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Abstract: Leaf area index (LAI) and above-ground biomass are both vital indicators for evaluating
crop growth and development, while rapid and non-destructive estimation of crop LAI and above-
ground biomass is of considerable significance for crop field management. Owing to the advantages
of repeatable and high-throughput observations, spectral technology provides a feasible method
for obtaining LAI and above-ground biomass of crops. In the present study, the spectral, LAI and
above-ground biomass data of winter wheat were collected, and 7 species (14 in total) were calculated
based on the original and first-order differential spectrum correlation spectral indices with LAI.
Then, the correlation matrix method was used for correlation with LAI. The optimal wavelength
combination was extracted, and the results were calculated as the optimal spectral index related to LAI.
The calculation process of the optimal spectral index related to above-ground biomass was the same
as that aforementioned. Finally, the optimal spectral index was divided into three groups of model
input variables, winter wheat LAI and above-ground biomass estimation models were constructed
using support vector machine (SVM), random forest (RF) and a back propagation neural network
(BPNN), and the models were verified. The results show that the correlation coefficient between
the highest of the optimal spectral indices, the LAI, and the above-ground biomass of winter wheat
exceeded 0.6, and the correlation was good. The methods for establishing the optimal estimation
models for LAI and above-ground biomass of winter wheat are all modeling methods in which the
input variables are the combination of the first-order differential spectral index (combination 2) and
RF. The R2 of the LAI estimation model validation set was 0.830, the RMSE was 0.276, and the MRE
was 6.920; the R2 of the above-ground biomass estimation model validation set was 0.682, RMSE was
235.016, MRE was 4.336, and the accuracies of both models were high. The present research results
can provide a theoretical basis for crop monitoring based on spectral technology and provide an
application reference for the rapid estimation of crop growth parameters.

Keywords: winter wheat; leaf area index; above-ground biomass; spectral index

1. Introduction

Leaf area index (LAI) is a significant vegetation parameter that characterizes leaf
density and canopy structure. LAI is widely used in models for climate change, net primary
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productivity, and crop growth, being closely related to crop transpiration, light energy
interception, photosynthetic rate, net primary productivity, and other parameters. In
ecological model and water and carbon cycle research, LAI is generally regarded as a
significant factor, LAI is generally regarded as a significant factor that is used to reflect
the number of plant leaves, changes in canopy structure, plant community vitality, and
environmental effects. In addition, it provides structured quantitative information for the
description of plant canopy surface material and energy exchange [1,2]. Biomass is the
product of photosynthesis in the process of crop growth and development, which can reflect
crop growth and nutritional status, which is a significant basis for crop yield formation [3,4].
According to the above-ground LAI and biomass, crop growth monitoring and yield
forecast can be conducted, in addition to field water and fertilizer management [5–7].
As such, quick and accurate determination of the above-ground LAI and biomass is of
considerable significance.

The traditional acquisition of above-ground biomass and LAI of crops is mainly
achieved through destructive manual measurement, and the process is cumbersome, time-
consuming and laborious. Thus, the popularization and application of such acquisition
have been difficult to realize in large areas. In recent years, remote sensing technology has
been gradually applied to the extraction of crop physiological and ecological parameters,
which can potentially facilitate rapid acquisition of parameters such as crop biomass and
LAI [8–10]. For the inversion method of vegetation chlorophyll content, the multivariate
regression inversion method was gradually converted to the empirical/semi-empirical
spectral index inversion method. At the same time, several scholars used the physical model
method for inversion, but due to the complexity of the physical model inversion algorithm
and numerous uncertain factors, many input parameters were difficult to obtain, resulting
in limited inversion accuracy [11]. In contrast, the method of establishing an inversion
model based on the spectral indices constructed by linear or nonlinear combinations of
two or more spectral bands not only reflects the spectral information with better sensitivity
than that of a single band, but can also be used in a certain range. Through such a method,
the problem of band overfitting caused by using too many bands is eliminated to a certain
extent, and the statistical analysis results are more accurate and convincing. Thus, such
a method has been extensively adopted for the inversion of vegetation physiological and
biochemical parameters [12].

