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Abstract: A model incorporating geo-detector analysis and geographically weighted principal compo-
nent analysis into Multi-scale Geographically Weighted regression (GWPCA-MGWR) was developed
to reveal the factors driving spatial variation in soil organic matter (SOM). The regression accuracy
and residuals from GWPCA-MGWR were compared to those of the classical Geographically Weighted
regression (GWR), Multi-scale Geographically Weighted regression (MGWR), and GWPCA-GWR.
Our results revealed that local multi-collinearity on model fitting negatively affects the results to
different degrees. Additionally, compared to other models, GWPCA-MGWR provided the lowest
MAE (0.001) and little-to-no residual spatial autocorrelation and is the best model for regression for
SOM spatial distribution and identification of dominant driving factors. GWPCA-MGWR produced
spatial non-stationary SOM that was variably affected by soil nutrient content, soil type, and human
activity, and was geomorphic in the second place. In conclusion, the spatial information obtained
from GWPCA-MGWR provides a valuable reference for understanding the factors that influence
SOM variation.

Keywords: multi-scale geographically weighted regression; geographically weighted principal
analysis; soil organic matter

1. Introduction

As an important component of soil fertility, soil organic matter (SOM) plays a crit-
ical role as the primary indicator of soil sustainable development and food security [1].
The quality and quantity of SOM not only determine soil’s physical and chemical prop-
erties but also affect soil biological activity diversity and plant nutrient availability [2–6].
Therefore, it is essential to obtain accurate information regarding the spatial variation
of SOM for sustainable soil benefits, effective management, and healthy development of
agroecosystems [1,7].

Geographically weighted regression (GWR) is a spatial local regression technique that has
been frequently employed to reveal spatial variation in SOM in previous reports and can cal-
culate local regression coefficients based on multivariate auxiliary datasets [8–11]. Although
solving the problem of spatial heterogeneity that the traditional linear regression model ig-
nores, a drawback of GWR is that it omits the scale difference based on the spatial variation
of independent variables (i.e., climate, soil type, geomorphic type, and human activities),
thus limiting the potential to characterize the spatial context and resulting in a large estima-
tion bias [12]. In this respect, scholars have proposed Multi-scale Geographically Weighted
regression (MGWR) that improves classical GWR by introducing the concept of scale and
allowing multiple spatial scales to be expressed simultaneously [13,14]. Concurrently,
influence scales with different variables can be provided. It has been reported that MGWR
is more reliable than classical GWR regarding identifying the drivers of air pollution [15,16],
education level [17], novel coronavirus transmission [18], housing prices [19], etc.
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This is the basis for the model construction of the GWR and MGWR to select high-
quality auxiliary variables. Currently, no-linear machine-learning techniques (such as
boosted regression trees [20], random forests [21], cubist [22], support vector machine [4],
neural network [23]) and linear methods (such as multiple linear regression and redundancy
analysis [9,24,25]) have been implemented to investigate the relationship between SOM
and auxiliary variables. These linear methods assume that a significant linear relationship
exists between the driving factors and spatial variation of SOM across an entire time series;
however, this is difficult to satisfy [26]. Additionally, the interaction between driving factors
may be prone to issues of multi-collinearity that will negatively affect the reliability of the
algorithm and may cause information loss if excluded directly [27]. Principal component
analysis (PCA) is a key method that allows for unconstrained data dimension reduction and
multi-collinearity elimination globally. Unfortunately, in the field environment due to the
spatial non-stationarity of geographical processes and the intensity of human activity, the
relationship between driving factors possesses a certain spatial variability that is omitted
by PCA [28,29].

To address the issues mentioned above, a model incorporating geo-detector analysis
and geographically weighted principal component analysis into Multi-scale Geographi-
cally Weighted regression (GWPCA-MGWR) was developed. The geo-detector, a spatial
statistical method that is independent of any linear hypothesis, was employed to select
auxiliary variables. As an extension of PCA termed, geographically weighted principal
component analysis (GWPCA) can reveal the spatial heterogeneity of correlations among
auxiliary variables. It utilizes a local variance-covariance matrix that is based on the in-
dependent variable dataset near each calibration location [30]. GWPCA retained more
variance information among the driving factors of SOM and was more effective than PCA
regarding geographical data processing as indicated in previous studies [29,31,32]. By
recombining auxiliary variables (selected by the geo-detector) into independent variables
while considering spatial relevance, GWPCA improves the representativeness of auxiliary
variables and avoids the multi-collinearity problem. On this basis, the GWPCA-MGWR
model was employed to explore determinant-specific spatial contexts to reveal the driving
factors underlying SOM variation.

