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Abstract: The Canary Islands have an enormous richness of crops and varieties, many of them
traditional or local, selected for decades by farmers based on the most desirable characteristics. Pear
trees were introduced to the Canary Islands presumably in the first years after their Conquest in
the 15th century, reaching a high degree of diversification. In this study, to determine the genetic
identity of the genus Pyrus in the Canary Islands for conservation purposes, 266 pear accessions from
the islands of Tenerife, La Palma and Gran Canaria were characterized with 18 SSRs, in addition
to 190 genotypes from Galicia, Asturias, wild and commercial varieties as references to detect
possible synonyms, genetic relationships and the possible genetic structure. We identified 310 unique
genotypes, both diploid and putative triploid, 120 of them present only in the Canary Islands (39%,
with 50% clonality). The population structure of the genotypes was analyzed by STRUCTURE 2.3.4
software (Pritchard Lab, Stanford University, Stanford, CA, USA). The dendrogram, by using the
Jaccard coefficient and principal component analysis (PCoA), separated the analyzed genotypes
into stable groups. One of these groups was formed only by Canarian varieties present at lower
altitudes, showing adaptation to low chilling requirements with a significant positive correlation
(0.432, p < 0.01). This first study of the pear germplasm in the Canary Islands reflects the importance
of the group of local cultivars and their need for conservation given they are adapted to their peculiar
climatic conditions and have a low number of chill units.

Keywords: autochthonous cultivars; microsatellites; genetic resources; germplasm

1. Introduction

The pear (Pyrus spp.) is one of the most important temperate fruits, with world
production in 2020 exceeding 23 million tons. The European Union is the second largest
producer region (12%) after China [1]. Pyrus communis is the predominant cultivated
species in Europe, while in Asia those are P. pyrifolia, P. bretschneideri, P. sinkiangensis and
P. ussurensis [2]. The world trade is based on a few varieties [3,4]; ‘Conference’, ‘Abate Fetel’
and ‘Williams’ represent more than 65% of European pear production [5]. However, the
genetic variability of the genus Pyrus is very high [2,6–14], with more than 3000 cultivars
maintained in different collections around the world. In Spain, the main pear germplasm
banks are located in Galicia at the Mabegondo Agricultural Research Centre (CIAM), at the
Agrifood Research and Technology Centre of Aragón (CITA), at the Public University of
Navarra (UPNA), at the University of Lleida (UdL) and at the Centre for the Conservation
of Agricultural Biodiversity of Tenerife (CCBAT) in the Canary Islands [4,15]. In the last
region, most temperate fruit trees were introduced in the first years after the islands’
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conquest in the 15th century, with written references to pear tree cultivation since the 16th
century [16–18].

The Canary Islands (eight islands and five islets) are located in the Atlantic Ocean,
between subtropical coordinates 27–29 north latitude and 13–18 west longitude. Their par-
ticularities have favored the development of numerous local agricultural varieties, making
the islands one of the richest regions in the world in both agricultural and wild biodiversity.
Their latitude, isolation/insular character, wide range of altitudes and volcanic features
contribute to the emergence of a wide range of endemisms and agricultural varieties highly
adapted to these conditions [19]. In addition, exchanges between continents, together
with strong migratory processes, have built up a heritage of agricultural biodiversity of
enormous qualitative and quantitative value. However, this agricultural biodiversity is en-
dangered by the progressive abandonment of agriculture, the aging of the rural population
and the reduced use of traditional varieties.

To recover the agricultural biodiversity of Tenerife, the CCBAT was created in 2003 by
agreement of the Plenary of the Council of Tenerife, within the framework of the Insular
Biodiversity Plan 2001–2005. Since its inception, this gene bank has been part of the
National Program for the Conservation and Use of Plant Genetic Resources (PCURF) of the
National Institute of Agricultural Research and Technologies (INIA). Its main objectives are
the conservation and sustainable use of plant genetic resources for food and agriculture,
thus avoiding the loss of local agricultural biodiversity by evaluation and documentation of
plant genetic resources for use. At present, this bank has more than 3200 accessions of a large
number of agricultural genres, with Pyrus spp. the most frequent (271). However, Tenerife
is not the only island with traditional pear cultivars. The Council of La Palma, through the
Agrodiversity Centre (CAP) created in 2005, and the Council of Gran Canaria have also
identified and committed to the conservation of their local varieties in the last decade.

The replacement of local varieties with a few modern varieties is one of the main
causes of genetic erosion [4], with an associated reduction in genetic variability. Local
or traditional varieties have been selected by farmers for decades, who have aimed to
adapt them to the specific soil and climatic conditions of each area, to prolong the harvest
or for different uses. The study, valorization and conservation of these local varieties is,
therefore, essential to avoid the irreplaceable loss of such useful adaptations, along with
the knowledge and cultural practices associated with them. A further possible threat is the
loss of genes that could be of interest to mitigate the effects of climate change in the future,
given many of the varieties are adapted to areas with low chill [20], which are scarce and of
interest when considering climatic change [21].

Therefore, this first study on the pear germplasm in the Canary Islands was a priority
at the CCBAT, with the main objective a comparative genetic evaluation of the Canarian
accessions with conservation purposes, to detect possible synonyms, genetic relationships
and the possible genetic structure.

2. Materials and Methods
2.1. Plant Material

In this study, we evaluated 456 accessions (Table S1). Among those were 169 entries
from the CCBAT pear collection from the island of Tenerife, 64 accessions from the island
of La Palma and 33 from the island of Gran Canaria. We analyzed these to determine
the genetic diversity of the genus Pyrus in the Canary Islands and detect the most inter-
esting individuals for ex situ conservation, thus preserving the genetic diversity of these
local resources. Considering the results obtained in apple (Malus spp.) [22], where simi-
larities were found between apples from the Canary Islands and those of northwestern
Spain, which bore a common genetic structure, 117 unique genotypes at the CIAM (Gali-
cia) [23], 16 from Asturias and 13 wild genotypes were analyzed as references (Figure 1).
In addition, 20 world reference pear varieties used in other previous studies for their
importance [7,23,24]—including three varieties of Pyrus pyrifolia, one of P. calleryana and
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another one of P. salicifolia—and 24 traditional varieties marketed in Galician nurseries
were introduced, too.
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2.2. DNA Extraction, PCR Reactions, Microsatellite Analysis and Genetic Diversity 
DNA extraction was carried out from 50 to 60 mg of young leaves collected in 

spring/summer and preserved at −80 °C until use. The DNA extraction process was 
carried out with a buffer based on 2% CTAB, 1% PVP, 100 mM Tris-HCl pH8, 20 mM 
EDTA pH 8, 1.4 M NaCl and 0.2% beta-mercaptoethanol, with the subsequent addition of 
chloroform:isoamyl alcohol (CIA) 24:1, which obtained low-quality DNA from most of 
the samples. Several authors [25,26] referred to the difficulty of extracting quality DNA 
from different species due to the contents of certain substances such as polyphenols and 
polysaccharides that act as inhibitors. Therefore, the protocol used was carried out with 
an extra addition of CIA and subsequent centrifuge to eliminate the inhibitors, thus 
achieving a higher-quality DNA. However, in 12 samples, the extraction was unsuccessful 
in this way, meaning it was carried out again with a QIAGEN extraction kit (QIAGEN, 
Hilden, Germany), with better results. DNA quantification was performed in a Nabi 
UV/Vis Nanospectrophotometer. 