The spectral index can quantitatively reflect and evaluate various indicators of crop
growth, and establish a quantitative model between the spectral index and the physio-
logical and biochemical indicators of crops [13]. In previous studies on the estimation of
crop LAI and above-ground biomass using spectral indices, a number of scholars used
fixed wavelengths to calculate spectral indices [9]. In addition, said scholars performed
correlation analysis with LAI and above-ground biomass, and finally selected the spectral
indices with better correlation. However, for different research objects, due to the different
growth environments, growth periods and other factors, the physiological information
of the crop itself will be different, resulting in different spectral characteristics. In such
circumstances, using the same wavelength may cause the spectral data to be underuti-
lized. The inversion model of the calculated spectral index has certain limitations, and
the accuracy of the model will also be restricted to a certain extent. The jointing stage is a
critical growth period of winter wheat, which marks the beginning of the differentiation of
the floret primordium. As a vigorous growth period in which reproductive growth and
vegetative growth are closely associated. Sufficient water, nutrients and light conditions
are required to improve the tillering rate. To solve the above problems, in the present
study, the LAI and above-ground biomass of wheat at the jointing stage were selected
as the research objects, and the correlation matrix method was used to screen the char-
acteristic wavelengths of spectral indices, so that the characteristic wavelengths had the
highest correlation with the LAI and above-ground biomass of winter wheat used. Finally,
14 spectral indices and three regression methods were combined to construct a model, and
the influence of the combination of different spectral indices and modeling methods on
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the accuracy of inversion of winter wheat LAI and above-ground biomass was discussed.
The present results provide a theoretical basis for the study of accurate, non-destructive
and rapid detection technology for LAI and above-ground biomass of winter wheat.

2. Materials and Methods
2.1. Research Area and Test Design

A two-year field experiment was conducted on winter wheat in 2018 and 2019 at the
Water-saving Station of the Key Laboratory of Agricultural Soil and Water Engineering in
Arid and Semiarid Areas of the Ministry of Education, Northwest A&F University, Yangling,
China (34◦18′ N, 108◦24′ E, 521 m a.s.l.) (Figure 1). The area is a semi-humid but drought-
prone region with annual average rainfall of 632 mm and potential evaporation of 1500 mm.
There were a total of 34 test plots in the sampling area, and each test plot measured 7 m
in length and 3 m in width. The planted winter-wheat variety was Xiaoyan 22. Four
nitrogen fertilization levels of 100 kg N/hm2 (N1), 160 kg N/hm2 (N2), 220 kg N/hm2 (N3)
and 280 kg N/hm2 (N4), and four fertilization types of Urea (U), slow-release fertilizer
(SRF), UNS1 (U/SRF = 3/7) and UNS2 (U/SRF = 2/8) were setup. No nitrogen fertilizer
was used as the control treatment (CK). The experiment was arranged in a completely
randomized design with two replicates. The N fertilizer, phosphate fertilizer (120 kg P2O5
ha–1) and potassium fertilizer (100 kg K2O ha–1) were applied as basal fertilizers and were
incorporated into the 0–15 cm soil layer before planting. Winter wheat (Xiaoyan 22) was
planted at 180 kg/hm2.Wheat was seeded on October 15 in 2018 and October 15 in 2019,
and harvested on June 25 in 2019 and 2020.
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Figure 1. Aerial photograph of winter wheat research area and some sampling plots in Yangling, Shaanxi.

2.2. Data Collection

Ground-based LAI, above-ground biomass, and spectral data were obtained in the
experimental plots during the winter wheat silking stage (31 March 2019 and 3 April 2020).
Over the two-year experiment, 68 groups of LAI, above-ground biomass, and spectral
reflectance samples were obtained. After removing outliers, 66 samples remained. Next,
the LAI and above-ground biomass of winter wheat were sorted from small to large. Two-
thirds of the samples were randomly selected as the modeling set, while the remaining
one-third were used as the validation set. A summary of the number of samples in the
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modeling and validation sets, leaf area index, and statistical characteristics of above-ground
biomass are displayed in Table 1.

Table 1. Statistics of leaf area index and above-ground biomass in summer maize vegetation
growth stage.

