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Abstract: Mobile applications that can be used for the training and classification of plant diseases are
described in this paper. Professional agronomists can select the species and their diseases that are
supported by the developed tool and follow an automatic training procedure using a small number
of indicative photographs. The employed classification method is based on features that represent
distinct aspects of the sick plant such as, for example, the color level distribution in the regions of
interest. These features are extracted from photographs that display a plant part such as a leaf or
a fruit. Multiple reference ranges are determined for each feature during training. When a new
photograph is analyzed, its feature values are compared with the reference ranges, and different
grades are assigned depending on whether a feature value falls within a range or not. The new
photograph is classified as the disease with the highest grade. Ten tomato diseases are used as a
case study, and the applications are trained with 40–100 segmented and normalized photographs for
each disease. An accuracy between 93.4% and 96.1% is experimentally measured in this case. An
additional dataset of pear disease photographs that are not segmented or normalized is also tested
with an average accuracy of 95%.

Keywords: disease classification; training; mobile application; image processing; segmentation;
tomato diseases

1. Introduction

The economic and ecological overhead of crop management can be significantly in-
creased if plant diseases are not detected and treated early. Larger amounts of pesticides
are required if a disease has already spread, and part of the production may be perma-
nently lost. The plants need to be continuously monitored in order for the initial disease
symptoms to be recognized. Medium and small producers may not be able to afford to hire
professional agronomists for long periods. Several precision agriculture and Internet of
Things (IoT) tools have recently been proposed that can assist producers in efficiently mon-
itoring the health of their plants. Although most of these tools cannot provide a certified
diagnosis, they can guide the producer to perform additional, more reliable tests [1], if it
is necessary, to verify a disease infection. The diagnosis of a plant disease can be based
on its symptoms: under- or over-development of tissues or necrosis or alternation in the
appearance of plant parts. The progression of the primary or secondary symptoms depends
on biotic agents. Similar symptoms may also be caused by the use of herbicides, chemicals
and air pollution.

Some approaches require advanced tools and hardware or a combination of infor-
mation derived from multiple sources (e.g., sensors) to perform a reliable plant disease
diagnosis. Image processing can be combined with sensor indications, meteorological data
and information entered by the producers in response to questionnaires. Unmanned Air
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Vehicles (UAVs) and Internet of Things (IoT) sensors mounted in constant positions or on
robots/tractors can be used to monitor large crops. A review of Machine Learning (ML)
techniques for the detection of biotic stress in crops can be found in [2]. Ballesteros et al. dis-
cussed several UAV-assisted approaches in [3]. IoT sensors, robotics and image processing
exploited by Convolutional Neural Networks (CNN) were combined in [4] for plant disease
diagnosis. Natural language processing was applied in [5] for crop pests and disease
recognition. A review of machine vision approaches used in the identification of common
invertebrates (butterflies, snails, etc.) in crops was discussed in [6]. A review of deep
learning techniques applied in hyperspectral information can be found in [7,8].

Many approaches combine image processing with deep learning techniques to detect
plant diseases. We are especially interested in the tomato and pear diseases that are used as
case studies in this paper. Grape leaf diseases were diagnosed in [9] by combining various
CNN architectures (AlexNet, ResNet, GoogLeNet) and Support Vector Machines (SVM).
Pear and apple fruit classes were examined in [10], where MobileNet and MobileNetV2
deep learning architectures for mobile devices were compared. Key influencing factors and
severity recognition of pear diseases using deep learning were examined in [11]. Three pear
diseases with six levels of severity were discriminated. A CNN was used in [12] to detect if
a leaf is infected by one of the 12 tomato and potato diseases supported. In [13], an efficient
smart mobile application model that is based on MobileNet CNN was used to recognize
10 tomato leaf diseases. A CNN architecture that recognizes 10 tomato leaf diseases was
presented in [14] and was compared with Inception V3, Mobilenet and VGG16. The size
of the trained model in [14] required 1.69 MB. Seven tomato disease classes were tested
in [15] by AlexNet and VGG16 in order to investigate how accuracy and speed are affected
by the number of training images and other parameters such as minibatch size, weight and
bias learning rate. In [16], transfer learning was employed for use on mobile devices at
reduced cost using pre-trained EfficientNetB0, MobileNetV2 and VGG 19 models as feature
extractors. The resulting model size ranged between 24 MB and 155 MB.

Mobile applications, such as the ones presented in this paper, are also of special interest.
A survey on mobile applications for various smart agriculture tasks can be found in [17].
Fertilizer and irrigation control was performed by the mobile application described in [18].
A review on mobile applications for plant disease signature detection was presented in [19].
Image processing and neural network architectures perform poorly on mobile devices
due to limited resources (memory, processing speed) [20]. In the simplest case, mobile
devices can be used for plant disease diagnosis based on descriptions entered by the
end user in text format [21]. The referenced approaches in this category require internet
connection and are often based on decision trees that model the combinations that should be
examined according to the declared symptoms. A more advanced approach based on text
analysis was presented in [22]. In this approach, an Android application was developed,
addressing more than 100 crop disease problems of cotton/wheat leaves/fruits based on
fuzzy inference. A mobile application for maize diseases was discussed in [23]. Another
mobile application with a user-friendly interface that performs fungal disease detection
was presented in [24]. The diagnosis was assisted by meteorological historic data and a
chat with the end user. The mobile application presented in [25] estimated the damage
caused by the Tuta absoluta pest. A mobile CNN approach for the diagnosis of 26 diseases
from 14 crop species was presented in [26].

Deep-learning-based plant disease classification applications can achieve a superior
accuracy that is often higher than 95%. However, these approaches require a large number
of training samples and a long training period. The size ratio of the training dataset to test
dataset is usually higher than 3:1. These training difficulties also exist in other machine
learning techniques such as SVM. The training process in these approaches cannot be
performed by an end user, e.g., an agronomist or a cultivator. The list of supported diseases
and species can be extended only by the developer of these applications. For this reason,
the plant disease applications presented in the literature support either a limited set of
popular plant diseases (tomatoes, potatoes, citrus, grapevines, etc.) or they are developed
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for specific plants and lack portability. Many referenced plant disease applications use
trained models several megabytes in size, and mobile platforms may not be able to provide
the necessary resources. The work presented in this paper concerns two mobile applications
(Disease Classification Trainer, Disease Classifier) that can be used to train and classify new
diseases based on a method that does not require a large training dataset. Agronomists
can exploit these tools to customize the supported set of diseases and perform appropriate
training that satisfies the accuracy goals set. The complexity of the employed method is low,
and the resulting diagnosis rules are stored in a file that is a few kilobytes in size. Therefore,
this implementation is appropriate for mobile applications. Classification is performed
almost instantaneously, while the training latency depends only on the time needed for the
interactive selection of the training photographs.

