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Abstract: Weed management is the major biological constraint in paddy (Oryza sativa L.) producing
areas. Predominantly, barnyard grass (Echinochloa crus-galli) is a rice-mimicking weed that causes
57% of yield loss in rice production. Conventionally, herbicides are the site-specific weed inhibitors
often used to suppress E. crus-galli growth. Acetyl-CoA carboxylase (ACCase) is an important target
for developing novel herbicides with remarkable selectivity against gramineous weeds. Notably,
fenoxaprop-P-ethyl (FPPE) is a selective ACCase herbicide extensively used in paddy fields to inhibit
barnyard grass. However, prolonged use of FPPE herbicide elicits phytotoxicity in cultivated rice and
herbicide resistance in weeds. Recently, phytotoxins are emerging as an alternative to commercial
herbicides with safer environmental profiles. Nevertheless, discovering natural herbicides through
in vivo and in vitro techniques is time-consuming and expensive. Therefore, high-end computational
screening strategies including Tanimoto similarity, docking, binding free energy, and herbicide-
likeness were used to pinpoint the lead molecule. Finally, molecular dynamics and MM/PBSA
calculations were employed to validate the binding kinetics of the hit compound. Indeed, sinigrin
was identified as a promising phytotoxic inhibitor against the ACCase enzyme. The findings of our
study were well correlated with the existing experimental results. Overall, the current work will aid
in the development of commercializing phytotoxin herbicides in foreseeable future.
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1. Introduction

Paddy (Oryza sativa L.) is the principal food crop of the Indian agricultural economy [1].
According to the International Rice Research Institute (IRRI), India is the world’s second-
largest rice producer after China, producing 163 million tons (mt). However, the average
yield of rice in India is 3.76 (t ha−1), ranking it in 42nd position, which indicates the
country’s low production rate [2,3]. Of various factors limiting rice productivity, weeds
are the major threats affecting rice yield to a greater extent. Invasive weeds compete with
paddy for natural resources, shelter the crop pests, reduce the crop yield, and subsequently
increase the production cost. The predominant weed flora of a paddy field comprises
grasses (Echinochloa colona, Echinochloa crus-galli, Eleusine indica, Cynodon dactylon); sedges
(Cyperus rotundus, Cyperus iria, Cyperus difformis, Fimbristylis miliacea) and broad-leaved
weeds (Alternanthera sessilis, Commelina benghalensis, Cyanotis axillaris, Sphaeranthus indicus,
Eclipta alba) [4–8]. It is important to note that barnyard grass (Echinochloa crus-galli) is
one of the most pernicious post-emergence grassy weeds abundantly found (96.9%) in
paddy-producing areas. It has been evidenced that barnyard grass causes 57% yield loss in
rice by reducing the photosynthetic capacity and energy conversion efficiency. Moreover,
an extensive population of E. crus-galli could remove up to 80% of soil nitrogen [9,10]. Hand
or mechanical weeding of barnyard grass is quite challenging, as its morphology is similar
to that of paddy [8]. Thus, controlling the growth of barnyard grass plays a critical role in
paddy cultivational areas.
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Herbicides are an efficient tool in modern agriculture and effectively control weeds in
the crop field [11,12]. Generally, herbicides have a specific site of action that kills weeds
by selecting the potential molecular target. Acetyl-coenzyme A carboxylase (ACCase)
is a biotin-dependent enzyme that serves as an important target for identifying grassy
weeds [13]. ACCase inhibitors or Group A herbicides are grass selective and target only
the homomeric ACCase of plastids. Thus, Group A herbicides are extensively used in the
paddy field to control E. crus-galli [9]. The ACCase enzyme consists of three functional
domains such as biotin-carboxyl carrier protein (BCCP), biotin carboxylase (BC), and
carboxyltransferase (CT, with subunits α and β). Of note, the CT domain plays a key role
in the carboxylation of acetyl-CoA to produce malonyl-CoA for the synthesis of fatty acids
in weeds [13–16]. Thus, Group A herbicides interfering with the CT domain on homomeric
ACCase eventually block the fatty acid synthesis in plants, resulting in growth retardation
in the meristematic tissues and finally leading to plant death [17].

Paddy and barnyard grass belong to the same grass family [12]. Of note, the barnyard
grass is morphologically and genotypically similar to some extent. However, they differ in
the existence of notable enzymes such as cytochrome P450 and glutathione-S-transferase
(GST). The presence of these enzymes particularly in paddy is of great importance to rapidly
metabolize the herbicides into inactive products [13,18]. Therefore, ACCase herbicides
consider this advantage as the basis of selectivity between crops and weeds [19]. Ary-
loxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazole (DEN)
are the three-chemical classes of Group A herbicides that target the CT domain of the
homomeric ACCase enzyme [14–16,20]. Evidence in the literature revealed that only a
few effective herbicides were available for controlling the barnyard grass weed [19]. For
instance, fenoxaprop-P-ethyl (FPPE) is one of the post-emergence grass-selective FOP herbi-
cides commercially used in the paddy field to control the growth of barnyard grass [21,22].
However, the intensive application of FPPE exhibits poor solubility and causes phytotoxic
effects in cultivated rice and has led to the evolution of herbicide resistance in weeds [23,24].
Moreover, FPPE might cause residual effects on soil and paddy crops [21,25]. Therefore,
there is a commercial need to develop a clinically safe ACCase targeting herbicide [26].