Indexes
Leaf Area Index/(cm2·cm−2) Above-Ground Biomass/(kg·hm−2)

Modeling Set Validation Set Modeling Set Validation Set

Sample size 44 22 44 22
Minimum values 2.28 2.30 3247.20 3251.81

Maximum
values 4.23 4.23 5073.49 4795.8

Mean 3.17 3.24 4159.26 4164.51
Standard
deviation 0.59 1.62 442.53 405.87

Coefficient of
variation/% 0.19 0.50 0.11 0.10

2.2.1. Measurement of LAI

In the present study, LAI was determined by means of a LAI-2000 Plant Canopy
Analyzer [14], which is widely used for LAI measurements in the field. For the same
developmental stages when canopy reflectance was collected, LAI measurements were
conducted in all 34 wheat plots. Each plot was measured six times and the average was
used as the plot LAI.

2.2.2. Above-Ground Biomass

Three plant samples were randomly taken from each plot at the silking stage. Wheat
samples were put in an oven at 105 ◦C for 0.5 h and subsequently dried at 75 ◦C to constant
weight. Wheat mass was then measured by an electronic balance.

2.2.3. Acquisition of Spectral Data

With each sampling for LAI and above-ground biomass, canopy spectra of sample points
were acquired using a spectroradiometer (ASD Field-Spec® 3 Standard-Res, Inc., Longmont,
CO, USA). The spectral range was 350–1830 nm, covering the wavebands of 350–1000 nm with
3 nm resolution and the other wavebands with 10 nm resolution. The sensor had a 25◦ field
of view, and the handheld probe was pointed vertically downward, with the instrument held
80 cm above the crop canopy. A representative plant canopy was selected for each test plot,
and spectral values were collected 10 times. After removing nonstandard values, an average
value was used as the final spectrum of the test plot. Spectral measurements were conducted on
sunny and windless days between 11:00 a.m. and 2:00 p.m. to ensure comparability. A white
spectral on reference reflectance panel (Labsphere, Inc., Longmont, CO, USA) reading was taken
every 5 min or whenever required considering the changes in illumination conditions and used
to convert digital number readings to reflectance. To reduce or eliminate the influence of useless
information such as background noise, baseline drift, and stray light on the spectral reflectance
curve, we used Savitzky–Golay convolution smoothing (9 points and 4 times) to preprocess the
spectral data [15].

2.3. Techniques for Data Analysis

In the present study, 7 typical spectral indices were selected and the wavelength combina-
tion with the highest performance was chosen separately, so as to extract the correlation more
accurately from the LAI and the above-ground biomass related to the spectral index. In the full
spectrum wavelength range of 350–1830 nm, the spectral indices of all wavelength combinations
in the original spectral data and the data obtained by first-order differentiation of the original
spectral data were calculated, respectively (14 in total). The formula for calculating the spectral
index is shown in Table 2, Ri and Rj represent the original wavelength positions of i and j; Ri’
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and Rj’ represent the first-order differential spectrum at the i and j wavelength positions. All
spectral index calculation results were obtained using MATLAB R2022a software(MathWorks,
Inc. Natick, MA, USA) and all figures in the present article were obtained using Origin Pro 2021
software (OriginLab Corp., Northampton, MA, USA).

Table 2. Spectral index in this study. All indices were calculated from reflectance collected by
spectroradiometer. i and j represent arbitrary wavelength positions, R and R represent the original
wavelength positions of i and j. The initial spectral reflectance, R’ and R’ represent the first-order
differential spectrum at the i and j wavelength positions Spectral reflectance, R445 and R550 represent
the original spectrum at 445 and 550 nm wavelength positions spectral reflectance, R’445 and R’550

represent the first order at the 445 and 550 nm wavelength positions differential spectral reflectance.