An RGB photograph displaying a sick plant part (e.g., leaf or fruit) is segmented into
four Regions of Interest (ROIs): the background, the normal part, the spots and the halo
around the spots. Most of the features extracted concern histogram features for each ROI
color. The ranges of these histograms form the disease signature. In real-time operation,
the extracted feature values are compared to the feature ranges stored in each disease
signature, and a grade is estimated that is used to sort the diseases. An initial version
of this classification method was presented in [27] in the framework of the Plant Disease
application. This method can also be used for different image classification applications
such as skin disorder recognition [28]. The experimental results presented in this paper
show that, despite the simplicity and extendibility of the proposed classification method,
high accuracy (>95%) can be achieved in the recognition of some diseases even if a relatively
small portion of the dataset is used for training. The applications were developed using the
Visual Studio 2019—Xamarin platform sourced from the official Microsoft webpage, and,
thus, they can be deployed as Android, iOS or Windows applications (Universal Windows
Platform—UWP).

The approach presented in this paper differs from our previous work in the following
ways: (a) the classification mobile application is extended to support dynamic training and
loading of disease recognition rules, (b) a training application is developed to automate the
training procedure on new diseases, (c) the classification algorithm is extended to support
the comparison of a feature value with multiple ranges (only two ranges were supported
in [27]) to improve accuracy, (d) the results presented in this work concern the classification
of a larger number of diseases (10 tomato leaf diseases are examined in one case study
instead of the five citrus diseases tested in [27]) and (e) a dataset of four pear diseases is
also tested to measure the accuracy of the proposed method using photographs that are
not segmented or normalized. The tomato photographs tested in this paper were retrieved
from publically available datasets, while the ones displaying pear leaves are a private
collection retrieved from the region of Achaia, Greece.

The dataset, the classification algorithm and the developed mobile applications are
described in Section 2. The experimental results are presented in Section 3, and discussion
follows in Section 4.

2. Materials and Methods
2.1. Dataset and Supported Diseases

The tomato disease dataset used in this work was retrieved from PlantVillage [29].
In this dataset, 50,000 photographs are offered concerning 38 common plant diseases of
potatoes, tomatoes, corn, pepper, apple, strawberries, etc. The photographs are available in
three formats: (a) color scale, (b) gray scale and (c) color and segmented. Other datasets
that can be exploited by our applications are the RoCoLe, containing annotated coffee leaf
images [30], and the LeLePhid [31], with images of lemon leaves infected by aphid insects.
We used the color and segmented tomato disease photographs from PlantVillage where
the background is black. The background segmentation can be performed by our classifi-
cation application if the plant part has a different color than the background, e.g., yellow
citrus fruits or red tomatoes with green leaf or brown soil background or if the sick plant



Agronomy 2022, 12, 1732 4 of 20

part is placed on a white sheet or bench. Employing a more sophisticated background
separation method is part of our future work. Our application also supports normaliza-
tion methods, such as dynamic range extension, that are described in detail in [27]. We
randomly selected 140 photographs of each one of the 10 tomato diseases that are avail-
able in PlantVillage: healthy, bacterial spot, early/late blight, leaf mold, septoria, spider
mites, target spot, mosaic and yellow leaf curl virus. In this way, a dataset of 1400 pho-
tographs was created. This is a far larger dataset compared to the one used in [27], where
22–56 photographs were used for each one of the five citrus diseases. All the photographs
from the PlantVillage dataset are in JPEG format with 256 × 256 pixel resolution. Indicative
photographs for each one of the supported diseases are shown in Figure 1.
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Figure 1. Sample photographs from each one of the supported tomato leaf diseases: (a) bacterial
spot; (b) early blight; (c) late blight; (d) healthy; (e) leaf mold; (f) septoria leaf spot; (g) spider mites;
(h) target spot; (i) mosaic virus; (j) yellow leaf curl virus.

A pear dataset populated with photographs that are neither segmented or normalized
was also used. This dataset is unbalanced since different numbers of photographs per
disease are available. Four pear diseases are displayed: fire blight (120 images), fuzicladium
fungi (80 images), podosphaera powdery mildew (82 images) and septoria fungi (40 images).
These photographs display pear leaves retrieved from the Achaia county of Greece. The
sizes of these photographs are not identical and are approximately 550 × 310 pixels.
A public dataset of pear diseases was not employed because we required a leaf to be placed
on a white sheet or marble bench in order for the system to separate the background using
color thresholds. Indicative photographs for the 4 pear diseases examined in this paper are
shown in Figure 2.
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2.2. Image Processing and Classification

In this paragraph, a brief introduction to the image processing and classification
techniques employed in [27] is presented, emphasizing to the new features offered by
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the Disease Classifier application. The steps followed in the pair of applications that
were developed are shown in Figure 3. The information exchanged between the Disease
Classifier and the Disease Classification Trainer is structured as a pair of files: (a) the
Ranges file, containing the limits of each feature as determined after analyzing all the
training photographs of a disease in the Disease Classifier application, and (b) the Rules
file, generated after statistically processing the Ranges file in the Disease Classification
Trainer application.
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Figure 3. The steps followed in the image processing, classification and training procedure.

Initially, the disease recognition Rules file is selected in the Disease Classification
application. A default pre-trained Rules file can also be selected if the training on the
desired diseases has not yet been performed. The format of a Rules file is described in the
following paragraphs. This option did not exist in the initial version of Plant Disease [27]
application, where the rules were hardcoded, and any modification required a project
rebuild in the Visual Studio 2019 Xamarin platform sourced from the original Microsoft
webpage. An image is selected as a next step. The images display a sick part of the
plant, e.g., a leaf or a fruit, and the background should be either dark or white for easier
separation. During image preprocessing, a normalization in various color scales (RGB,
Hue–Saturation–Lightness (HSL), Hue–Saturation–Value (HSV) or L*a*b format) can be
performed, as described in [32]. The default color of the images is used in this work, since
the first dataset with tomato diseases was already normalized. The photographs in the
second dataset with pear diseases were inherently not normalized, while the normalization
facilities offered by the Disease Classifier were not employed in order to treat the testing of
this dataset as a worst case scenario.