The specific objectives of this study are as follows: (1) to evaluate the spatial non-
stationary relationship between driving factors and spatial heterogeneity of SOM in Shaanxi
Province; (2) to propose a new method for spatial non-stationary relationship analysis by
combining geo-detector, GWPCA and MGWR models; (3) to compare the regression accu-
racy among GWPCA-MGWR with GWR, MGWR and GWPCA-GWR models to determine
the optimal model.

2. Materials and Methods
2.1. Study Area

The study area is located in Shaanxi Province in northwest China and is bounded
by 105◦29′ E~111◦15′ E and 31◦42′ N~39◦35′ N, and the area is long and narrow with
diverse landforms. It has a high elevation in its north and south, and a low elevation in its
central region. The geomorphic structure is mainly represented by mountains and basins in
Southern Shaanxi, and Guanzhong mainly consists of loess tableland and river terrace, and
Northern, Shaanxi includes loess plateau and blown sand region. The climate zone types
vary from north to south in regard to temperate, warm temperate, and subtropical climates,
respectively [33]. As an important grain-producing area in China, spatial variation in SOM
content in cultivated land was determined to be significant [25,34]. In recent years, soil
testing formula fertilization and agricultural mechanization have been actively promoted
(by 2017, the technical coverage rate of soil testing formula fertilization reached more than
95%, and the comprehensive utilization rate of straw mechanization reached 82.6%) [35,36],
and this impacted SOM spatial distribution significantly [37].
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2.2. Data Sources and Index Selection

The measured data for 4878 soil sampling sites (Figure 1) were collected from culti-
vated land quality monitoring sites in Shaanxi Province in 2017 (2015–2018), and the data
included soil pH, SOM content, soil total nitrogen (STN) content, carbon, and nitrogen ratio
(C/N ratio), available phosphorus content, available potassium content, cropping system
variables, and other data. The fertilization and total power of machinery were obtained
from the statistical yearbooks of Shaanxi Province and various cities (districts) in 2017
(2015–2018). The elevation data were derived from Shuttle Radar Probing Mission (SRTM)
with 30 m resolution. A 1:500,000 provincial unit soil map and 1:50,000 county unit soil
maps were used. Geomorphic-type maps and meteorological data were acquired from the
Resources and Environmental Sciences Data Center of the Chinese Academy of Sciences.

Figure 1. Study area and soil sample sites in Shaanxi Provence, China (n = 4878).

Based on previous research and data accessibility, an index system was selected to
detect the effect of driving factors on SOM variation, and with two categories of geographic
processes and human activities, this included a total of 21 driving factors. For numerical
factors, expert empirical knowledge, the natural breakpoint method, and the maximum
q value were used to determine the classification standard, and p-values were used for
significance tests [38,39].

2.3. Methods
2.3.1. Geo-Detector

Geo-Detector [38] is an attribution method to measure the correlation of variables and
was applied to identify high-quality auxiliary variables for the regression models. The
Q-statistic used for the measurement is calculated as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(1)

where Nh and N are the number of samples in stratum h and Shaanxi Province, respectively,
σ2

h is the variance of SOM in stratum h, and σ2 is the variance of SOM in Shaanxi Province.
For q ∈ [0, 1], a larger q value indicates a higher similarity for the spatial distribution
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between the driving factor and SOM and a stronger driving force of the factor. Geo-detector
analysis was performed with the GD R package [40].

2.3.2. Geographically Weighted Principal Component Analysis (GWPCA)

PCA is a widely used dimensionality reduction method that maximizes variance based
on normalized correlation matrix eigenvalues and rotation of data. Principal components
(PC) provide variables with little-to-no collinearity by orthogonal transformation. How-
ever, as a global statistical analysis method, PCA omits the spatial non-stationary of the
principal factor loading vector and cumulative variance [24,41,42]. In this respect, GWPCA
was promoted to account for Geographically Weighted Principal Component (GWPC) of
multidimensional indexes of SOM spatial variation [30].