Spectral Index
Formula

Reference
Original First-Order Differential

difference index
(DI) Ri − Rj R′i − R′j [12]

ratio index
(RI)

Ri
Rj

R′i
R′j

[12]

normalized difference
vegetation index

(NDVI)

Ri−Rj
Ri+Rj

R′i−R′j
R′i+R′j

[12]

soil-adjusted vegetation
index
(SAVI)

(1 + 0.16) Ri−Rj
Ri+Rj+0.16 (1 + 0.16)

R′i−R′j
R′i+R′j+0.16

[12]

triangular vegetation
index
(TVI)

0.5×(
120× (Ri − R550)− 200×

(
Rj − R550

)) 0.5×(
120×

(
R′i − R′550

)
− 200×

(
R′j − R′550

)) [12]

modified simple ratio
(mSR)

Ri−R445
Rj−R445

R′i−R′445
R′j−R′445

[12]

modified normalized
difference index

(mNDI)

Ri−Rj
Ri+Rj−2R445

R′i−R′j
R′i+R′j−2R445

[12]

Three machine-learning methods, namely the support vector machine (SVM) [16], random
forest (RF) model [17], and back propagation neutral network (BPNN) [18] were also tested
using MATLAB R2022a software. In this study, the kernel function type of the SVM model was
set to “poly”, and the parameter penalty coefficients C and γ of the SVM model were optimized
using the grid search method. According to the principle of minimum cross-validation error, C
and γ were determined to be 20 and 0.02, respectively [19]. In the construction of the RF model,
the number of decision trees in the LAI model and the above-ground biomass model were
both set to 500 after parameter optimization and multiple training [15]. The BPNN used in this
study was provided by the Neural Network Toolbox in MATLAB. The transfer function of the
hidden layer was set to TANSIG, and the Levenbeger–Marquardt (Train-LM) algorithm based
on numerical optimization theory was used as the network training function. The number of
neurons in the middle layer directly affects the simulation performance of the network. Thus,
after several trainings, we determined that the number of neurons in the middle layer was 15.
Also, during training, the maximum number of iterations was set to 1000 and the training target
was set to 1× 10−5. After the neural network was trained, the test data were entered into the
training network simulation to obtain the simulated values. Average values of the data fitting
results over the three periods were regarded as the model fitting results [20]. The 14 optimal
spectral indices were divided into 3 groups as model input variables, the first group of variables
was composed of 5 optimal spectral indices calculated from the original reflection spectrum, the
second group of variables was composed of the 5 optimal spectral indices calculated from the
first-order differential reflection spectrum and the third group of variables consisted of the top 5
spectral indices for all Rmax values in the table. A standard two-layer feed-forward network with
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sigmoid transfer functions was chosen for the BPNN method [21], and SVM with the kernel
function of Gaussian function [22] was tested in the present study.

2.4. Verify the Prediction Accuracy of the Models

In order to verify the prediction accuracy and predictive ability of the models, three
indicators were selected, determination coefficient (R2), root mean square error (RMSE)
and mean relative error (MRE), to evaluate the model accuracy [23]. The R2, RMSE and
MRE were calculated as follows:

R2 =
∑n.

i=1
(ŷi − y)2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(2)

MRE =
1
n ∑n

i=1
|ŷi − yi|

yi
× 100% (3)

where n is the number of samples; ŷi is the predicted value; yi is the observed value, and y is
the average value. Diagrams of architectures used in the experiments is shown in Figure 2.
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3. Results
3.1. Extraction of Optimal Spectral Index Wavelength Combinations for LAI and
Above-Ground Biomass

In the present study, the 14 spectral indices were calculated using the correlation
matrix method, and the correlation analysis was performed with LAI and above-ground
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biomass, respectively. The correlation matrix was drawn to maximize the i and j wavelength
positions where the correlation coefficient was located as the best wavelength combinations,
as shown in Figures 3 and 4. Blue to red indicates high negative to high positive correlation.
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Figure 3. Correlation matrix diagram of spectral indices and leaf area index(LAI). (a) DI and LAI;
(b) FDDI and LAI; (c) RI and LAI; (d) FDRI and LAI; (e) NDVI and LAI; (f) FDNDVI and LAI; (g) SAVI
and LAI; (h) FDSAVI and LAI; (i) TVI and LAI; (j) FDTVI and LAI; (k) mSR and LAI; (l) FDmSR and
LAI; (m) mNDI and LAI; (n) FDmNDI and LAI.