The PCR reaction was performed in 15 µL as the final volume (7.5 µL of QIAGEN 
Multiplex Master Mix, 0.075 to 0.3 µM of each primer, 4 to 4.9 µL of RNase Free Water 
and 2 µL of ADN at 10 ng/µL). The samples were amplified in a PTC-100 thermocycler 
(M.J. Research, Inc.) based on the protocol carried out by Reija [27]. The amplification con-
ditions were 94 °C for 2 min, followed by 35 cycles at 95 °C for 30 s, then the annealing 
temperature depending on the multiplex set, held for 90 s, followed by 1 min at 74 °C and 
a final extension at 72 °C for 5 min. The amplification products were diluted with water, 
and 2 µL of a diluted amplification product was added to 9.88 µL of formamide and 0.12 

Figure 1. Geographical locations of the 456 samples of pear tree (Pyrus spp.) included in this study.
RPP1: reconstructed panmictic population unique to the Canary Islands; RPP2, RPP3: reconstructed
panmictic populations identified in the northwestern Iberian Peninsula and the Canary Islands.

2.2. DNA Extraction, PCR Reactions, Microsatellite Analysis and Genetic Diversity

DNA extraction was carried out from 50 to 60 mg of young leaves collected in
spring/summer and preserved at −80 ◦C until use. The DNA extraction process was
carried out with a buffer based on 2% CTAB, 1% PVP, 100 mM Tris-HCl pH8, 20 mM
EDTA pH 8, 1.4 M NaCl and 0.2% beta-mercaptoethanol, with the subsequent addition
of chloroform:isoamyl alcohol (CIA) 24:1, which obtained low-quality DNA from most of
the samples. Several authors [25,26] referred to the difficulty of extracting quality DNA
from different species due to the contents of certain substances such as polyphenols and
polysaccharides that act as inhibitors. Therefore, the protocol used was carried out with an
extra addition of CIA and subsequent centrifuge to eliminate the inhibitors, thus achieving
a higher-quality DNA. However, in 12 samples, the extraction was unsuccessful in this
way, meaning it was carried out again with a QIAGEN extraction kit (QIAGEN, Hilden,
Germany), with better results. DNA quantification was performed in a Nabi UV/Vis
Nanospectrophotometer.

The PCR reaction was performed in 15 µL as the final volume (7.5 µL of QIAGEN
Multiplex Master Mix, 0.075 to 0.3 µM of each primer, 4 to 4.9 µL of RNase Free Water
and 2 µL of ADN at 10 ng/µL). The samples were amplified in a PTC-100 thermocycler
(M.J. Research, Inc.) based on the protocol carried out by Reija [27]. The amplification
conditions were 94 ◦C for 2 min, followed by 35 cycles at 95 ◦C for 30 s, then the annealing
temperature depending on the multiplex set, held for 90 s, followed by 1 min at 74 ◦C and a
final extension at 72 ◦C for 5 min. The amplification products were diluted with water, and
2 µL of a diluted amplification product was added to 9.88 µL of formamide and 0.12 µL of
internal GeneScanTM, size standard 500 LIZ (−250) (Applied Biosystems, Foster City, CA,
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USA), then analyzed on a 3130 Genetic Analyzer capillary sequencer (Applied Biosystems,
Foster City, CA, USA). The allele sizes were detected using Peak ScannerTM software 1.0
(Applied Biosystems, Foster City, CA, USA).

For the molecular characterization, we used 18 SSRs described by different groups [28–32]
(Table S2), previously evaluated by Dos Santos [23] with the exception of CH04c07 (due
to the high number of null alleles in that study). Of the 18 SSRs, 14 are recommended by
the European Cooperative Programme for Plant Genetic Resources (ECPGR) [33]. For each
locus, the total number of alleles, the inbreeding (FIS) and total consanguinity coefficients
(FIT), the fixation index (FST) and the number of migrants (Nm) in GenAlEx 6.2 [34] were
analyzed, also identifying possible specific alleles for the Canarian genotypes.

2.3. Assessment of Population Structure

The genetic structure was evaluated by a model-based Bayesian procedure using
Structure v2.3.4 software (Pritchard Lab, Stanford University, Stanford, CA, USA) [35],
separately for diploid and putative triploid (those with an extra allele) genotypes, following
a methodology previously defined and used by several authors [8,36–38]. The analysis was
performed for the total of SSRs (18) and also eliminating those that presented null alleles
in the work by Dos Santos [23] (CH02b10, CH03d12, CHVF1 and EMPc117) or linked loci
(CH01d08 and CH02d11), to confirm the population structure with the two sets of SSRs.
In addition to the total number of samples, the genotypes from the Canary Islands were
also analyzed separately with the commercial reference varieties alone, to verify the results.
We assessed the hypothesis that genotypes could be grouped into between 1 and 14 popu-
lations (K). A length of the Markov Monte Carlo Chain (MCMC) race of 1,000,000 steps
was used, with 3000 previous steps of dememorization. Each genotype was also consid-
ered to have an anonymous origin using the options ‘usepopinfo = 0, popflag = 0’. For
each K, 30 random iterations were performed. After the analysis, we observed in how
many populations the varieties were grouped. Once the most probable K was determined
by the methodology described by Evanno et al. [39] using STRUCTURE HARVESTER
software [40], the mean ancestry coefficients (qI) for each genotype were calculated as an
average of the 30 iterations. We considered the minimum value of 0.8 for the allocation
to each reconstructed panmictic population (RPP), a value also used by other authors for
this and other species [11,12,22–24,41–44]. Those genotypes with qI < 0.8 were considered
admixed. For each population, the observed (Ho) and expected (He) heterozygosity [45] at
each locus were calculated with GenAlEx 6.2 [34] for diploid genotypes. Genodive v2.0b23
software [46] was used to carry out the pairwise reconstructed population differentiation,
to obtain Fst values, and an analysis of molecular variance (AMOVA) [47,48], assuming
that results based on individuals with two alleles could also be applied to individuals with
three alleles [36].