By integrating the geographically weighted (GW) matrix and the influence of the
geographical location of variables into the calculation, GWPCA can reveal the spatial het-
erogeneity of relationships among multivariate data [30,43]. In general, GWPCA considers
that variable X is related to coordinates (u, v) for a series of analysis variables X, where the
spatial location i has coordinates (ui, vi). The GW eigenvalues and GW eigenvectors are
provided by the decomposition of the GW variance-covariance matrix that is calculated
as follows:

∑(ui, vi) = XTW(ui ,vi)
X (2)

where X is an n × m matrix of auxiliary variables, n is the number of auxiliary variables
generated by the geo-detector of SOM spatial variation which q values above 0.2, m is the
number of sampling points within the bandwidth, and W (u, v) is the diagonal matrix of
the spatial weight matrix that is generated by a bi-square weight function with adaptive
bandwidth. The optional bandwidth was determined using a cross-validation approach.

GWPC is calculated by the following formula:

L(ui, vi)V(ui, vi)L(ui, vi)
T = ∑(ui, vi) (3)

where L(ui, vi) and V(ui, vi) are a matrix of GW eigenvectors and a diagonal matrix of GW
eigenvalues, respectively. A matrix of GWPC scores (GWPCscore) was calculated using the
following formula:

S(ui, vi) = XL(ui, vi) (4)

The GWPCscore is the inputs for GWPCA-GWR and GWPCA-MGWR.
To eliminate dimensional influence and prevent variables with large variances from

occupying the first principal component, globally standardized data were used in the
GWPCA [43]. Second, probability functions were used to describe the spatial variation of
categorical variables that were included in PCA and GWPCA. The probability function is
calculated as [44]:

p(h) =
1

n(h)

n(h)

∑
i=1

Ω[s(xi) 6= s(xi + h)] (5)

where p(h) represents the probability that two fields h apart belong to different categories.
n(h) is the number of pairs, and Ω[s(xi) 6= s (xi + h)] is an indicator function defined
as follows:

Ω[S(xi) 6= s(xi + h)] =
{

1, i f s(xi) 6= s(xi + h)
0, otherwise

(6)

Throughout this study, the ‘stats’, ‘GW model’ and ‘gstat’ R packages were used for
PCA, GWPCA and probability function analysis respectively [45,46].
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2.3.3. Geographically Weighted Regression and Multi-Scale Geographically Weighted
Regression (GWR and MGWR)

GWR is an effective local linear regression method for exploring potential non-
stationary relationships between dependent and predictive variables at any location by
combining geographical information [24].

yGWPCA−GWR(ui, vi) = β0(ui, vi) +

m

∑
j=0

β j(ui, vi)GWPCscorej(ui, vi) + ε(i) (7)

where, yGWPCA-GWR(ui, vi) and GWPCscorej are dependent and independent variables respec-
tively, β0 (ui, vi), βj (ui, vi) and ε(i) are the intercept, the regression coefficient of GWPCscorej
and the residual at location i, respectively; GW regression coefficient adopts weighted least
square model:

β j(ui, vi) =
[
(GWPCscore)

TW(ui, vi)(GWPCscore)
]−1

(GWPCscore)
TW(ui, vi)Y (8)

where W (ui, vi) is a diagonal matrix geographic weight that can be generated using the
bi-square kernel function as the GWPCA model.

MGWR, an extension of GWR, obtains the spatial relationship according to a distinct
spatial scale parameter. The GWPCA-MGWR was calculated as follows:

yGWPCA−MGWR(ui, vi) = βbw0(ui, vi) +

k

∑
j=1

βbwj(ui, vi)GWPCSj(ui, vi) + εi (9)

where bwj indicates an optimal bandwidth used for the jth conditional relationship.
Each regression coefficient βbwj of the MGWR is based on the local regression and

bandwidth variation across parameter surfaces. The sum and bandwidth attributes of the
MGWR are the same as those of the GWR. The most commonly used quadratic kernel
function and AICc criterion were utilized. The iterative convergence criteria used the score
of change (SOCf): change in the GWR smoother:

SOC f =

√√√√√√√∑
p
j=1

∑n
i=1

(
f̂ new
ij − f̂ old

ij

)2

n

∑n
i=1

(
∑

p
j=1 f̂ new

ij

)2 (10)

As shown above, the bandwidth selection is the obvious difference between MGWR
and GWR. Unlike GWR that assumes a single optimal bandwidth, MGWR produces
a separate optimized bandwidth, thus indicating that different relationships operate at
different spatial scales. The GWR and MGWR models were using the MGWR 2.0 software
provided by the School of Geographical Sciences and Urban Planning at Arizona State
University (https://sgsup.asu.edu/sparc/multiscale-gwr (accessed on 1 March 2022)).