Table 3 shows the maximum values and wavelength positions of the correlation coeffi-
cients between the spectral index and the LAI from Figure 3a–n. The highest correlation
coefficient with the LAI was the TVI value, which was 0.704, and the wavelength com-
bination was located at 712 and 685 nm. Among the spectral indices calculated by the
first-order differential reflectance, the highest correlation coefficient with the LAI was the
FDDI value, which was 0.716, and the wavelength combination was located at 736 and
733 nm. The results sorted by rmax value from high to low were:

FDDI > FDSAVI > TVI > NDVI > RI > SAVI > DI = FDTVI > FDRI > FDNDVI > FDmNDI > mNDI = mSR > FDmSR.
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mulas for calculation, and the corresponding spectral index values were obtained. In the 
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Figure 4. Correlation matrix diagram of spectral indices and above-ground biomass. (a) DI and above-
ground biomass; (b) FDDI and above-ground biomass; (c) RI and above-ground biomass; (d) FDRI
and above-ground biomass; (e) NDVI and above-ground biomass; (f) FDNDVI and above-ground
biomass; (g) SAVI and above-ground biomass; (h) FDSAVI and above-ground biomass; (i) TVI and
above-ground biomass; (j) FDTVI and above-ground biomass; (k) mSR and above-ground biomass;
(l) FDmSR and above-ground biomass; (m) mNDI and above-ground biomass; (n) FDmNDI and
above-ground biomass.

Table 4 shows the maximum values and wavelength positions of correlation coef-
ficients between the spectral index and the above-ground biomass from Figure 4a–n.
The highest correlation coefficient with the above-ground biomass was the TVI value,
which was 0.693, and the wavelength combination was located at 739 and 720 nm. Among
the spectral indices calculated by the first-order differential reflectance, the highest corre-
lation coefficient with the above-ground biomass was the FDDI value, which was 0.698,
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and the wavelength combination was located at 743 and 721 nm. The results sorted by rmax
value from high to low were:

FDDI > FDSAVI > TVI > DI > RI > SAVI > NDVI > FDTVI > mNDI = mSR > FDmNDI > FDmSR > FDRI > FDNDVI.

Table 3. The maximum value and wavelength position of correlation coefficient between spectral
index and leaf area index.

Spectral Index
Maximum Correlation Coefficient

Spectral Index
Maximum Correlation Coefficient

rmax Wavelength Position (i,j)/nm rmax Wavelength Position (i,j)/nm

DI 0.659 759,758 FDDI 0.716 736,733

RI 0.669 759,758 FDRI 0.613 742,740

NDVI 0.670 758,753 FDNDVI 0.612 741,739

SAVI 0.661 757,755 FDSAVI 0.715 740,732

TVI 0.704 712,685 FDTVI 0.659 685,758

mSR 0.607 758,754 FDmSR 0.602 738,748

mNDI 0.607 759,756 FDmNDI 0.609 738,747

Table 4. The maximum value and wavelength position of correlation coefficient between spectral
index and above-ground biomass.