2.4. Genetic Similarity and Principal Component Analysis (PCoA)

The co-dominant SSR data were first converted to a binary data matrix, treating
the absence of a defined allele as ‘0’ and presence as ‘1’. The Jaccard coefficient (JC)
was then computed based on the binary data, not considering the shared absence of a
character as a similarity [36]. Genotypes were clustered through the unweighted pair
group method (UPGMA) [49] and a dendrogram was constructed using the NTSYS 2.21w
statistical package (Applied Biostat LLC, Albany, NY, USA) [50]. This was done for 18 and
12 SSRs, and the cophenetic correlation coefficient was subsequently calculated to verify
the similarity between the initial matrix and the dendogram, choosing the one made based
on the number of microsatellites that obtained a lower distortion.

Principal components (PCs) were estimated on the variance-covariance matrix of the
allele frequencies [51,52] using SPSS statistics software v28 (IBM, Armonk, NY, USA).
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3. Results
3.1. Microsatellite Analysis and Genetic Diversity

From the total number of samples analyzed in this study (456), 310 unique pear
genotypes were identified. The average clonality in this territory was 50%, with island
percentages of 47% in Tenerife, 38% in La Palma and 42% in Gran Canaria. Of the samples
collected in the Canary Islands, 133 genotypes were found, 120 of them unique to this
region (90%). One Canarian genotype was present on the three islands, nine genotypes were
located in Tenerife and La Palma, 71 genotypes were exclusive to Tenerife, 28 were from
La Palma and 11 were from Gran Canaria, in many cases (70%), with only one accession
per genotype. Synonymies were found among the Canarian varieties with the commercial
‘Esganacan’ (15 accessions), ‘Blanquilla’ (12), ‘Williams’ (8), ‘Ercolini’ (5), ‘Portuxesas’ (5),
‘Precoz de Moretini’ (3), ‘Manteca temprana’ (2), ‘Tosca Mediana’ (1), ‘Roma’ (1), ‘Rocha’ (1),
‘Magallón’ (1), ‘Manteca de oro tardía’ (1) and ‘San Juan’ (1), as well as with a variety (‘De
manteca’) with trees also found in Galicia and Asturias. None of the samples from the
Canary Islands were identified as other Pyrus species studied.

Both diploid (192) and putative triploid (118) genotypes were detected in the pear
samples, but 52% of the putative triploids only presented one locus with three alleles
and their ploidy should be confirmed by flow cytometry. The diploid genotypes were
distributed as follows: one genotype with trees on the three islands studied, four with trees
on Tenerife and La Palma, 35 diploid genotypes unique to the island of Tenerife, 19 from
La Palma, nine from Gran Canaria, 73 Galician, 10 Asturian, 10 wild and 31 commercial
varieties. Thus, the proportions of diploids and putative triploids in the Canary Islands
genotypes were 57 and 43%, respectively.

All the SSR markers studied were polymorphic, with 266 alleles detected in the
Canarian accessions, 21 of them not detected in the other samples studied (Table 1). The
marker CH05a02 was divided into two loci (a and b) by the existence of two distinct allelic
ranges [53], one conceived between alleles 103 and 109 (assigned to CH05a02a) and another
between 111 and 131 (assigned to locus CH05a02b).

Alleles specific to the other Pyrus species studied were identified. In Pyrus pyrifolia,
three specific alleles were identified at loci CH01f07a (181), CH03d12 (93) and EMPc11
(143). In ‘Pendula’ (Pyrus salicifolia), seven specific alleles were found: 296 and 305 from
locus CH01d08, 112 from CH02d10, 95 from CH03d12, 222 from CH03g07, 117 from locus
CH05c06 and 123 from EMPc11. For Pyrus calleryana (‘Chanticleer’), two specific alleles
were detected: 117 from CH04d03 and 171 from EMPc11.

The mean FIS value was −0.05, indicating an excess of heterozygotes, with values
between −0.45 for the CH05a02a locus and 0.15 for CH02b10. The lowest total consanguin-
ity coefficient (FIT) was for the ch05a02a locus (−0.42) and the highest for CHVF1 (0.16).
The mean FST (fixation index) per locus was 0.05, with the lowest value (0.02) again for
CH05a02a and the highest (0.07) for the loci CH05a02b, CHVF1 and GD142. The number of
migrants (Nm) (gene flow) ranged from 3.14 for CH05a02a to 10.00 for CH05c06, with a
mean of 5.36 (Table 2).

3.2. Population Structure
3.2.1. Diploids

Among the total number of diploid genotypes studied (192), using the procedure
presented by Evanno et al. [39], a higher probability was found for three reconstructed
panmictic populations (K = 3) (Figure S1) with both 18 and 12 microsatellites. There was a
submaximum for K = 4 in the analysis with 12 SSRs, which may indicate the presence of a
substructure, as indicated by various authors in several crops [8,23,39,43,54].
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Table 1. Ranges and allelic sizes (pb) for 19 polymorphic loci in the entries studied. The alleles located
in the Canarian samples are underlined and those found only in this region are highlighted in bold.

Locus Allelic Range of
Canarian Samples Allelic Size (pb) No. of Alleles from

Canarian Samples
Total No.
of Alleles

CH01d03 130–171
130, 132, 134, 136 3, 138, 140, 142, 145, 147, 149 2,
151 2, 153, 155, 157, 159, 161, 163, 167, 171, 179,
181, 183, 187, 189, 193 1, 195, 199, 201

15 28

CH01d08 239–300 239, 248, 252, 270, 276 1, 278, 279, 280 2, 282, 284,
286 3, 288, 290, 292, 294 3, 296 1, 300, 305 1 13 18

CH01d09 119–161
119, 126, 128, 130, 132 1, 134, 136, 138, 140 2, 142,
143, 145, 147, 149, 151 1, 153, 155 2, 157, 159, 161,
165, 170, 179

19 23

CH01f07a 173–209
171, 173, 175, 177, 179, 181 2, 182, 184 1, 186, 188,
190, 192 1, 194 3, 197, 199 3, 201, 205, 207 2, 209,
211, 213, 215, 219

15 23

CH02b10 118–161
112 1, 116, 118 3, 120, 122 2, 124, 126, 128, 130, 132
2, 134, 136, 138 1, 141, 143, 145, 147 3, 149, 151, 153,
155, 159, 161