3. Results and Discussion
3.1. Global Statistics

Global descriptive statistics for the SOM content revealed that the average SOM
content was 15.63 g·kg−1, thus signaling that SOM content was slightly enriched during the
past decades compared with 10.7 g·kg−1 in the 1980s [2]. Additionally, the global variation
coefficient of SOM content was 49.65%, thus indicating moderate variation intensity.

3.2. Local Statistics

The local descriptive statistics for the SOM content are presented in Figure 2. Overall,
the GW mean content of SOM was high in southern Shaanxi Province and low in northern
Shaanxi Province, and this was consistent with previously reported results [4,47,48]. The

https://sgsup.asu.edu/sparc/multiscale-gwr
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GW means (>20 g·kg−1) were higher than the background value for Shaanxi Province in
the Daba Mountains (DBM), Han River Basin (HRB), and central and southern Qinling
Mountains (QLM) where double-cropping systems have been widely emphasized [48].
GW means (<10 g·kg−1) for the Blown Sand Region (BSR) were lower than the global
level. Among these, the lowest GW mean SOM content was less than 8 g·kg−1, as in-
sufficient precipitation and rapid decomposition resulted in the accumulation of SOM in
northern Shaanxi [33,49].

Figure 2. GW summary statistics for SOM.

The GW coefficient of variation (CV) of SOM is generally high in northern Shaanxi,
particularly in the northern BSR (50.18%) which is above the global level as shown in
Figure 2. Second, the GW CV is typically higher than 38.82% in the eastern QLM, HRB,
and DBM. The variation in SOM was weak in the Guanzhong Plain (GZP) and southern
Loess Plateau Region (LPR), with the lowest GW CV (<28.37%) in the central and western
regions. This may be due to flat terrain, small topographic fluctuations, and weak local
microclimate differences [50]. However, in southern Shaanxi, mainly in the mountainous
and north regions with loess ridge and loess plateau, the landforms vary rapidly and
generate broken cultivated land. Different microtopography and climate conditions may
induce dramatic effects on the spatial variation of SOM [51]. Moreover, broken cultivated
land goes against centralized management and may give rise to various management
strategies for fertilization and tillage [25]. In conclusion, the comprehensive effects of
human activities and the natural environment lead to a spatially variable GW CV across
the Shaanxi Province.

3.3. Geographical Detector

Factor detection was employed to reveal the magnitude of the influence of environ-
mental factors on the spatial variation of the SOM (Table 1). STN with the highest q value
(0.74) was the dominant factor for SOM, thus indicating a close relationship between SOM
and STN. This is consistent with the results of previous studies, primarily due to the close
relationship between the accumulation and decomposition of SOM with efficient storage
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and transformation of nitrogen [52–54]. The q values of county administrative divisions
(0.58), city administrative divisions (0.43), and annual sunshine hours (0.42) were all greater
than 40%. The q values for annual precipitation, annual average temperature, soil subtype,
and soil type were all greater than 30%. Additionally, the q values for geomorphic type,
cropping system, C/N ratio, total mechanical power, application amount of compound
fertilizer, pH value, and application amount of chemical fertilizer were all between 0.2
and 0.3. However, other factors with lower q values accounted for a minimal amount of
variation in SOM. Therefore, 14 factors with q value above 0.2 were retained as auxiliary
variables in subsequent modeling.

Table 1. Details of the effective variables from Geo-detector analysis.

Variables q-Value VIF Reference

STN 0.74 *** 3.30 [53]
County administrative division 0.58 *** 3.08 [55]

Annual sunshine hours 0.42 *** 15.56 [56]
Annual precipitation 0.37 *** 12.57 [49,56]

Annual mean temperature 0.35 *** 6.61 [57]
Soil Subtype 0.34 *** 13.57 [6]

Soil Type 0.32 *** 14.63 [6]
Geomorphic types 0.27 *** 2.04 [9]
Cropping system 0.26 *** 1.49 [58,59]

C/N ratio 0.25 *** 1.99 [60]
Total Agricultural Machinery Power 0.23 *** 2.58 [37]

Rate of Compound Fertilizer Application 0.22 *** 5.31 [58]
pH 0.22 *** 2.77 [2]

Rate of Fertilizer Application 0.21 *** 8.77 [58]

***, Significant at the 1% level (two-tailed). VIF, Variance Inflation Factor.

3.4. Geographically Weighted Principal Analysis

As presented in Table 1, degrees of multi-collinearity vary across environmental factors,
where the VIF of soil type, soil subtype, annual precipitation, and annual sunshine duration
were all greater than 10 and thus indicative of serious multi-collinearity. Therefore, GWPCA
was employed to overcome these limitations.