As a next step, the image is segmented in the four ROIs, the background (ignored), the
normal leaf, the spots and the halo around the spots, based on two triplets of thresholds. An
example image segmentation is shown in Figure 4. It is assumed that the yellow leaf regions
are the spots. The background, normal leaf and spots are displayed in white, gray and
black, respectively. A halo zone of 5 pixels is defined around the spots, and it is displayed
in a lighter gray color. One threshold triplet (Tb) is used to separate the background and
one (Ts) for the lesion spots. The image is scanned once, and the pixel color is compared to
the Tb threshold triplet. Pixels that do not belong to the background are initially marked as
normal leaf. Then, the color of the pixels belonging to the normal leaf ROI is compared to
the Ts that separates the lesion spots. If the spots are darker than the normal leaf, the pixels
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with color below Ts are marked as spots. The adjacent spot islands are merged and then all
the spot islands are numbered to identify the total number of spots. More details of this
process can be found in [27]. The halo is defined as a zone of specific width around each
spot. Very small spots can be considered as noise and ignored.
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Histograms are constructed for each one of the red, green and blue colors of the pixels
belonging to each one of the three ROIs (normal, spot, halo). Histograms for the red, green
and blue color of a normal leaf ROI, reconstructed in Matlab, are shown in Figure 5. The
horizontal axis displays the color level (0 to 255). The value of each point in a histogram
curve is the number of pixels in the specific ROI that have the corresponding color level.
More specifically, the hist[256] is the vector of values (initially all 0s) of a histogram that
corresponds to a specific color (e.g., red) and ROI. For each pixel in this ROI that is found
with red color equal to r, hist[r] is increased by 1. As can be seen in Figure 5, each one of
the histograms consists of a single lobe. It is expected that the histograms corresponding
to the same disease, color and ROI will be similar. However, instead of trying to measure
the similarity between a pair of histograms following a complicated method, we simply
compare the start, end and peak of the lobes. The start and the end points of the lobe
can be selected as the lobe curve points that cross a specific level (e.g., 10% of the peak
value). The majority of features used in the classification process are the start, the end and
the peak values of the various histograms. The full list of the employed features used for
classification are shown in Table 1 [27].

Table 1. The features used by the classification process.

Feature Notes

Number of spots A spot is defined as an island of adjacent pixels

Area of the spots (lesion spot pixels)/(overall plant part pixels)

Average gray level of the spots The average gray level extracted from the
pixels belonging in each one of the normal,
spot and halo ROIs

Average gray level of the normal plant part

Average gray level of the halo

Histogram lobe start, peak, end 3 ROIs × 3 colors × 3 parameters = 27 features

Average moisture The average daily moisture, minimum and
maximum daily temperatures estimated for
a number of dates determined by the user
(not tested in this paper)

Average minimum temperature

Average maximum temperature
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The number of spots is estimated by finding the number of spot islands (adjacent
spot pixels). The area of the spots can be a fraction between 1% and 100%. The weather
features displayed in Table 1 (moisture, temperature) were not taken into consideration
in the present work. After feature extraction, the disease grading takes place, and the
supported diseases are sorted based on the grade they received. The current photograph is
classified as the disease with the highest grade.

In this work, the extracted features can be buffered and their limits stored in the
Rules csv file. In this way, training on new diseases can be performed automatically by
a non-expert in computer science, e.g., an end user such as an agronomist. Using some
indicative training photographs from each disease, the agronomist can start the Disease
Classifier application, and the extracted features of a training photograph can be appended
to the Range file of the specific disease. All the Ranges files are loaded to the Disease
Classification Trainer application that performs a statistical processing in order to define the
reference ranges. Moreover, two strings are defined in the trainer: the name of the disease
and the message that should be displayed in the classification results. This message can
be a short description of the actions that have to be taken by the producer. Alternatively,
this message can be a link to a webpage where detailed instructions can be given to the
producer in order to treat the diagnosed disease.

The statistical processing performed in the Disease Classification Trainer determines
the ranges of each feature from the values appended in the Range file produced by the
Disease Classifier (see Figure 3). The minimum and maximum values of each feature, as
they appear in the training photographs, are characterized as the “loose range”, as can
be seen in Figure 6. All 10 stars in the orange strip correspond to the training values of a
specific feature. The loose range is determined by the minimum (the star at the far left)
and the maximum (the star at the far right). A “strict range” is defined by a fraction a of
the training values of this feature as follows: The median value is initially located within
the loose range. Then, a% of the training values that are closer to the median is used
to define the strict range, as shown in Figure 6. The red star is the median. If a = 0.5,
then the five training values that are closer to the median are found in order to define the
strict range, which is actually 50% of the loose range (the strict range is defined from the
minimum and the maximum of these 5 values). The strict and loose range limits (4 values)
of each feature in a disease are stored in the Rules file by the Disease Classification Trainer
application when the training is completed, along with the disease name and message.
Other ranges (e.g., 80% or 120%) can be defined in reference to the 100% loose range in real
time within the Disease Classification application. Please note that, in the original Plant
Disease application [27], only a strict range and a loose range were used, both of which were
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defined in a different way: the strict range was what is now called a loose range (100%), and
the loose range was defined by extending the strict range by an arbitrary offset (e.g., 10).