Spectral Index
Maximum Correlation Coefficient

Spectral Index
Maximum Correlation Coefficient

rmax Wavelength Position (i,j)/nm rmax Wavelength Position (i,j)/nm

DI 0.669 758,757 FDDI 0.698 743,721

RI 0.637 755,754 FDRI 0.534 757,688

NDVI 0.626 753,750 FDNDVI 0.517 743,738

SAVI 0.634 757,753 FDSAVI 0.697 758,697

TVI 0.693 739,720 FDTVI 0.588 685,758

mSR 0.571 714,717 FDmSR 0.540 726,739

mNDI 0.571 692,721 FDmNDI 0.558 680,695

3.2. Establishment of LAI and Above-Ground Biomass Inversion Model Based on Optimal
Spectral Index

The 14 groups of wavelength combinations were substituted into corresponding
formulas for calculation, and the corresponding spectral index values were obtained. In
the process of constructing the spectral indices with the best correlation coefficients with
LAI, 14 spectral indices were divided into three groups as input variables to the model.
The first set of variables consisted of the five spectral indices (DI, RI, NDVI, SAVI, and
TVI) with the highest correlation coefficients with LAI calculated from the raw reflectance
spectra, and was referred to as Combination 1; the second set of variables was calculated
from the first-order differential reflectance spectrum of the five spectral indices with the
highest correlation coefficient with LAI (FDDI, FDRI, FDNDVI, FDSAVI and FDTVI), and
was referred to as Combination 2; the third group of variables was the highest 5 correlation
coefficients among the 14 calculated spectral indices with LAI, consisting of FDDI, FDSAVI,
NDVI, RI and TVI, and was referred to as Combination 3.
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The process of constructing a spectral index with above-ground biomass is the same as
the procedure for constructing a LAI spectral index. Therefore, the model input variables
for estimating the above-ground dry matter were composed of Combination 1 (DI, RI,
NDVI, SAVI, and TVI), Combination 2 (FDDI, FDSAVI, FDTVI, FDmNDI, and FDmSR) and
Combination 3 (FDDI, FDSAVI, TVI, DI, and RI).

After the optimal spectral index combination of LAI and above-ground dry mat-
ter was established, SVM, RF and BPNN were used to model the two, respectively.
The model results are shown in Figures 5 and 6. Table 5 shows the LAI and above-
ground biomass estimation models of winter wheat with different combinations of
input variables and modeling methods, as well as the prediction results of the valida-
tion set. An observation can be made that in the RF and BPNN models, the R2 of the LAI
and above-ground biomass estimation models’ modeling set and validation set were
both higher than 0.6, indicating that the models had a good degree of linear fit accuracy
and could be used to estimate the LAI and above-ground biomass of winter wheat. At
the same time, a further observation can be made that under the same model, the R2 of
the modeling set and the validation set of Combination 2 in the LAI and above-ground
biomass estimation models were higher than those of Combination 1 and Combination
3, and the RMSE and MRE were both lower. Under the same combination, the R2 values
of the RF model’s modeling set and validation set were higher than those of the SVM
model and the BPNN model, and the RMSE and MRE were both lower. An observation
can be made that Combination 2 was the optimal model input variable in the three
modeling methods, indicating that the first-order differential spectral index contained
more spectrally effective information related to LAI and above-ground biomass, and
the predictive ability was higher for LAI and above-ground biomass. For the same
input variable and different modeling methods, by comparing the model evaluation
indicators, the order of accuracy of the models established by the three methods was:
RF > BPNN > SVM. As such, the RF model was the best modeling method, which
could extract the effective information of LAI and above-ground biomass to a greater
extent. To summarize, the models established by the combination of the optimal input
variables and the optimal modeling method for the LAI and above-ground biomass
estimation models of winter wheat were the combination of input variable 2 and the RF
model. The optimal winter wheat LAI estimation model was based on the combination
of RF model and Combination 2. The R2 of the optimal model modeling set was 0.794,
that of the RMSE was 0.285, and that of the MRE was 7.701. Meanwhile, the R2 of
the validation set was 0.830, that of the RMSE was 0.276, and that of the MRE was
6.920. The optimal model for estimating the above-ground biomass of winter wheat
was a model based on the combination of RF model and Combination 2. The R2 of
the optimal model modeling set was 0.721, that of the RMSE was 235.769, and that of
the MRE was 4.312. At the same time, the R2 of the validation set was 0.682, that of
the RMSE was 235.016, and that of the MRE was 4.336. An observation can be made
from the evaluation indicators in Table 5 that in the same spectral index combination
and modeling method, the LAI estimation model based on winter wheat generally had
higher accuracy than the above-ground biomass estimation model.
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Table 5. Comparison of precision test results of estimation models.
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Set R2
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Set RMSE
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Set RMSE

Modeling
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Validation
Set MRE

LAI

SVM
1 0.466 0.478 0.515 0.554 11.645 15.073
2 0.633 0.694 0.386 0.369 9.106 8.474
3 0.589 0.517 0.391 0.456 9.277 11.250

RF
1 0.725 0.565 0.316 0.412 7.919 12.185
2 0.794 0.830 0.285 0.276 7.701 6.920
3 0.722 0.666 0.358 0.388 9.026 10.477

BPNN
1 0.600 0.602 0.374 0.547 10.525 12.617
2 0.634 0.707 0.365 0.328 8.903 8.801
3 0.597 0.644 0.521 0.450 13.978 11.624