As indicated by the cross-validation results, the optimal adaptive bandwidth of GW-
PCA was 982, and this was less than the total number of sampling points (4878), thus
signifying a strong spatial variation in auxiliary variables. Under the current bandwidth
(i.e., 982), the PTV for GWPC1 ranged from 57.33~94.15 (Figure 3), with low values in GZP
and southern LPR and high values in northern and southern Shaanxi. However, the PTVs
for GWPC2 and GWPC3 were much lower than that for GWPC1. GW CPTV of the first
three GWPCs was typically greater than 92.03%, thus indicating a vast variation in the
auxiliary variables that were selected by the geo-detector. The remaining GWPCs were
then discarded.

All of the GW winning variables (i.e., variables with the highest absolute loadings)
for the first three GWPCs are presented in Figure 4. GWPC1 was highly correlated with
soil types in DBM, HRB, western QLM, southern LPR, and BSR and with human activities
in central and northern LPR, geomorphic types in northeastern LPR, and soil nutrients in
GZP, central, and western QLM. GWPC2 was highly correlated with climatic conditions
in eastern and western QLM, and soil types in central and western LPR, and with human
activities in central and northern LPR, southeastern LPR, and geomorphic types in the BSR.
GWPC3 was highly correlated with soil nutrients in the DBM and HRB, human activities
and soil types in the GZP, QLM, and central LPR, and human activities in the northern LPR.
However, the spatial clustering degree of the winning variables of GWPC3 demonstrated
a weaker trend than did those of GWPC1 and GWPC2, and this may be attributed to the
lower observation variance for GWPC3. In general, the relationships among auxiliary
variables vary spatially.
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Figure 3. Maps of the PTV for GWPC1, GWPC2, GWPC3, and CPTV of the first three GWPCs. GWPC,
geographically weighted principal component; PTV, percentages of total variation; CPTV, cumulative
percentages of the total variation.
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Figure 4. Maps of the winning variables (i.e., the variables with the highest loadings) in GWPC1,
GWPC2, and GWPC3. a, Climate Factors; b, Soil Nutrient Factors; c, Soil Type Factors; d, Geomorphic
Type Factors; e, Human Factors.

3.5. Modeling Comparison

First, the local condition number (CN) is used to measure the local multicollinearity of
independent variables, and this may lead to a significant amount of noise and bias in the
regression coefficient [27]. The local CN of MGWR is typically higher than that of GWR;
nevertheless, both are significantly larger than GWPCA-GWR and GWPCA-MGWR, thus
signifying that multi-collinearity may be problematic (Figure 5). Notably, the local CNs
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for GWPCA-MGWR were all less than the common threshold of 30 [61], thus indicating
no local multi-collinearity. This implies that GWPCA captured the spatial non-stationary
structures effectively by extracting the local information of auxiliary variables, and also by
reducing local collinearity.

Figure 5. The spatial distribution of local CN.

Second, GWR and MGWR are unlikely to be robust due to the obvious unreason-
ableness in that only the regression coefficients of STN and C/N ratio are significant for
most samples. However, the number of regression coefficients with significant correlation
at the 0.05 level increased significantly after GWPCA was employed. Among them, the
concentration and number of correlation coefficients between the intercept and GWPCs
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with SOM in GWPCA-MGWR were more obvious and significantly higher than were those
in GWPCA-GWR, thus indicating that the GWPCA-MGWR model included more variance
information in the regression process.

Third, the regression models produced relatively high R2 values (Table 2), thus indi-
cating that a large portion of the variation across SOM can be accounted for by the selected
variables in this study. There appeared to be overfitting results with higher R2 and lower
AICc and RSS in GWR and MGWR, since the AICc were all too low, and a high local mul-
ticollinearity among the dependent variables was observed (Figure 5) [13]. Concurrently,
considering their high MAE values, it is obvious the GWR and MGWR models cannot
provide a goodness of fit. In contrast, GWPCA-MGWR exhibited the lowest MAE, although
its R2 was lower and the AICc and RSS were larger than those of the other models.