Agronomy 2022, 12, x FOR PEER REVIEW 8 of 22 
 

 

The statistical processing performed in the Disease Classification Trainer determines 
the ranges of each feature from the values appended in the Range file produced by the 
Disease Classifier (see Figure 3). The minimum and maximum values of each feature, as 
they appear in the training photographs, are characterized as the “loose range”, as can be 
seen in Figure 6. All 10 stars in the orange strip correspond to the training values of a 
specific feature. The loose range is determined by the minimum (the star at the far left) 
and the maximum (the star at the far right). A “strict range” is defined by a fraction a of 
the training values of this feature as follows: The median value is initially located within 
the loose range. Then, a% of the training values that are closer to the median is used to 
define the strict range, as shown in Figure 6. The red star is the median. If a = 0.5, then the 
five training values that are closer to the median are found in order to define the strict 
range, which is actually 50% of the loose range (the strict range is defined from the mini-
mum and the maximum of these 5 values). The strict and loose range limits (4 values) of 
each feature in a disease are stored in the Rules file by the Disease Classification Trainer 
application when the training is completed, along with the disease name and message. 
Other ranges (e.g., 80% or 120%) can be defined in reference to the 100% loose range in 
real time within the Disease Classification application. Please note that, in the original 
Plant Disease application [27], only a strict range and a loose range were used, both of 
which were defined in a different way: the strict range was what is now called a loose 
range (100%), and the loose range was defined by extending the strict range by an arbi-
trary offset (e.g., 10). 

 

Figure 6. Feature range definition. 

The classification method followed in the present work was based on grading each 
disease by comparing the feature values extracted from a new image with the ranges de-
fined in the Rules file. A weight is added to the grade if the feature value is found within 
a specific range. For example, if a weight of 10 is assigned to each one of the four ranges 
displayed in Figure 6, then, if a feature value falls within the 80%, 100% and 120% but not 
in the 50% range, a grade equal to 30 is given for this feature for the specific disease. The 
grades of all features are added. The grade Gd of a disease d can be formally defined as 
follows: 

�(���) = � 	�
���
�

�


�
, (1)

	�
� = 1 �� ��
�_� ≤ ��� ≤ ��
�_� , 0 otherwise (2)

Figure 6. Feature range definition.

The classification method followed in the present work was based on grading each
disease by comparing the feature values extracted from a new image with the ranges defined
in the Rules file. A weight is added to the grade if the feature value is found within a specific
range. For example, if a weight of 10 is assigned to each one of the four ranges displayed
in Figure 6, then, if a feature value falls within the 80%, 100% and 120% but not in the
50% range, a grade equal to 30 is given for this feature for the specific disease. The grades of
all features are added. The grade Gd of a disease d can be formally defined as follows:

G(Fid) =
R

∑
r=1

xirdGird, (1)

xird = 1 i f Fird_L ≤ Fid ≤ Fird_H , 0 otherwise (2)

Gd =
FN

∑
i=1

G(Fid), (3)

The parameter FN is the number of features (32 in our case), R is the number of ranges
defined and Gird is the grade given if the feature value i is found within range r for the
disease d. The overall grade for the feature i in the disease d is the G(Fid) estimated in
Equation (1). The binary parameter xird is 1 if the feature value Fid is found within range
r or is 0 otherwise. The disease grading method employed in [27] is the one described
in Equations (1)–(3) for R = 2. The analyzed image is classified as the disease with the
highest grade.

2.3. Description of the Developed Applications

The pages of the Disease Classifier application appear in Figure 7. On the introductory
page (Figure 7a), the user can define the language of the interface, a color normalization
type (0 stands for no normalization), the thickness of the halo in pixels (default: 5 pixels)
and the number of ranges R (default: 2). If there is no halo in the spots of a plant disease,
the halo thickness, and the weights of the halo features can be set to 0. The button “Select
Rules” can be used to load a Rules file that contains the definition of a disease and its feature
ranges. The name of the file appears below this button (NewTomRules.txt). If the “Range
Rules” field is set to a number higher than 2, then the page shown in Figure 7b appears.
Up to 10 ranges can be defined in the current version. The default strict and loose ranges
defined, as described in Section 2.2, cannot be modified. Two fields need to be filled for
each one of the extra ranges that are defined: the range percentage (e.g., 80% and 120% for
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Range 2 and Range 3, respectively) and the weight G given for these ranges during disease
grading. More customized weights per disease and feature can be defined by modifying
the Rules file with a text editor. The next page is the one shown in Figure 7c–e. On this page,
the user selects the image and performs the segmentation through the button “Analyze”,
according to the defined threshold triplets (“Threshold RGB”, “Background RGB”).
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Since the tomato photographs tested in this work have a black background, a pixel is
assumed to belong to the background if its R, G, B colors are lower than the “Background
RGB” threshold triplet Tb. Similarly, if the background is white, as with the pear diseases,
the pixels are assigned to it if the R, G, B values are greater than the triplet Tb. If the spots in
a disease are darker than the normal leaf, a pixel that does not belong to the background is
assumed to belong to a spot if its R, G, B colors are lower than the corresponding “Threshold
RGB” triplet Ts. If the spots are brighter than the normal leaf, the user has to tick the “Invert”
check box. In this case, a pixel belongs to a spot if its R, G, B colors are higher than Ts.
The “Min Spot Area” field defines the minimum number of pixels a spot requires. Spots
with fewer pixels than the “Min Spot Area” are treated as noise and are ignored. The
user can assess the quality of the segmentation interactively by bringing back the initial
photograph after segmentation using the “Initial Norm Photo” button. However, in this
case, the photograph is not displayed in its original form but in its normalized form (in case
a normalization method has been enabled in the application). The user can also preview the
histograms created after the segmentation, as shown in Figure 7e. The results are shown
as displayed in Figure 7f. The top 3 diseases with the higher grade are listed on each line,
starting with the grade, the name of the disease and the message that gives instructions to
the end user. Additional pages in the Disease Classifier application can be visited to access
weather data, but they are not presented in this paper since meteorological data have not
been taken into consideration.

The only page of the Disease Classification Trainer is shown in the middle of Figure 8.
In this figure, the entry page and the one with the extracted feature values of the Disease
Classifier are also shown in order to explain how training can take place. When a training
photograph is selected and analyzed in the Disease Classifier page, as seen in Figure 7c–e,
the next page that appears is the one on the left of Figure 8. The user (e.g., an agronomist)
can append the extracted feature values to a “Range File” by clicking the “Train” button.
When the features from all the training photographs have been appended in different Range
files for each disease, these files can be loaded one by one from the Disease Classification
Trainer following the sequence shown in the middle of Figure 8. Each Range file is selected
(by clicking the “Range File” button), and the name of the corresponding disease is defined,
as well as the message that should be displayed. Then, the contents of the Range file are
loaded and statistically processed by clicking the “Add Range” button. These three steps
are repeated for all the supported diseases. The name of the Rules file is defined next, and
the “Generate Rules” button is clicked to store the new Rules file.