The greatest weed management challenge for organic agriculture is the lack of effective
natural product herbicides [27]. Natural products have vast chemical diversity and thus
serve as a promising source for the discovery of novel bioherbicides [28]. The selective
nature of bioherbicides with rapid degradation properties deserves more attention than
synthetic herbicides [24]. Interestingly, phytotoxins synthesized by various plants and
microorganisms are excellent sources for weed control and could revolutionize sustainable
agriculture [28,29]. Chen et al. reported that even low concentrations of phytotoxins
have a good inhibitory effect on weeds, which is an added advantage of developing
bioherbicides [30]. However, the wide bottleneck in bioherbicide commercialization is the
marketing of a live product [31]. To date, only 8% of conventional herbicides derived from
natural compounds have been approved by the USEPA (U.S. Environmental Protection
Agency) [27].

In recent decades, the discovery of natural phytotoxic herbicides is an emerging
strategy in the field of agrochemicals. Therefore, in the present investigation, a holistic
virtual screening approach was used to illustrate the underlying mechanism of phytotoxic
inhibitors against the CT domain of ACCase. We hope that our study encourages the com-
mercialization of natural herbicides and enlightens agronomists toward environmentally
friendly products.

2. Materials and Methods
2.1. Homology Modeling and Protein Preparation

The three-dimensional (3D) structure of the ACCase in E. crus-galli has not been
experimentally determined. Therefore, a homology model is required to understand
the crystallized nature of the ACCase enzyme. Based on the literature evidence, the
protein sequence of E. crus-galli (HQ395759.1) was retrieved from the National Center for
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Biotechnology Information (NCBI) GenBank database [14]. The CT domain region of the
protein sequence was used to build a model using the prime program of the Schrödinger
software suite. A BLAST similarity search was performed to identify the suitable template
structures for the modeling. Typically, 25% sequence identity between the query and
target sequence of experimentally determined 3D structure is widely accepted as the
template for modeling [32]. The quality of the modeled structure was evaluated with
various methods such as Ramachandran plot, ERRAT, and ProSA (Z-score) to predict the
model reliability. Ramachandran and ERRAT plots were accessed from the SAVES server
(https://saves.mbi.ucla.edu/, accessed on 16 March 2022). Subsequently, Z-scores from
the ProSA tool (https://prosa.services.came.sbg.ac.at/prosa.php, accessed on 16 March
2022) were used to perform the validation techniques. It is important to note that the
Ramachandran plot helps to visualize energetical regions of psi (ψ) and phi (φ) angles of
the amino acids in proteins. The existence of above 90% of the amino acids in energetically
favored regions represents a good stereochemical model [33]. Subsequently, the overall
quality factor (OQF) of the model was assessed by an ERRAT plot, and higher OQF scores
(>50) signify the backbone conformations of protein with properly folded residues [34,35].
In addition, Z-score indicates the model quality by measuring the total energy deviation of
the structure [36–38]. Often, lower negative energies of Z-score are acceptable [39,40]. After
validation, the 3D modeled structure was refined using the protein preparation wizard
of Schrödinger. The protein preparation process involves the assignment of hydrogen
bonds, bond orders, and deletion of water beyond 5 Å from hetero atoms. Furthermore, the
protein structure was minimized by applying the OPLS-3e force field until the root-mean-
square deviation (RMSD) of all atoms reached 0.3 Å [38,39]. Finally, the minimized protein
structure was used as the target to obtain the molecular insights.

2.2. Ligand Collection and Preparation

The small molecules used in our study were retrieved from the Toxic Plants—Phyto
Toxins (TPPT) database, a subset of the ColleCtion of Open Natural prodUcTs database
(COCONUT) database. In total, the 1483 TPPT compounds from the COCONUT database
were used in this study [41,42]. Fenoxaprop-P-ethyl (ID: 91707) was retrieved from the
PubChem database and considered as a reference molecule for the screening. For ligand
preparation, the LigPrep module of the Schrödinger suite was used. Ligand preparation
includes ionization, stereo concoction, and minimization. To achieve the ionization state,
the pH of all ligands was neutralized, and stereoisomers were generated for each ligand
structure [39]. Subsequently, the OPLS-2005 force field was also used to minimize all ligand
structures [43].