Above-
ground
biomass

SVM
1 0.562 0.384 301.367 337.496 4.851 7.031
2 0.567 0.526 300.911 300.725 4.838 5.907
3 0.554 0.472 344.029 329.219 5.922 7.058

RF
1 0.692 0.601 246.184 268.773 4.436 5.142
2 0.721 0.682 235.769 235.016 4.312 4.336
3 0.710 0.633 246.789 252.856 4.351 4.693

BPNN
1 0.626 0.609 275.681 274.168 4.851 5.633
2 0.637 0.617 267.066 259.932 4.838 4.837
3 0.608 0.607 302.115 268.281 5.558 5.068



Agronomy 2022, 12, 1729 14 of 17

Agronomy 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 6. Prediction results of modeling set and validation set of winter wheat above-ground bio-
mass inversion model with different input variables and modeling methods (a) SVM Model input 
variable is combination 1; (b) SVM Model input variable is combination 2; (c) SVM Model input 
variable is combination 3; (d) RF Model input variable is combination 1; (e) RF Model input variable 
is combination 2; (f) RF Model input variable is combination 3; (g) BPNN Model input variable is 
combination 1; (h) BPNN Model input variable is combination 2; (i) BPNN Model input variable is 
combination 3. 

4. Discussion 
In the calculation and selection process of spectral indices, all of the wavelength com-

binations of the indices were found to be in the red edge range and the optimal wave-
length position is consistent with previous research results [12]. The red edge was the 
point where the reflectance of green plants increased the fastest between 670 and 760 nm. 
Studies have shown that the absorption spectrum curve of chlorophyll in leaves has a red 
edge, while the absorption spectrum curve of water and carotenoids does not have a red 
edge. As a result, the change and characteristic information of chlorophyll content can be 
reflected on the red edge to the greatest extent, because the red edge has a high sensitivity 
to chlorophyll content. In the present study, both LAI and above-ground biomass were 
found to be closely related to chlorophyll in leaves, because the growth of leaves requires 
chlorophyll to participate in photosynthesis. Such a factor is the fundamental reason for 
the growth of LAI and above-ground biomass. When selecting the optimal spectral index 
combination for modeling, the first-order differential spectral index was found to have a 
higher predictive ability for LAI and above-ground biomass. In analyzing the input char-
acteristics of the model, an observation could be made that the first-order differential spec-
tral index was closely related to LAI and above-ground biomass. The correlation of the 
first-order differential spectral index with LAI and above-ground biomass was better than 
that of the reflectance differential spectral index, the model constructed based on the first-
order differential spectral index had stronger adaptability to unknown samples, and could 
improve the spectral response to LAI, above-ground biomass, and the ability of infor-
mation mining, enhance the correlation between LAI, above-ground biomass, and spectra, 

Figure 6. Prediction results of modeling set and validation set of winter wheat above-ground biomass
inversion model with different input variables and modeling methods (a) SVM Model input variable
is combination 1; (b) SVM Model input variable is combination 2; (c) SVM Model input variable
is combination 3; (d) RF Model input variable is combination 1; (e) RF Model input variable is
combination 2; (f) RF Model input variable is combination 3; (g) BPNN Model input variable is
combination 1; (h) BPNN Model input variable is combination 2; (i) BPNN Model input variable is
combination 3.