Figure 9 shows the format of the Rules and Range files. In the first line of the Rules
file, the number of diseases D is declared. Then, in the following D pairs of rows, the name
and the message of each disease are defined. Finally, another set of D pairs follows where
the strict/loose ranges of each feature are declared in the first line and the weights in the
second. Figure 9a shows an example of range definition for the first feature (Number of
Spots) and for the first disease (Bacterial Spot). If different weights have to be given for
each feature, the weights in the second row can be altered using a text editor. Part of a
Range file is displayed in Figure 9b, where each line contains the feature values from a
single training photograph.
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3. Experimental Results

In the following experiments with tomato diseases, two splits of the dataset were tested.
In the first split (T40), 40 of the 140 photographs of each disease (28.57%) in the dataset were
used for training and the rest (100 images, 71.43%) for testing, as described in Section 3.1.
The T100 split was tested, as described in Section 3.2. In T100, 100 photographs, i.e., 71.43%
of the dataset, were used for training in order to assess the improvement in the classification
accuracy with a larger training set. The other 40 photographs (28.57%) were used for testing.
In both cases, three feature range configurations were tested: (i) the use of the default strict
(50%) and loose (100%) range (Ra), (ii) 50%, 80% and 100% ranges (Rb) and (c) 40%, 50%,
100% and 120% ranges (Rc). A weight equal to five (instead of the default 10) was assigned
in the 40%, 80% and 120% ranges. This smaller weight was selected since experiments
showed that a higher value increases the bias between hits and misses, i.e., the same
samples are still misclassified but with higher confidence. Configuration Rb was selected
to investigate the effect of an extra grade that is given if feature values are found in an
intermediate range between the strict and the loose one. Configuration Rc was tested to
investigate the effect of assigning additional grades for the case where feature values are
found in a stricter range than 50% or in a slightly broader range than 100%. A confusion
matrix was presented for each one of the combinations that can be defined between Ra, Rb,
Rc and T40 and T100. The pear disease dataset was tested, as described in Section 3.3.

Based on the true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FN) samples, the sensitivity, specificity, precision, accuracy and F1 score (classification
quality metrics) can be estimated for each disease, as follows:

Sensitivity =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

Precision =
TP

TP + FP
, (6)

Accuracy =
TP + TN

TP + TN + FN + FP
, (7)

F1 score =
2TP

2TP + FN + FP
, (8)

The experiments showed that most of the early blight test photographs were confused
with late blight. However, since both sets described the same disease, the results were
unified under the disease name Blight.

3.1. Use of Small Training Set (T40)

Since we desired to demonstrate that the developed classification tools could be trained
with a small number of photographs, we initially used 40 out of 140 photographs from each
disease for training. The rest of the 100 photographs were used for testing. If the training
set was the only set used for testing, the confusion matrix appeared as in Table 2, and the
corresponding classification quality metrics (sensitivity, specificity, precision, accuracy and
F1 score) were as listed in Table 3. Similarly, the confusion matrix and the corresponding
classification quality metrics for the separate test set consisting of 100 photographs were as
listed in Tables 4 and 5, respectively.
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Table 2. Confusion matrix for the training set of T40 and Ra configuration.

Disease Bacterial
Spot Blight Healthy Leaf Mold Septoria Spider Mites Target Spot Mosaic Yellow

Leaf Curl

Bacterial Spot 36 0 0 0 0 4 0 0 0
Blight 0 80 0 0 0 0 0 0 0
Healthy 2 0 34 4 0 0 0 0 0
Leaf Mold 6 0 2 30 0 2 0 0 0
Septoria 0 0 0 0 40 0 0 0 0
Spider Mites 4 0 2 0 0 34 0 0 0
Target Spot 0 0 0 0 0 0 40 0 0
Mosaic 0 0 0 0 0 0 0 40 0
Yellow Leaf Curled 0 0 0 0 0 0 0 0 40

Table 3. Classification quality metrics for the training set of T40 and Ra configuration.

Disease Sensitivity Specificity Precision Accuracy F1 Score

Bacterial Spot 90.0% 97.0% 75.0% 96.4% 81.8%
Blight 100.0% 100.0% 100.0% 100.0% 100.0%
Healthy 85.0% 99.0% 89.5% 97.7% 87.2%
Leaf Mold 75.0% 99.0% 88.2% 96.8% 81.1%
Septoria 100.0% 100.0% 100.0% 100.0% 100.0%
Spider Mites 85.0% 98.5% 85.0% 97.3% 85.0%
Target Spot 100.0% 100.0% 100.0% 100.0% 100.0%
Mosaic 100.0% 100.0% 100.0% 100.0% 100.0%
Yellow Leaf Curled 100.0% 100.0% 100.0% 100.0% 100.0%
Average: 92.8% 99.3% 93.1% 98.7% 92.8%

Table 4. Confusion matrix for the test set of T40 and Ra configuration.

Disease Bacterial
Spot Blight Healthy Leaf Mold Septoria Spider Mites Target Spot Mosaic Yellow

Leaf Curl

Bacterial Spot 74 0 2 10 0 0 0 0 14
Blight 0 196 0 0 4 0 0 0 0
Healthy 36 0 52 10 0 2 0 0 0
Leaf Mold 18 0 2 52 0 16 0 0 12
Septoria 0 28 0 0 72 0 0 0 0
Spider Mites 10 0 14 8 0 68 0 0 0
Target Spot 6 0 0 6 0 4 70 12 2
Mosaic 2 0 0 2 0 0 10 82 4
Yellow Leaf Curled 0 0 6 4 0 0 0 0 90

Table 5. Classification quality metrics for the test set of T40 and Ra configuration.