17 23

CH02c09 229–283 229, 231, 233 1, 235, 237, 239, 241, 243, 245 1, 247 2,
249 2, 251 3, 253 3, 255 2, 257, 267, 283

15 17

CH02c11 201–247
201, 205, 207, 209, 211, 215, 217, 219, 221, 223 13,
225 2, 227 12, 229, 231 3, 233, 235, 237 2, 239, 241,
243, 245, 247, 249

19 23

CH02d11 95–147 95, 99 2, 101 3, 103 3, 105, 107, 109, 111, 113, 115 2,
117, 119, 121, 123 1, 125, 127, 129, 137, 147, 153

14 20

CH03d12 92–159
92 3, 93 2, 95 1, 97 2, 101, 103 1, 106, 108 3, 110,
112 2, 114, 116, 118, 120, 122, 125, 127, 129, 132,
134, 139, 142, 149, 157, 159

15 25

CH03g07 204–266
200, 204, 206, 211, 215 3, 220 1, 222 1, 226, 228, 230,
232, 234, 236, 238, 242, 244, 245, 246, 248, 250 2,
252 2, 256, 258 2, 262, 264, 266, 268

16 27

CH04e03 180–213 177 3, 180 1, 186, 188 23, 190, 196, 198, 200, 203, 205,
207, 213

7 12

CH05a02a 103–109 103, 105 12, 107 1, 109 4 4

CH05a02b 111–131 111 2, 113 123, 115, 117, 119 3, 121, 123, 125 1, 127 3,
129, 131

10 11

CH05c06 79–114 79, 83 2, 87, 89, 91, 93, 95, 97 3, 101, 103 2, 105 2,
107, 111, 114 1, 117, 121

13 16

CH-Vf1 126–172 126, 128, 130 123, 132 1, 134, 138, 140, 142, 144, 146,
148, 150, 152, 154 3, 156, 158 2, 162 2, 172

17 18

EMPc11 136–157 123 1, 130, 134, 136, 138, 140 2, 142, 143 2, 144 23,
146, 149, 151, 153 2, 155, 157, 171 3 10 16

EMPc117 84–139 84, 88, 91 3, 93 12, 97, 99, 101 1, 103, 105 2, 107 3,
109, 111, 113, 115, 117, 119, 121, 123, 125, 139

17 20

GD142 126–184
126, 134, 138, 140 2, 143 2, 147 1, 150, 152, 154, 156,
158, 160, 162, 164, 166 1, 168, 170, 172, 174, 176,
178, 180, 182, 184, 186, 188 3, 198, 204

17 28

GD147 125–162 117, 125, 127, 129, 131 1, 133 1, 135 2, 137 2, 139 3,
141, 143, 146, 150, 154, 162

13 15

Total 266 367
1 alleles detected in Pyrus salicifolia genotypes; 2 alleles detected in P. pyrifolia genotypes; 3 alleles detected in
P. calleryana genotypes.
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Table 2. Inbreeding coefficient (FIS), total consanguinity coefficient (FIT), fixation index (FST) and
number of migrants (Nm) per locus in 192 diploid pear genotypes.

Locus FIS FIT FST Nm

CH01d03 −0.09 −0.05 0.04 6.11

CH01d08 −0.09 −0.05 0.04 7.24

CH01d09 −0.01 0.04 0.05 5.90

CH01f07a −0.03 0.03 0.06 8.28

CH02b10 0.15 0.20 0.06 5.98

CH02c09 −0.03 0.02 0.05 4.21

CH02c11b −0.09 −0.04 0.05 4.76

CH02d11 0.09 0.14 0.06 6.51

CH03d12 0.06 0.11 0.05 4.47

CH03g07 −0.04 0.00 0.04 4.13

CH04e03 −0.02 0.01 0.03 4.43

CH05a02a −0.45 −0.42 0.02 3.14

CH05a02b −0.37 −0.28 0.07 4.39

CH05c06 −0.01 0.03 0.04 10.00

CHVF1 0.09 0.16 0.07 3.48

EMPc11 −0.14 −0.10 0.03 3.31

EMPc117 0.10 0.15 0.05 4.39

GD142 0.02 0.08 0.07 6.67

GD147 −0.08 −0.04 0.04 4.32

Average −0.05 0.00 0.05 5.36

For K = 3, one population (RPP1) was formed consisting exclusively of Canarian
genotypes (Figure 1). Another population (RPP2) integrated the commercial varieties
of Pyrus communis ‘Mantecosa Hardy’, ‘Magallón’, other varieties marketed in Galician
nurseries, the wild diploid genotypes, the two diploid varieties of Pyrus pyrifolia, Galician
and Asturian genotypes and a few Canarian genotypes. The last population RPP3 was
formed by most of the reference commercial varieties, as well as Galician, Asturian and
Canarian genotypes. For K = 4 and 12 SSRs, the populations RPP1 and RPP3 remained
practically unchanged with only some alterations to the admixed group, while RPP2 was
divided into two groups: one with the wild genotypes, Asian pear cultivars, ‘Magallón’
and some Galician, Asturian and Canarian genotypes (RPP2.1); then, another one (RPP2.2)
that included ‘Mantecosa Hardy’ among other varieties (Table 3) [35].

Velázquez et al. [20] zoned the island of Tenerife based on the dynamic model of
Fishman et al. (1987), delineating a coastal zone with practically no winter cold, which
begins to increase as the elevation rises. Figure 2 shows the layer of pear trees located
on the island and the relation to such zonation, according to the reconstructed panmictic
populations for K = 3 and 18 SSRs. RPP1 accessions were collected at lower elevations than
the other groups, with a significant positive correlation (0.432, p < 0.01). The accessions of
that group were collected at an average altitude of 569 m above sea level (m.a.s.l.), RPP2
at 663 m.a.s.l. and RPP3 at an average altitude of 746 m.a.s.l. This shows an apparent
adaptation to the low winter chilling requirements of the RPP1 genotypes.
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Table 3. Classification of 192 diploid pear genotypes for K = 3 and K = 4 reconstructed populations
(RPPs) according to STRUCTURE [35] for the total study sample.