Table 2. Model index of regression models.

AICc R2 RSS MAE

GWR −8978.85 0.97 28.81 0.09
MGWR −8360.19 0.97 36.91 0.25

GWPCA-GWR −56.67 0.87 189.51 0.04
GWPCA-MGWR 405.87 0.83 205.79 0.001

R2, Adjusted R2. RSS, Residual sum of squares.

Fourth, an important factor for evaluating the performance of spatial regression models
is that residual spatial heterogeneity should be as strong as possible [15,62]. The residual
semi-variances of GWR, MGWR, GWPCA-GWR, and GWPCA-MGWR exhibited lower
nuggets, sills, and larger nugget-to-sill ratios than did the original data, thus indicating
that the spatial structural variance of SOM to a certain extent can be explained through
the regression models (Table 3). With a lower nugget and larger ranges exhibiting a longer
residual correlation distance, GWR and MGWR may reveal less structural information. This
in turn indicates that the regression results for GWR and MGWR are non-stationary and
unreliable. The largest nugget-to-sill ratios and smaller range occurred in the semi-variance
of residual by GWPCA-MGWR, thus indicating a weaker spatial correlation of residual [63].
In summary, GWPCA-MGWR appears to be able to preferably reveal the variance of SOM
spatial structure.

Table 3. Parameters of variograms for SOM and regression residual.

Model Nugget Sill Nugget/Sill Range (km)

SOM Gaussian 0.08 0.91 8.84 835
GWR Gaussian 0.004 0.02 20.90 1093

MGWR Gaussian 0.01 0.02 59.81 980
GWPCA-GWR Gaussian 0.03 0.06 47.17 835

GWPCA-MGWR Gaussian 0.04 0.08 49.50 799

Additionally, Figure 6 presents the bandwidths of GWPCA-GWR and GWPCA-
MGWR. A single bandwidth obtained in the GWPCA-GWR calibration is 49 as a weighted
average across the covariates in the model that may possess different optimal weighting
functions. The GWPCA-MGWR allowed the relationships between intercept, GWPCs,
and SOM to vary at different scales thus demonstrate this variability [64]. The optimal
bandwidths for each of the four sets of parameter estimates were 260 for intercept, 43 for
GWPC1 and GWPC3, and 121 for GWPC2. Conceptually, this indicates that the site-specific
baseline for the model is more local than that in GWPCA-GWR, as are the relationships
between GWPC1, GWPC3, and SOM. To counterbalance this, the relationships between the
intercept, GWPC2, and SOM were more global than were those in GWPCA-GWR. In conclu-
sion, GWPCA-MGWR provides a richer quantitative representation of SOM determinants
compared to that provided by GWPCA-GWR.
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Figure 6. Optimal bandwidths and number of coefficients generated by GWPCA-GWR and
GWPCA-MGWR.

Overall, in less proneness to issues of local multi-collinearity and enhancing the
significant number of regression coefficients, the model excellence was ordered as GWPCA-
MGWR > GWPCA-GWR > GWR > MGWR. In AICc, R2 and RSS, the model excellence
was ordered as GWR > MGWR > GWPCA > GWPCA-MGWR. GWR and GWPCA-
GWR appear to be superior to MGWR and GWPCA-MGWR, respectively, in terms of
goodness-of-fit, and this is primarily due to local multicollinearity [12]; For the regres-
sion error (MAE) and residual spatial heterogeneity, the model excellence was ordered
as GWPCA-MGWR > GWPCA-GWR > MGWR > GWR. Consequently, evidence suggests
that multi-collinearity may cause a problem with overfitting for GWR, MGWR, and be
problematic for GWPCA-GWR modeling of SOM. GWPCA-MGWR was able to overcome
these limitations and provide a more parsimonious yet richer goodness-of-fit model.

3.6. Analysis of Coefficient Spatial Pattern

The coefficient of intercept obtained by GWPCA-MGWR indicated a significant posi-
tive correlation in Shaanxi Province (Figures 7 and 8). The intercept represents the driving
factors not involved in this study due to the complex process of SOM formation and trans-
formation. The spatial non-stationary of the dominant driving factors on SOM can be
identified by combining the result of MGWR with the winning variables of GWPCA.