Disease Sensitivity Specificity Precision Accuracy F1 Score

Bacterial Spot 74.0% 92.0% 50.7% 90.2% 60.2%
Blight 98.0% 96.9% 87.5% 97.1% 92.5%
Healthy 52.0% 97.3% 68.4% 92.8% 59.1%
Leaf Mold 52.0% 95.6% 56.5% 91.2% 54.2%
Septoria 72.0% 99.6% 94.7% 96.8% 81.8%
Spider Mites 68.0% 97.6% 75.6% 94.6% 71.6%
Target Spot 70.0% 98.9% 87.5% 96.0% 77.8%
Mosaic 82.0% 98.7% 87.2% 97.0% 84.5%
Yellow Leaf Curled 90.0% 96.4% 73.8% 95.8% 81.1%
Average: 73.1% 97.0% 75.8% 94.6% 73.6%

The Rb and Rc configurations were tested for the test set of the 100 photographs, and
the resulting confusion matrices and classification quality metrics are listed in Tables 6–9.
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Table 6. Confusion matrix for the test set of T40 and Rb configuration.

Disease Bacterial
Spot Blight Healthy Leaf Mold Septoria Spider Mites Target Spot Mosaic Yellow

Leaf Curl

Bacterial Spot 62 0 2 10 0 2 0 0 24
Blight 0 196 0 0 4 0 0 0 0
Healthy 42 0 48 10 0 0 0 0 0
Leaf Mold 18 0 2 56 0 14 0 0 12
Septoria 0 42 0 0 58 0 0 0 0
Spider Mites 4 0 12 18 0 64 2 0 0
Target Spot 6 0 2 2 0 8 70 8 4
Mosaic 2 0 0 2 0 0 10 74 12
Yellow Leaf Curled 0 0 8 14 0 2 0 0 76

Table 7. Classification quality metrics for the test set of T40 and Rb configuration.

Disease Sensitivity Specificity Precision Accuracy F1 Score

Bacterial Spot 62.0% 92.0% 46.3% 89.0% 53.0%
Blight 98.0% 95.3% 82.4% 95.8% 89.5%
Healthy 48.0% 97.1% 64.9% 92.2% 55.2%
Leaf Mold 56.0% 93.8% 50.0% 90.0% 52.8%
Septoria 58.0% 99.6% 93.5% 95.4% 71.6%
Spider Mites 64.0% 97.1% 71.1% 93.8% 67.4%
Target Spot 70.0% 98.7% 85.4% 95.8% 76.9%
Mosaic 74.0% 99.1% 90.2% 96.6% 81.3%
Yellow Leaf Curled 76.0% 94.2% 59.4% 92.4% 66.7%
Average: 67.3% 96.3% 71.5% 93.4% 68.3%

Table 8. Confusion matrix for the test set of T40 and Rc configuration.

Disease Bacterial
Spot Blight Healthy Leaf Mold Septoria Spider Mites Target Spot Mosaic Yellow

Leaf Curl

Bacterial Spot 70 0 2 14 0 0 0 0 14
Blight 0 200 0 0 0 0 0 0 0
Healthy 36 0 46 12 0 4 0 0 2
Leaf Mold 20 2 4 48 0 8 0 0 18
Septoria 0 32 0 0 68 0 0 0 0
Spider Mites 4 0 10 14 0 70 0 0 2
Target Spot 2 0 0 6 0 4 70 10 8
Mosaic 2 0 0 4 0 0 10 72 12
Yellow Leaf Curled 0 0 4 8 0 0 0 0 88

Table 9. Classification quality metrics for the test set of T40 and Rc configuration.

Disease Sensitivity Specificity Precision Accuracy F1 Score

Bacterial Spot 70.0% 92.9% 52.2% 90.6% 59.8%
Blight 100.0% 96.2% 85.5% 96.9% 92.2%
Healthy 46.0% 97.8% 69.7% 92.6% 55.4%
Leaf Mold 48.0% 93.6% 45.3% 89.0% 46.6%
Septoria 68.0% 100.0% 100.0% 96.8% 81.0%
Spider Mites 70.0% 98.2% 81.4% 95.4% 75.3%
Target Spot 70.0% 98.9% 87.5% 96.0% 77.8%
Mosaic 72.0% 98.9% 87.8% 96.2% 79.1%
Yellow Leaf curled 88.0% 93.8% 61.1% 93.2% 72.1%
Average: 70.2% 96.7% 74.5% 94.1% 71.0%

3.2. Use of Large Training Set (T100)

The quality metrics presented in Tables 5, 7 and 9 indicate that, although some particular
diseases may be classified with a higher accuracy using Rb or Rc configuration, the average
accuracy achieved is better when the default Ra configuration is used. Therefore, the test set
of the T100 case was examined only with Ra configuration. The resulting confusion matrix
and the classification quality metrics in this case are shown in Tables 10 and 11, respectively.
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Table 10. Confusion matrix for the test set of T100 and Ra configuration.

Disease Bacterial
Spot Blight Healthy Leaf Mold Septoria Spider Mites Target Spot Mosaic Yellow

Leaf Curl

Bacterial Spot 30 0 0 4 0 0 0 0 6
Blight 0 80 0 0 0 0 0 0 0
Healthy 6 0 30 2 0 0 0 0 2
Leaf Mold 16 0 0 24 0 0 0 0 0
Septoria 0 14 0 0 26 0 0 0 0
Spider Mites 4 0 8 6 0 22 0 0 0
Target Spot 0 0 0 6 0 2 30 2 0
Mosaic 0 0 0 0 0 0 8 32 0
Yellow Leaf Curled 0 0 0 0 0 0 0 0 40

Table 11. Classification quality metrics for the test set of T100 and Ra configuration.

Disease Sensitivity Specificity Precision Accuracy F1 Score

Bacterial Spot 75.0% 92.8% 53.6% 91.0% 62.5%
Blight 100.0% 95.6% 85.1% 96.5% 92.0%
Healthy 75.0% 97.8% 78.9% 95.5% 76.9%
Leaf Mold 60.0% 95.0% 57.1% 91.5% 58.5%
Septoria 65.0% 100.0% 100.0% 96.5% 78.8%
Spider Mites 55.0% 99.4% 91.7% 95.0% 68.8%
Target Spot 75.0% 97.8% 78.9% 95.5% 76.9%
Mosaic 80.0% 99.4% 94.1% 97.5% 86.5%
Yellow Leaf Curled 100.0% 97.8% 83.3% 98.0% 90.9%
Average: 76.1% 97.3% 80.3% 95.2% 76.9%

3.3. Testing Pear Diseases with Photographs That Are Not Segmented and Normalized

The last experiment conducted was based on the pear disease dataset. As described in
Section 2.1, it consisted of 322 images displaying four pear diseases (fire blight: 120 images,
fusicladium: 80 images, podosphaera: 82 images and septoria: 40 images). The training set
consisted of 20 images from each disease. This means that the fraction of the images that
was used for training in each disease was 16.66%, 25%, 24.39% and 50%, respectively. The
confusion matrix of this dataset is shown in Table 12. The imbalance in the distribution
of the photographs in the training and the test set gave an opportunity for us to study its
effect on the achieved accuracy (Table 13).