K = 3, 12 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian

Genotypes

Number of
Reference
Genotypes

Number of
Genotypes of
Other Origins

RPP1 (Canary Islands) qI 1 ≥ 0.8 39 (20.31%) 39 0 0
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 71 (36.98%) 5 11 55
RPP3 (Commercial) qI 1 ≥ 0.8 51 (26.56%) 10 15 26
Admixed (qI 1 < 0.8) 31 (16.15%) 14 5 12

Total 192 (100.00%) 68 31 93

K = 3, 18 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian

Genotypes

Number of
Reference
Genotypes

Number of
Genotypes of
Other Origins

RPP1 (Canary Islands) qI 1 ≥ 0.8 39 (20.31%) 39 0 0
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 67 (34.90%) 9 12 46
RPP3 (Commercial) qI 1 ≥ 0.8 53 (27.60%) 12 15 26
Admixed (qI 1 < 0.8) 33 (17.19%) 8 4 21

Total 192 (100.00%) 68 31 93

K = 4, 12 SRRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian

Genotypes

Number of
Reference
Genotypes

Number of
Genotypes of
Other Origins

RPP1 (Canary Islands) qI 1 ≥ 0.8 36 (18.75%) 36 0 0
RPP2.1 (Wild, other Pyrus) qI 1 ≥ 0.8 31 (16.15%) 5 3 23
RPP2.2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 35 (18.23%) 1 5 29
RPP3 (Commercial) qI 1 ≥ 0.8 48 (25.00%) 9 15 24
Admixed (qI 1 < 0,8) 42 (21.87%) 17 8 17
Total 192 (100.00%) 68 31 93

1 Coefficient of ancestry.
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After reducing the population to the Canarian diploid genotypes and the commercial
diploid reference varieties, the maximum probability was for K = 2, with a submaximum
in K = 3, and for 18 SSRs, also in K = 6 (Figure S1). In the case of K = 2, the population of
Canarian genotypes (RPP1) was separated from the rest, appearing in the admixed group
the varieties marketed in Galician nurseries ‘Rocha’ and ‘Tenreiras’. For K = 3, the grouping
given for the total number of genotypes was repeated, demonstrating the great stability of
these reconstructed panmictic populations (Table 4).

Table 4. Classification of 99 diploid pear genotypes for K = 2, K = 3 and K = 4 reconstructed
populations (RPPs) according to STRUCTURE [35] for the Canary Islands genotypes and the reference
commercial varieties.

K = 2, 12 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian Genotypes

Number of
Reference Genotypes

RPP1 (Canary Islands) qI 1 ≥ 0.8 39 (39.39%) 39 0
RPP2 (others) qI 1 ≥ 0.8 50 (50.51%) 21 29
Admixed (qI 1 < 0.8) 10 (10.10%) 8 2

Total 99 (100.00%) 68 31

K = 2, 18 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian Genotypes

Number of
Reference Genotypes

RPP1 (Canary Islands) qI 1 ≥ 0.8 39 (39.39%) 39 0
RPP2 (others) qI 1 ≥ 0.8 52 (52.53%) 23 29
Admixed (qI 1 < 0.8) 8 (8.08%) 6 2

Total 99 (100.00%) 68 31

K = 3, 12 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian Genotypes

Number of
Reference Genotypes

RPP1 (Canary Islands) qI 1 ≥ 0.8 38 (38.38%) 38 0
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 21 (21.21%) 10 11
RPP3 (Commercial) qI 1 ≥ 0.8 25 (25.25%) 10 15
Admixed (qI 1 < 0.8) 15 (15.15%) 10 5

Total 99 (100.00%) 68 31

K = 3, 18 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian Genotypes

Number of
Reference Genotypes

RPP1 (Canary Islands) qI 1 ≥ 0.8 39 (39.39%) 39 0
RPP2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 23 (23.23%) 11 12
RPP3 (Commercial) qI 1 ≥ 0.8 22 (22.22%) 7 15
Admixed (qI 1 < 0.8) 15 (15.15%) 11 4

Total 99 (100.00%) 68 31

K = 6, 18 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian Genotypes

Number of
Reference Genotypes

RPP1.1 (Canary Islands 1) qI 1 ≥ 0.8 24 (24.24%) 24 0
RPP1.2 (Canary Islands 2) qI 1 ≥ 0.8 12 (12.12%) 12 0
RPP2.1 (Canary Islands 3) qI 1 ≥ 0.8 6 (6.06%) 6 0
RPP2.2 (‘Mantecosa Hardy’) qI 1 ≥ 0.8 6 (6.06%) 1 5
RPP2.3 (Pyrus pyrifolia) qI 1 ≥ 0.8 2 (2.02%) 0 2
RPP3 (Commercial) qI 1 ≥ 0.8 22 (22.22%) 7 15
Admixed (qI 1 < 0.8) 27 (27.27%) 18 9
Total 99 (100.00%) 68 31

1 Coefficient of ancestry.
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For K = 6 and 18 SSRs, the genotypes of RPP1 were divided into two groups, one
with 24 and the other with 12 Canarian genotypes with qI ≥ 0.8. The RPP3 group of K = 3
that included the commercial and related varieties remained practically unchanged, while
the second population in that study was divided into three groups: one composed only
of Canarian varieties (RPP2.1); another with ‘Mantecosa Hardy’, some varieties marketed
in Galician nurseries and a Gran Canarian genotype (RPP2.2); a third group formed by
Pyrus pyrifolia (RPP2.3) (Table 4).

3.2.2. Triploids

For the putative triploids (118) and 12 SSRs, the highest probability was for K = 2,
with a submaximum at K = 3, while for the total number of microsatellites, there was
only a maximum at K = 3 (Figure S1). For K = 2 (12 SSRs), practically (6.06%) the same
types of groups were formed as those for the diploids, separating a group of Canarian
varieties (RPP1) from the rest, although in this case, a Galician variety (‘Rabuda parda’) was
introduced in RPP1 with qI ≥ 0.8. For K = 3 and 12 SSRs, the RPP2 of K = 2 was divided
into two groups, one of them with the wild triploid genotypes, the triploid varieties of
Pyrus pyrifolia, P. salicifolia and P. calleryana, ‘Castell’, two marketed in the Galician nurseries
‘Barburiña xermade’ and ‘Urraca amarela’, as well as Galician, Asturian and four Canary
Island varieties. The other group (RPP3) was formed by Canarian, Asturian and Galician
genotypes, some nursery varieties and the reference variety ‘Roma’. For K = 3 and 18 SSRs,
‘Rabuda parda’ presented a qI lower than 0.8, so RPP1 was formed only of Canarian
genotypes, and the other two groups were similar to those obtained with 12 microsatellites
(Table 5).

Table 5. Classification of 118 triploid pear genotypes for K = 2 and K = 3 reconstructed populations
(RPPs) according to STRUCTURE [35] for the total study sample.