4. Discussion

In the calculation and selection process of spectral indices, all of the wavelength
combinations of the indices were found to be in the red edge range and the optimal
wavelength position is consistent with previous research results [12]. The red edge was the
point where the reflectance of green plants increased the fastest between 670 and 760 nm.
Studies have shown that the absorption spectrum curve of chlorophyll in leaves has a red
edge, while the absorption spectrum curve of water and carotenoids does not have a red
edge. As a result, the change and characteristic information of chlorophyll content can be
reflected on the red edge to the greatest extent, because the red edge has a high sensitivity
to chlorophyll content. In the present study, both LAI and above-ground biomass were
found to be closely related to chlorophyll in leaves, because the growth of leaves requires
chlorophyll to participate in photosynthesis. Such a factor is the fundamental reason for
the growth of LAI and above-ground biomass. When selecting the optimal spectral index
combination for modeling, the first-order differential spectral index was found to have
a higher predictive ability for LAI and above-ground biomass. In analyzing the input
characteristics of the model, an observation could be made that the first-order differential
spectral index was closely related to LAI and above-ground biomass. The correlation of
the first-order differential spectral index with LAI and above-ground biomass was better
than that of the reflectance differential spectral index, the model constructed based on
the first-order differential spectral index had stronger adaptability to unknown samples,
and could improve the spectral response to LAI, above-ground biomass, and the ability
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of information mining, enhance the correlation between LAI, above-ground biomass, and
spectra, and better characterize the growth status of winter wheat. Such findings could be
attributed to the differential processing of canopy reflectance spectral data being able to
reduce the influence of baseline drift and background noise, while enhancing the spectral
characteristics of internal physiological and biochemical parameters of wheat. Notably,
baseline drift and noise interference are mostly non-stationary signals. Hong [24] combined
fractional order derivative and spectral variable selection, which could effectively eliminate
the background noise [25] and improve the correlation between the spectra and LAI and
above-ground biomass. In the present study, Combination 2 as input was found to be better
than Combination 3 in predicting wheat LAI and above-ground biomass. Such findings
could potentially be attributed to the combination of the original spectral reflectance and
the first-order differential of the original spectral reflectance having a limited relationship
with each other, resulting in a lower estimation accuracy than that of the same kind of
spectral index. However, as input variables to predict wheat LAI and above-ground
biomass, similar spectral indices may provide a better prediction, which is consistent with
the findings of Liu et al. [12].

Among the three modeling methods selected in the present study, the estimation
model based on RF for winter wheat LAI and above-ground biomass had the best accuracy,
indicating that RF has more advantages than other models in retrieving winter wheat
LAI and above-ground biomass. Such findings are basically consistent with the results of
previous inversion of LAI of crops [26] and previous inversion of above-ground biomass
of crops [27]. Previous studies have shown that the prediction accuracy of the estimation
model was significantly affected by different modeling methods [28]. The results of the
present study show that the prediction accuracy of SVM was lower than RF model. Such
findings could be attributed to the core problem of SVM being to determine the kernel
function and related parameters, and due to the limitation of parameter selection such
as kernel function and penalty factor, the application thereof being restricted to a certain
extent [29]. The model estimation accuracy of the BPNN model was low, which may be
caused by the low generalization ability due to relatively few samples [30]. Meanwhile,
RF is a machine learning method with integrated thinking, which has strong self-learning
ability, strong tolerance to noise and outliers, and is not easy to overfit [31]. Therefore, RF
can be used as the preferred method for monitoring and modeling of LAI and above-ground
biomass of winter wheat and can better provide real-time and efficient technical services for
future precision agriculture in practical applications. Additionally, under the same input
combinations and modeling methods, the accuracy of the winter wheat LAI estimation
model was found to be basically higher than that of the SPAD value estimation model.
Such findings could be attributed to LAI being more intuitive than above-ground biomass.
Morphological parameters and growth conditions were more easily identified, which is
consistent with the findings of Lu et al. [15].

5. Conclusions

In this study, the extracted 14 spectral indices, which were calculated according to
the optimal wavelength combination, had a strong correlation with winter wheat LAI
and above-ground biomass. We compared and analyzed three groups of model input
variables and the corresponding evaluation indicators from the modeling results. When
the input variables were different, but the models were the same, Combination 2 provided
the optimal model input variables. Combination 2 involved calculating the five spectral
indices with the highest correlation coefficient to LAI and above-ground biomass using the
reflection spectrum after first-order differential processing. However, when the modeling
methods varied but the input variables were constant, the RF model was the optimal
modeling method. By comprehensively comparing and analyzing the 18 model evaluation
indicators of LAI and above-ground biomass, we established that the optimal winter wheat
LAI estimation model was based on a combination of the RF model and Combination 2.
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