Table 12. Confusion matrix for the test set pear diseases and Ra configuration.

Disease Fire Blight Fusicladium Podosphaera Septoria

Fire blight 30 0 0 4
Fusicladium 0 80 0 0
Podosphaera 6 0 30 2
Septoria 16 0 0 24

Table 13. Classification quality metrics for the test set of pear diseases and Ra configuration.

Disease Sensitivity Specificity Precision Accuracy F1 Score

Blight 81.7% 96.7% 90.7% 92.4% 86.0%
Fusicladium 82.5% 95.4% 82.5% 92.7% 82.5%
Podosphaera 100.0% 100.0% 100.0% 100.0% 100.0%
Septoria 90.0% 95.4% 56.3% 95.0% 69.2%
Average: 88.5% 96.9% 82.4% 95.0% 84.4%

4. Discussion

Initially, we compared the accuracy achieved in our previous work [27] with the
accuracy results presented in Section 3. In [27], five citrus diseases were used as a case
study, and they were classified with an accuracy ranging from 73% to 99% per disease and
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an average accuracy ranging from 84.4% (for photographs captured under direct sunlight)
to 90.4% (photographs captured under a canopy). From the detailed experimental results
presented in the previous paragraphs, it was deduced that a significant improvement had
been achieved since, in Tables 5, 7, 9 and 11, the accuracy ranged between 93.4% and 95.2%
(average 94.4%). It has to be stressed that, in the present work, the number of supported
diseases was doubled (10 tomato diseases), and the aforementioned average accuracy
was estimated using a separate test set, while, in [27], the test also included the training
set. If we also take into consideration the training set classification results by combining
Tables 2 and 4, the accuracy achieved with Ra configuration is 96.1%.

The significant improvement in the accuracy of the classification results is owed mainly
to the different ways that the strict and loose ranges were defined. Defining the strict range
of a feature from all the training values, as in [27], ignores the distribution of these values.
In this way, a single training feature value that is far from the center of the distribution
excessively elongates the strict range. Moreover, the loose range was defined arbitrarily
in [27]. This definition lacked a rational justification. The strict and loose ranges were
defined in a more sensible way in the updated classification method described here.

The use of multiple ranges also favors a fair disease grading method. Although all the
average classification quality metrics (sensitivity, specificity, precision, accuracy, F1 score)
were slightly degraded in the Rb and Rc configurations using the T40 training set, specific
diseases were classified more accurately. For example, leaf mold was recognized with higher
accuracy in Rb and blight and spider mites in Rc. Consequently, these configurations could
be useful if a subset of the supported diseases consisting of the diseases that are favored
by specific configurations such as Rb and Rc is used. Therefore, the multiple reference
ranges supported in the Disease Classifier application can assist the improvement of the
classification accuracy in specific sets of diseases.

Increasing the size of the training set from 28.5% to 71.5% of the dataset (and thus
decreasing the size of the test set from 71.5% to 28.5%) does not significantly improve the
classification quality metrics since the accuracy and the F1 score (which is the harmonic
mean of the precision and sensitivity) were increased from 94.6% and 73.6% to 95.2% and
76.9%, respectively, with the Ra configuration. Therefore, it can be argued that, in the
proposed classification method, it is sufficient to use a small training set with indicative
samples. In contrast with deep learning approaches, the classification accuracy is not
affected by the size of the plant part and its orientation. If a system has to be trained with a
new set of diseases, a representative, small number of photographs per disease have to be
collected, displaying the possible progression stages and coloring variations that can be
met when a new photograph is analyzed.

The classification accuracy also depends heavily on the plant species and the plant
parts used. In the pear photographs tested in Section 3.3, the number of diseases that
had to be discriminated between was smaller than the tomato ones examined in
Sections 3.1 and 3.2. However, three of the four pear diseases are hardly distinguish-
able. More specifically, podosphaera is easily distinguished due to the white powder look.
In contrast, the rest of the diseases show dark spots on the leaf with small differences. An-
other issue with the pear dataset is the fact that it was imbalanced concerning the number
of images that were available for each disease (ranging from 40 septoria to 120 fire blight
images). Finally, it was interesting to investigate how the use of photographs that are not
segmented or normalized affects the achieved accuracy.

Table 13 shows that the accuracy ranged from 92.4% (fire blight) to 100% for po-
dosphaera. Podosphaera achieved an excellent accuracy due to the fact that it is fully
distinguishable from the rest of the diseases. On the other hand, the fact that fire blight
achieved the lower accuracy can be explained by the fact that only 16.66% of the dataset was
used for training. In septoria, 50% of the dataset was used for training, and the achieved
accuracy was 95%. The average accuracy was also 95%, which is slightly better than the
one achieved with the tomato diseases, and this is owed to the smaller number of pear
diseases that were distinguished. Compared to the citrus diseases examined in [27], a
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similar study in terms of number of diseases, dataset size and unsegmented photographs,
there was a definite improvement of more than 5%. This improvement is owed to the
updated classification method and, more specifically, the way that the ranges were defined.