K = 2, 12 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian

Genotypes

Number of
Reference
Genotypes

Number of
Genotypes of
Other Origins

RPP1 (Canary Islands) qI 1 ≥ 0.8 34 (28.81%) 33 0 1
RPP2 (others) qI 1 ≥ 0.8 77 (65.25%) 17 14 46
Admixed (qI 1 < 0.8) 7 (5.93%) 2 0 5

Total 118 (100.00%) 52 14 52

K = 3, 12 SSRs
Total Number
of Genotypes

(% in Brackets)

Number of
Canarian

Genotypes

Number of
Reference
Genotypes

Number of
Genotypes of
Other Origins

RPP1 (Canary Islands) qI 1 ≥ 0.8 33 (27.97%) 32 0 1
RPP2 (‘Castel’, other Pyrus) qI 1 ≥ 0.8 29 (24.58%) 4 6 19
RPP3 (Local varieties) qI 1 ≥ 0.8 40 (33.90%) 12 8 20
Admixed (qI 1 < 0.8) 16 (13.56%) 4 0 12

Total 118 (100.00%) 52 14 52

K = 3, 18 SSRs
Total Number of

Genotypes
(% in Brackets)

Number of
Canarian

Genotypes

Number of
Reference
Genotypes

Number of
Genotypes of
Other Origins

RPP1 (Canary Islands) qI 1 ≥ 0.8 31 (26.27%) 31 0 0
RPP2 (‘Castel’, other Pyrus) qI 1 ≥ 0.8 33 (27.97%) 6 6 21
RPP3 (Local varieties) qI 1 ≥ 0.8 32 (27.12%) 9 5 18
Admixed (qI 1 < 0.8) 22 (18.64%) 6 3 13
Total 118 (100.00%) 52 14 52

1 Coefficient of ancestry.
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When studying only the triploids of the Canary Islands and the reference triploid
varieties (66 genotypes), two populations (K = 2) (Figure S1) were separated for 12 and
18 SSRs: RPP1 of Canarian genotypes and the rest.

From the Canary Islands group (RPP1), the varieties with the highest number of
specimens were ‘Güimarera or Sanjuanera’ (9), ‘Parda’ (8) and ‘Rabuda or Calabazate’ (8),
all with trees on Tenerife and La Palma.

3.2.3. Genetic Diversity in Reconstructed Panmictic Populations (RPPs)

The mean values of observed (Ho) and expected (He) heterozygosity were similar for
RPPs and the admixed genotype group (Table 6). The lowest He was for the locus CH04e03
in RPP2 (0.33), although the lowest value was recorded in the admixed group, with 0.30.
The maximum He value was also recorded in RPP2, in the loci CH03g07 and GD142. The
total range of He was from 0.38 to 0.86 with an average value of 0.76. The mean Ho was
higher than He in RPP1 and RPP3, as well as in the total average. RPP1 had the lowest He
average (0.70) and the highest Ho value (0.84).

Table 6. Observed (Ho) and expected (He) heterozygosity in reconstructed panmictic populations
(RPPs) of 192 diploid pear genotypes for K = 3 and 18 SSRs.

RPP1 RPP2 RPP3 Admixed Total

Ho He Ho He Ho He Ho He Ho He

CH01d03 0.97 0.80 0.85 0.90 0.94 0.82 0.91 0.85 0.92 0.84

CH01d08 0.86 0.69 0.76 0.82 0.92 0.80 0.81 0.76 0.84 0.77

CH01d09 0.89 0.80 0.78 0.90 0.94 0.85 0.88 0.91 0.87 0.86

CH01f07a 0.87 0.65 0.83 0.90 0.80 0.80 0.84 0.89 0.84 0.81

CH02b10 0.78 0.76 0.71 0.87 0.67 0.83 0.67 0.87 0.71 0.83

CH02c09 0.97 0.75 0.85 0.88 0.63 0.62 0.70 0.78 0.79 0.76

CH02c11b 0.94 0.81 0.88 0.91 0.94 0.81 0.97 0.88 0.93 0.85

CH02d11 0.58 0.65 0.61 0.82 0.84 0.79 0.79 0.84 0.70 0.78

CH03d12 0.92 0.78 0.63 0.88 0.71 0.68 0.73 0.84 0.74 0.79

CH03g07 0.90 0.83 0.87 0.92 0.96 0.83 0.83 0.86 0.89 0.86

CH04e03 0.53 0.44 0.24 0.33 0.46 0.44 0.31 0.30 0.38 0.38

CH05a02a 1.00 0.66 1.00 0.73 1.00 0.72 1.00 0.65 1.00 0.69

CH05a02b 1.00 0.62 1.00 0.78 1.00 0.76 1.00 0.77 1.00 0.73

CH05c06 0.67 0.57 0.71 0.79 0.76 0.74 0.70 0.71 0.71 0.70

CHVF1 0.63 0.66 0.73 0.83 0.75 0.79 0.73 0.85 0.71 0.78

EMPc11 0.87 0.71 0.88 0.82 0.81 0.71 0.85 0.76 0.85 0.75

EMPc117 0.89 0.82 0.57 0.90 0.84 0.80 0.70 0.83 0.75 0.84

GD142 0.84 0.75 0.88 0.92 0.79 0.82 0.79 0.87 0.83 0.84

GD147 0.79 0.62 0.76 0.77 0.47 0.46 0.76 0.72 0.70 0.64

Average 0.84 0.70 0.76 0.82 0.80 0.74 0.79 0.79 0.80 0.76

The AMOVA analysis showed that the allelic variability between populations was
10.8% (p < 0.001). The largest difference between populations (Fst) was presented by RPP1
and RPP3, with a value of 0.099, followed by differences between RPP1 and RPP2 of 0.068
and RPP2 and RPP3 of 0.052, with significant differences in all cases (Table 7).
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Table 7. Differentiation between pairs of populations (Fst) in diploids for K = 3, 18 SSRs.

RPP1
(Canary Islands)

RPP2
(‘Mantecosa Hardy’)

RPP3
(Commercial) Admixed

0.068 *** - RPP2 (‘Mantecosa Hardy’)

0.099 *** 0.052 *** - RPP3 (Commercial)

0.051 *** 0.011 *** 0.026 *** - Admixed

*** p <0.001.

The reconstructed panmictic population RPP2, which included different species of the
genus Pyrus, had the highest number of specific alleles (94). In RPP1 genotypes, three alleles
not found in other populations were detected: 129 of the CH03d12 locus (five genotypes),
230 of CH03g07 (1) and 126 of CHVF1 (1). The most frequent unique Canarian allele was
142 of CH03d12, identified in one cultivar from Tenerife and La Palma, seven genotypes
from Tenerife and five from La Palma, all from RPP1 except one admixed cultivar.