In DBM and HRB, the correlation coefficient of GWPC1 was typically higher than that
of GWPC3. GWPC1 was highly correlated with soil type, and GWPC3 was highly correlated
with soil nutrient. In QLM, the number and absolute value of correlation coefficients for
GWPC1 were significantly higher than were those for GWPC3 at the level of 0.05, where
soil types were highly correlated with GWPC1 and GWPC3 in western QLM. Soil nutrients
and human activities were highly correlated with GWPC1 and GWPC3 respectively, in the
eastern QLM. In GZP, and the regression coefficient of GWPC1 was generally higher than
that of GWPC2. This was followed by GWPC3 which generally failed the test in the western
and southern GZP at a level of 0.05. GWPC1 was highly correlated with soil nutrients, and
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soil types in the northeast. GWPC2 was highly correlated with human activities in eastern
GZP and with soil types in western regions GWPC3 was associated with human activities
in the east generally and with various soil types. In the LPR, GWPC1 possessed a regression
coefficient that was higher than that of GWPC2, and this was followed by GWPC3. GWPC1
was generally correlated with human activities in the LPR, with geomorphic types in the
northeast and soil types and nutrients in the south. GWPC2 was highly correlated with
human activities in the northern and south-central LPR, and with soil types in the north-
central LPR. GWPC3 was highly correlated with human activities overall, and soil types in
certain regions. In the BSR, it was observed that the correlation coefficients of GWPC1 and
GWPC2 were similar and higher than that of GWPC3, and the winning variables were soil
type for GWPC1, geomorphic type for GWPC2, and human factor for GWPC3.

In summary, the driving factors for spatial variation in SOM vary geographically,
with soil nutrients and soil types playing a dominant role. This is followed by human
activities and geomorphic types under the current bandwidth. Previous studies have
argued that soil types, topography, and human activity significantly affect SOM spatial
variability [51,55,65–67]. Chang argued that topographical, geomorphic, and soil types
affect SOM in the LPR area [68]. Additionally, a study over three years examining the LPR
revealed that after OM application, there was a concomitant increase in SOM, sustainable
soil, and maize grain productivity compared to those values under equal chemical nitrogen,
phosphorus, and potassium input [69]. These results and those of this study can be
mutually confirmed.

Figure 7. The stacked histogram of MGWR local coefficients (Significance level of 0.05).
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Figure 8. The spatial distribution of MGWR local coefficients (Significance level of 0.05).

3.7. Limitations of the Study

There are still some uncertainties, even if the GWPCA-MGWR model can be used to
simulate the spatial distribution of SOM content. (1) Uncertainty of data source of SOM
content: the uniform distribution of SOM sampling points can be observed in Figure 1,
where the number of sampling points in GZP is significantly higher than in southern and
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northern Shaanxi. (2) Uncertainty of the GWPCA-MGWR model: first, probabilistic space
simulation was performed for categorical variables; second: to avoid multi-collinearity
problems, the variables used were selected by GWPCA, and this will lead to the loss of
some information and further add uncertainty to the model; third: the MGWR model does
not provide a prediction function for unknown points, and this also presents a problem
that must be solved in the future.

4. Conclusions

A geo-detector was employed to identify auxiliary variables affecting the SOM spatial
variation. GWPCA was employed to identify the spatial non-stationary relations of the
drivers and eliminate local multi-collinearity. GWPCA-MGWR was finally employed to
analyze the spatial non-stationary relationships between driving factors and SOM spatial
variation, and the regression accuracy and residuals were compared to those of classical
GWR, MGWR, and GWPCA-MGWR.

The results revealed that: (1) local multi-collinearity affects fitting parameters of
GWR, MGWR, and GWPCA-GWR models to varying degrees, and this can generate
biased results; (2) GWPCA-MGWR (R2 = 0.83) extracts spatial non-stationary structure
information and is less prone to issues of local multicollinearity among auxiliary variables,
and can effectively capture spatial scale non-stationary relationships between the target and
independent variables. The results from GWPCA-MGWR exhibited the lowest prediction
error (MAE = 0.001) and the strongest residual spatial heterogeneity, thus indicating that
GWPCA-MGWR is capable of identifying dominant driving factors and providing robust
modeling of multi-scale multivariate processes. (3) fourteen driving factors were identified
as auxiliary variables using the geo-detectors. GWPCA fully extracts the spatial non-
stationary relationships among the auxiliary variables. GWPCA-MGWR revealed that
under the current bandwidth, soil nutrients and soil types played a role in SOM spatial
variability, and this was followed by human activities and geomorphic types.
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