The threshold RGB triplets used per disease in the experiments conducted in Section 3
are shown in Table 14. Although further customization of the thresholds per photograph
can lead to more accurate segmentation, it was preferable to sacrifice some of the segmen-
tation accuracy in order to have a smaller number of predefined thresholds (six triplets
covering 13 diseases). The interactive switching between the original and the segmented
photograph supported in the Disease Classifier page shown in Figure 7b–e assists the
end user with selecting the appropriate thresholds. In a future version of the system, the
alternative threshold values will be validated automatically, and the ones that lead to higher
segmentation accuracy will be selected based on certain criteria such as the recognized
spot area, the distance between the average color level of the spots and the corresponding
average color level of the whole leaf, etc. The segmented tomato disease photographs
had a black background, thus, the corresponding threshold Tb for each R, G, B color was
close to 0: Tb = (5,5,5). The photographs displaying pear diseases were not segmented and
normalized, but were captured with the leaves placed on a white sheet or a white bench.
The threshold triplet Tb = (120, 160, 220) was used with all pear photographs, leading to a
successful background segmentation.

Table 14. Threshold RGB values used per disease.

Disease R G B Invert

Tomato Bacterial Spot 90 90 90 Yes
Tomato Blight 80 80 80 No
Tomato Healthy 90 90 90 Yes
Tomato Leaf Mold 90 90 90 Yes
Tomato Septoria 100 100 160 No
Tomato Spider Mites 90 90 90 Yes
Tomato Target Spot 100 100 100 Yes
Tomato Mosaic 100 100 100 Yes
Tomato Yellow Leaf Curled 80 80 80 Yes
Pear Fire Blight 40 60 60 No
Pear Fusicladium 20 60 80 No
Pear Podosphaera 40 60 60 Yes
Pear Septoria 40 60 60 No

A comparison with some referenced deep learning approaches is shown in Table 15.
Since the compared approaches do not use a common dataset, a fair comparison cannot be
performed. However, Table 15 can give a clue about the accuracy achieved in the literature
with similar approaches. The applications presented in [10,12,26] concern classification
with a higher number of disease cases. The accuracy achieved in [12–14,24] was lower than
that achieved in our approach. The accuracy achieved in the rest of the approaches was
comparable to ours or higher, but most of these approaches support a smaller number of
diseases, except for [10,26], where a higher accuracy was achieved for a relatively large
number of diseases. The common problem with all the referenced approaches is that their
training procedure requires a very large number of photographs. Moreover, they lack
extensibility since the end user is not allowed to train the system on new diseases. In our
approach, an acceptable accuracy can be achieved by using a relatively small training set
consisting of 20–40 photographs per disease. The developed mobile applications can sup-
port professional agronomists to customize the supported set of diseases according to the
needs of their customers. The resources required by our approach are also negligible since
the file with the disease diagnosis rules is just a few kilobytes in size: much smaller than the
model files several megabytes in size required by the referenced deep learning approaches.
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Table 15. Comparison with referenced approaches.

Reference Accuracy Notes: Implementation Type, Supported Diseases, Dataset

[4] 92.39% (viral), 95.33% (late blight),
98.56% (bacterial)

CNN, 3 disease states,
training:test set ratio = 800:200

[9] 99.55% ResNet50/101 + SVM classifier, 4 grape diseases (black rot, esca measles, leaf spot,
healthy), 423–1383 images/disease

[10] 99.8%
120 classes, pear and apple diseases

testing MobileNet and MobileNetV2 on mobile devices, ~10,000 images
training:test ratio = 75%:25%

[11] 99.44%, 98.43% and 97.67% Septoria, Alternaria and Gymnosporangium pear disease with 6 severity levels
4944 pear images. Architecture: VGG16, Inception V3, ResNet50 and ResNet101

[12] 88.8% CNN, 12 diseases on tomato/potato leafs, training:test ratio = 160:40

[13] 89.2% MobileNet, 10 tomato leaf diseases
7176 images

[14] 76–100% CNN, 10 tomato leaf diseases
Training:validation:test ratio= 10,000:7000:500

[15] 97.49% AlexNet, 7 tomato diseases
13,262 segmented images

[16] Weighted average precision: 96.61%
(segmented), 98.61 (unsegmented)

EfficientNet B0, 10 tomato leaf disease
15,000 segmented/unsegmented images

[24] 68.3% CNN, 5 diseases,
training:test ratio= 3000:50

[26] 95.7% MobileNetV2 + Canny Edge Detection,
26 crop diseases of 14 different species, 87,860 leaf images

This work 94.4%95%

10 tomato diseases, (1400 images)
training:test ratio = 400:1000
4 pear diseases (382 images)
training:test ratio = 80:302

Concerning the complexity of the proposed approach and its consequent speed, both
the training and the test photographs are analyzed almost instantaneously. This is due
to the fact that the only time-consuming operations concern the scan of the image: once
for segmentation, a second time to merge the spot islands and a third time to create the
histograms [27]. Since the images are internally resized to 324 × 182 pixels, the time needed
to perform these operations is almost constant. The rest of the operations’ overhead is
negligible. Although there is no meaning in giving an exact latency, since it depends on
the Android platform used, it can be stated that it is in the order of a few hundreds of
milliseconds. Bearing in mind that the user manually selects an image and validates the
segmentation quality, most of the time needed to process a photograph is spent in the
interaction between a user and the application. Traditional machine learning approaches
require several hours to process a large number of training photographs in batch mode. In
our approach, training the system with 400 photographs (e.g., 10 diseases with 40 training
images per disease) may also require a few hours, but this can be reduced to a few minutes
if training is performed in batch mode. Batch mode training will be supported in the next
versions of our system when the threshold selection and the background separation will be
performed automatically.

5. Conclusions

A pair of mobile disease classification and training tools was described in this paper.
The employed classification method is simple and can be implemented efficiently on a
smart phone, while, at the same time, it can achieve a remarkable accuracy considering a
small training set is used. The architecture of the developed applications and the nature of
the employed classification scheme allow the extension of the supported set of diseases by
the end user. An average accuracy of about 95% was measured in the various experiments
that were conducted.

The most important limitation of the current approach is the separation of complicated
backgrounds. Thus, future work will focus on a more sophisticated segmentation approach
that separates the background and locates the spots. Another limitation is the dependency on
the specific thresholds, although all the experiments were conducted by switching between
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a very small number of thresholds. The quality of the segmentation is currently assessed
interactively by the user, and, therefore, training cannot be performed in batch mode.
Addressing this limitation is also part of our future work. Finally, alternative classification
methods that can also support an extendible set of diseases will also be investigated.

6. Patents

This work is protected by the patents 1009346/13-8-2018 and 1008484/12-5-2015 (Greek
Patent Office).
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