3.3. Genetic Similarity and Principal Component Analysis (PCoA)

The cophenetic correlation coefficient was higher for the study with the total number
of microsatellites (0.77) than with the small set of 12 SSRs (0.73), so the dendogram made
from the Jaccard coefficient with 18 SSRs was chosen (Figure 3). These coefficient values
reflected some degree of distortion between the initial matrix and the representation,
but nevertheless, the results were in accordance with those obtained in the population
structure. The dendogram obtained grouped all the genotypes of RPP1, both diploid
and triploid, in a single cluster from a Jaccard coefficient (JC) of 0.21. In that cluster, in
addition to these genotypes, only two genotypes of the admixed group from Tenerife and
the varieties marketed in Galician nurseries ‘Rocha’ and ‘Tenreiras’ (two clones) were
included, which were again not assigned to any reconstructed panmictic population. This
cluster was grouped, in turn, from 0.19 with three Galician varieties (CIAM OU231, CIAM
LU214 and ‘Peros Raposos’) and from 0.18 with two large groups: one mainly comprising
the reference and related commercial varieties that formed RPP3 in the results obtained
with the STRUCTURE software, and another formed by varieties belonging to RPP2,
including ‘Mantecosa Hardy’. In the dendogram, RPP2 is divided into two clusters: the one
mentioned above and another one containing the most differentiated genotypes and other
Pyrus species. The groupings provided by STRUCTURE for K = 6 and 18 SSRs in diploids,
although obtained by studying the Canarian genotypes and reference commercial varieties
and not the total number of the samples, can also be differentiated in the dendogram: in its
upper part are the genotypes of RPP2.2 that integrates ‘Mantecosa Hardy’ and others, while
at the bottom are the other two subgroups (RPP2.3 of Pyrus pyrifolia, and RPP2.1 formed by
Canarian genotypes). In addition, one of the groups that form the cluster of the genotypes
of RPP1, from JC = 0.28, is formed only by members of RPP1.1, so the presence of this
substructure seems to be corroborated. The most differentiated genotypes were from Gran
Canaria (GC81 ‘Del País’, GC1037 ‘Pero’ and GC17 ‘Antiguo’), which had seven, five and
four unique alleles, respectively, grouped in a cluster with ‘Chanticleer’ (Pyrus calleryana)
from JC = 0.09. These may correspond to genotypes of Pyrus species different from those
recognized and introduced as references in this study, or they may be hybrids of them.

The representation of the principal components (PCs) also separated the reconstructed
panmictic populations quite clearly, with the admixed genotypes between the RPPs (Figure 4).
RPP1 showed negative values for Factor 1, with only specimens of this group (70% of its
members) appearing below F1 = −1.3, while 100% of the genotypes grouped in RPP3
obtained by STRUCTURE for K = 3 and 18 SSRs (diploid and putative triploid) had an
F1 value greater than 0.11. The allele that mostly contributed to Factor 1 was 119 at locus
CH05a02b (−0.086), present in Pyrus calleryana, wild genotypes and some Galician and
Asturian varieties including ‘Rabuda parda’ and ‘Tenreiras’. This allele was very frequent
in RPP1 (76%), less frequent in RPP2 (14%) and rare (<5%) in RPP3.
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Figure 3. Dendogram for the 310 unique pear genotypes based on Jaccard’s coefficient with an 
indication of the reconstructed panmictic populations for K = 3 and 18 SSRs. The RPP number 
assigned by the STRUCTURE software is indicated before the genotype code/name. 

Figure 3. Dendogram for the 310 unique pear genotypes based on Jaccard’s coefficient with an
indication of the reconstructed panmictic populations for K = 3 and 18 SSRs. The RPP number
assigned by the STRUCTURE software is indicated before the genotype code/name.
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Genotypes with JC ≤ 0.13 (mostly from the RPP2 group) were the most differentiated
by the PCoA in the positive Factor 2 (Figure 5) due to specific alleles that grouped genotypes.
The allele with the highest coefficient (0.89) was 130 of the CHVF1 locus, present in Pyrus
pyrifolia, P. calleryana, P. salicifolia, wild genotypes, seven Galician nursery varieties, five
Asturian, many Galician and 26 genotypes from the Canary Islands (six from RPP1, 10 from
RPP2, seven from RPP3 and three admixed); on the other hand, the negative coefficient
was 245 for CH02c09 (−0.134), not present in P. pyrifolia or P. calleryana.
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4. Discussion
4.1. Clonality and Putative Triploids in the Canary Islands’ Genotypes

The average clonality in the Canary Islands was 50%, with the percentage for each
island varying (38 to 47%) due to the existence of genotypes with individuals on several
islands and synonymies found in them. This value was slightly higher than that obtained by
Dos Santos [23] (43%) at the CIAM pear germplasm bank and much higher than those of the
Public University of Navarra (UPNA) [11] or the Agrifood Research and Technology Centre
of Aragón (CITA) [7], both with values below 15%. However, it is similar to the clonality
obtained in Spanish apple genebanks [38,55]. Despite the fact that it can be considered
high clonality, this parameter has been higher in other studies on Prunus persica on the
island of La Palma [55], Castanea sativa in Spain [56] and Juglans regia in China [57], all
with clonality higher than 65% (and higher than 85% in the last case). This type of study is
highly important for germplasm banks to optimize their management and conservation of
the material they hold.

The proportion of putative triploids in the Canarian genotypes (43%) was similar to
that obtained by Ferradini et al. [58] (45%) and slightly higher than that of Dos Santos [23]
(38% in Galician cultivars). Considering only those with three alleles at more than one locus
(25), the percentage of hypothetical triploids decreased to 21%, similar to Ferradini et al. [58]
(20%) and Dos Santos [23] (18%) when considering only these types of genotypes, and
lower than that found by Bielsa et al. [12] (33%) and higher than Queiroz et al. [59] (8%).

4.2. Bayesian Method Identified a Canarian Cluster of Pear Genotypes

The results of the population structure analysis were in agreement with the data ob-
tained by Dos Santos [23], except for the new RPP1 group formed exclusively by Canarian
genotypes. This structure was corroborated by the dendogram obtained from the Jaccard
coefficient, grouping the diploid and putative triploid genotypes of this population in the
same cluster from JC = 0.21, in which only two varieties marketed in Galician nurseries
of Portuguese origin (‘Rocha’ and ‘Tenreiras’) were included. In this representation, the
genotypes of RPP3 were also grouped, and a division of RPP2, also obtained in some of the
studies carried out to determine the population structure, was observed. Principal compo-
nent analysis (PCoA) then separated the reconstructed panmictic populations, identifying
the most determinant alleles for each component.

