinoid content did not have a
significant correlation, except for the THC content of inflorescence, where all cannabinoids
had a proportional relationship with each other. In addition, stem redness percentages had
an inverse relationship with stem diameter. Abot et al. (2013) reported that overall growth
was sluggish, and stems turned red in cannabis subjected to moisture stress. In addition,
this did not have a significant effect on the cannabinoid content, suggesting the possibility
that anthocyanin, which can be confirmed with the naked eye in medicinal hemp, can be
applied as a stress marker, and further studies are needed using more medicinal hemp
varieties [47].

Morphological data and component data values of cannabis were expressed through
clustering principal component analysis. Each F1 line generated three clusters, cluster
1 consisted of CW21-13, CW21-16, CW21-3, CW21-15, CW21-4, and CW21-1, and cluster
2 was composed of CW21-8, CW21-10, CW21-2, CW21-11, CW21-16, CW21-9, CW21-
6, CW21-12, CW21-14, CW21-1, and cluster 3 comprised CW21-2, CW21-11, CW21-12,
CW21-14, CW12-7, and the mother plant. CW21-5 did not belong to any group and had
a negative correlation with plant diameter, and positive correlation with CBD content of
inflorescence and leaf. In other words, the characteristics of CW21-5, which has a high total
CBD production per unit area, were explained due to the narrow plant diameter and high
CBD content in the leaves and inflorescence at the same time (Figure 5).

The inflorescence cannabinoid ratio (total CBD/total ∆9-THC) was high, confirming
the superiority of the CW21-5 strain with regard to low total ∆9-THC content and high
CBD content in the inflorescence (Figure 6).
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degree of correlation with specific treatment.

4. Conclusions

Currently, hemp is regulated in many countries due to the THC, and most medicinal
cannabis growers have to cultivate within the allowed spaces. Therefore, a smart farm
cultivation facility that is secure, enclosed, easily managed, and maximizes the space will
be the most suitable cultivation method for hemp.

In this study, the mother plant was from the Cherry Wine strain, and the father plants
were randomly selected. The F1 generation was obtained via open pollination. Sixteen
female individuals of the F1 generation were successfully cultivated in nutrient solution
culture under artificial light conditions. The cannabinoid content was analyzed over time,
and morphological data were collected on day 50 of the short-day-length treatment when
the cannabinoid production peaked.

The total CBD production per cubic meter was based on the dry weight, plant height,
plant diameter, and cannabinoid content. The F1 generation with the highest total CBD
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content was CW21-5 (53.078 ± 0.242 g/m3). Heatmap analysis revealed that the decisive
reason for the high yield was the high CBD content and narrow plant diameter.

The first hemp hybrid (2n = 10) was ‘Skunk No. 1’, produced in the early 1970s.
The Skunk No. 1 cultivar was bred by selecting the F2 progeny based on various traits,
performing nine repeated inbreedings, selecting 10 female and 10 male individuals, and
crossing combinations [48].

In addition, it is possible to induce male flowers in female individuals by treating them
with silver nitrate at flowering time, thereby creating intentional hermaphrodites [49]. After
securing the F1 generation using this method, genetic stability and higher cannabinoid con-
tent can be expected if individuals are treated with silver nitrate and are self-pollinated for
several generations to ensure genetic fixation. As hemp varieties become legal worldwide,
their economic value as an agricultural product is developing into a multi-billion-dollar
industry [50]. Although breeding of individuals for high CBD production has not been
actioned in Korea yet, many varieties are emerging abroad [51–55].

For hemp growers, the method of selecting hemp varieties based on CBD production
per cubic meter is more systematic and easier to predict than the existing methods.

‘CW21-5’, bred based on these factors, was successfully adapted to the smart farm’s
nutrient solution cultivation and LED system. Like the ‘Sinsemilla’ variety, it can be
registered as an F1 generation bred exclusively for vegetative breeding, and it will have
new value as a cannabis breeding source in future research and hemp breeding.
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