The accessions of the Canarian group (RPP1) were located at a lower average altitude
and chill than the other two reconstructed panmictic populations, indicating a potentially
better adaptation of these to warmer areas, maybe as a result of their selection and con-
servation by farmers over a long period due to these characteristics [4,19]. In a context of
potential climate change, the good adaptation of temperate fruit varieties to lower chilling
requirements is very important in their areas of origin. This has been one of the objectives
of genetic breeding programs in recent decades, which have used wild species relatives
or local varieties as parents to increase the available genetic pool on crosses [4,21,60]. The
origin of the Canary Islands population is unknown, and it would be interesting in the
future to analyze it with samples from other parts of Spain and countries such as Portugal
since it may be related to varieties from these origins, and it may include other species of
the genus present in the Iberian Peninsula, such as Pyrus bourgaeana or P. cordata.

4.3. Uniqueness of the Canary Islands’ Genotypes

Ninety percent of the genotypes found in the Canary Islands were unique to this
territory, most of them (70%) with only one accession, which reflects the high vulnerability
of this material. The pear variety with the highest number of entries (15) was ‘Esganacan’,
a variety of Galician origin that appears in the list of varieties with an officially recognized
description of a pear tree by the Ministry of Agriculture, Fisheries and Food (MAPA) [61],
indicating that its synonym is ‘Manteca Oscura’. Fourteen accessions of this genotype were
collected on the island of Tenerife, with the names ‘De agua’ (7), ‘Trigal’ (2), ‘De palo’ (2),
‘Calabazate’, ‘Chasnera’ or, simply, ‘peral’, and another accession was collected on Gran
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Canaria (‘De vino’). This genotype was also the one with the highest number of accessions
(14) in the study carried out by Dos Santos [23] in the CIAM collection, which indicates
the expansion of this variety and the close historical relationship between Galicia and the
Canary Islands. A similar value was found for ‘Blanquilla’, a widely produced variety
of Spanish origin. Both genotypes are part of the RPP3 group (Commercial). From the
Canary Islands group (RPP1), the varieties with the highest number of accessions were
‘Güimarera or Sanjuanera’, ‘Parda’ and ‘Rabuda or Calabazate‘, all with trees in Tenerife
and La Palma and recorded by Viera y Clavijo in the 18th century [62]. In the first references
to the cultivation of pear trees in the Canary Islands, in the 15th century, some ‘brown pears’
(‘peras pardas’) were mentioned on these two islands [16,17]. The commercial variety
Williams (RPP3) was also widely found (eight accessions in Tenerife and Gran Canaria).
This last variety is often called ‘Buen Cristiano’, and there are records of a variety with this
name in Tenerife in the 18th century [63]. In 1769, the butler of the Farm Las Palmas de
Anaga sent his owner six-dozen ‘Buen Christiano’ (sic) and ‘Pardas’ pears, and in 1977,
scions were taken in Taganana (Tenerife) of ‘Españolas’, ‘Buen Christiano’ (sic) and ‘Pardas’
pear trees. The variety ‘Española’ was also analyzed in this study and included in RPP1.

A total of 266 alleles were detected in the Canarian accessions, with 21 not detected
in the rest of the samples. Of the seven alleles cited by Dos Santos [23] as unique to
Pyrus pyrifolia, four were found to be shared with other genotypes in this study: allele
255 of CH02c09 was also identified in two wild genotypes; allele 83 of CH05c06 in nine
genotypes from Tenerife and La Palma, eight of them belonging to RPP1 and the remaining
one to RPP2; alleles 158 and 162 of the CHVF1 locus were located in one genotype from
Tenerife and another from Gran Canaria (GC1037), respectively, both from RPP2. Alleles
140 and 143 of GD142 were also located in the Canary Islands in one genotype from Gran
Canaria and another from Tenerife, both of RPP2, which were shared by the Galician variety
‘Portuguesa’. In P. salicifolia, Dos Santos [23] located 10 specific alleles, and in this study,
we found three of them in Canarian genotypes: allele 233 of CH02c09 was identified in
one genotype from Tenerife and one from Gran Canaria, both belonging to RPP1; 123 of
CH02d13 was located in a wild specimen and one genotype from Tenerife, along with that
reconstructed panmictic population; 114 of the CH05c06 locus was also found in a genotype
from Gran Canaria of RPP2, being one of the most differentiated in the dendogram from
the Jaccard coefficient (GC1037). In P. calleryana (‘Chanticleer’), two specific alleles were
detected out of the five located by Dos Santos [23], sharing: allele 253 of CH02c09 with
the Canarian genotype GC81, allele 215 of CH03g07 with a Tenerife genotype of RPP1
and the nursery variety ‘San Juan’, and allele 127 of CH05a02b with a wild genotype and
GC81. Only ‘Chanticleer’ and the genotype GC17 from Gran Canaria had allele 231 at
locus CH02c11.

The mean heterozygosity values were similar to others previously obtained in pear
germplasm studies [6,11,23,64]. The mean Ho was higher than He, a fact also observed in
studies carried out in Portugal and Sardinia [9,59,65,66], but not in Spain [7,11,23] where
He was higher than Ho. This excess of heterozygotes, contributed to by the inbreeding
coefficient, indicates high genetic variability.

5. Conclusions

This first study of the pear germplasm in the Canary Islands indicated that the main
species cultivated is, as expected, Pyrus communis. Yet, SSRs evaluated from a broad range
of samples enabled us to identify specific alleles for Asian species, which might be helpful
for managing the germplasm in Spain and abroad.

Molecular markers led us to identify a reconstructed panmictic population formed
only by Canarian genotypes, including some diploid and others putative triploid, which
could be historically traced to the 16th century in written texts. These indicate its presumed
introduction from the Iberian Peninsula, which must be checked to determine its origin.
This group will be considered a key group of the Canarian genotypes to be conserved at the
germplasm bank. Moreover, the correlation found with lower chilling units corroborates
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the uniqueness of this Canarian cluster and its relevance for warmer areas, or those at risk
of effects of climate change, and for breeding programs needing a broader genetic pool
for crosses.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy12071711/s1, Figure S1: ∆K values, defined by Evanno et al.’s
method [39] and obtained using STRUCTURE HARVESTER software [40], for the formation of recon-
structed panmictic populations for the total number of pear genotypes (192 diploid and 118 triploid)
and for those commercial varieties located in the Canary Islands (99 diploid and 66 triploid) for 12
and 18 SSRs; Table S1: Information on the pear samples used in this study: Code or accession name,
origin, putative ploidy, genetic group and group assignment by structure analysis when K = 3 and
18 SSRs were considered; Table S2: SSRs used for molecular characterization: Locus, linkage group
and PCR details.
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