2.3. Tanimoto Coefficient Similarity

An analysis of the Tanimoto coefficient is of immense importance to explore the
similarities between the molecules [44]. Therefore, the similarity of two or more molecules
was determined by fingerprints and measured using the Tanimoto coefficient (Tc) as shown
in Equation (1). As a strategy to screen the effective molecules, the collected natural
compounds were compared to a known reference compound. In order to achieve this, the
use of two-dimensional (2D) similarities is still the preferred way of coding small-molecule
features in fingerprints [45]. Hereby, an open-source cheminformatics toolkit, the python
RDKit package was used in this study [46–48]. To enable screening of molecular structures
having the same scaffold, canonical SMILES were used in the RDKit tool to determine the
structural similarity between the reference and natural phytotoxins.

Tanimoto =
Na

Na + Nb + Nab
(1)

where Na, Nb, and Nab are the number of bits set to one in the fingerprints representing
compound a but not in b, compound b but not in a, and in both a and b, respectively.

https://saves.mbi.ucla.edu/
https://prosa.services.came.sbg.ac.at/prosa.php
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2.4. Binding Site Analysis and Molecular Docking

The foremost technique of molecular docking is the determination of binding sites or
active site residues of the target structure. To achieve this, the sitemap tool of Schrödinger
software was used to determine the effective active sites [38,43]. The sitemap determines
five sites and the potential binding sites were selected based on the highest site score and
druggability score (D score) [49,50]. The selected active site included various hydrogen
donors, acceptors, and hydrophilic and hydrophobic regions. Further, the receptor grid
generation module of the Schrödinger suite was used to generate the grid box enclosing
the potential binding site regions. Subsequently, molecular docking was carried out using
the glide molecular docking module of the Schrödinger suite. To evaluate the binding
affinity of the receptor with the ligand, hierarchical screening was followed, which includes
high-throughput virtual screening (HTVS), standard precession (SP), and extra precession
(XP) modes [51]. Of note, the glide XP (XP GScore) scoring function was more sophisticated,
precise, and screened out the false positives. Therefore, the compounds screened through
the XP mode exhibit the best binding affinity toward the protein and ligands [52].

2.5. MM/GBSA Screening

The molecular mechanics generalized Born and surface area method (MM/GBSA)
is a well-known approach for determining the binding free energy (∆Gbind) of the small
molecules [38]. Therefore, the Prime MM/GBSA module of the Schrödinger suite with
an OPLS_2005 force field and the VSGB dissolvable model was used to remove the false-
positive hits. It is important to highlight that ∆Gbind is a key factor in determining the
binding affinity of the protein–ligand complex [53]. Notably, the higher negative ∆Gbind en-
ergies designate a persistent interaction between the complexes [54]. Here, the MM/GBSA,
the binding free energy was calculated as follows:

∆Gbind = ∆Gsolv + ∆EMM + ∆GSA

where ∆Gsolv is the difference between the solvation energy of the protein–ligand complex
and the sum of the solvation energy for the protein and ligand; ∆EMM is the difference in
the minimized energies between protein–ligand complex; ∆GSA is the difference between
the surface area energy of the complex and sum of the surface area energies in the protein
and ligand [43,55].

2.6. Herbicide-Likeness

In the field of agrochemical discovery, the physiochemical properties of various pes-
ticides and herbicides have been analyzed for their likeness based on “Tice’s rules”. Tice
proposed a set of 5 rules for pesticides and post-emergence herbicides that specifies the
optimum range of molecular descriptors for the compounds. The descriptors include
molecular weight 150–500 Dalton (MW), partition coefficient ≤3.5 (logP), the number of
hydrogen bond donors ≤3 (HBD) and acceptors 2–12 (HBA), and the number of rotatable
bonds ≤12 (RB) [56,57]. The compounds under this range tend to have pesticides and
herbicide-likeness properties. Therefore, in this study, we implemented the Tice rules as
selection criteria to determine the herbicidal likeness of our screened compounds.

2.7. MD Simulation

Molecular dynamics (MD) simulation was performed to analyze the structural stability
of protein binding to the ligand molecule using the GROningen Machine for Chemical
Simulations (GROMACS 2018.2 version) software with the GROMOS96 43a1 force field.
Initially, the PRODRG server was used to generate the ligand topology. Further, protein
solvation was carried out in a 3D dodecahedron box of 10 Å with a simple point charge
water model [34]. Subsequently, the protein–ligand complexes were neutralized by adding
six Na+ ions. Moreover, electrostatic interaction was determined by particle-mesh Ewald
(PME), and hydrogen bonds were constrained using the SHAKE algorithm [58]. Then,
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the entire system was equilibrated by applying NVT and NPT ensembles at 300 K and
1 bar pressure, respectively [39]. Ultimately, in this study various parameters such as
root mean square deviation (RMSD), root mean square fluctuation (RMSF), the number of
intermolecular hydrogen bonds (H-bonds), and principal component analysis (PCA) were
assessed to determine the dynamic profiles of the protein–ligand complex. The results were
analyzed using MD trajectories and plotted with Xmgrace.

2.8. MM/PBSA

The accurate prediction of binding free energy calculation was performed using
MM/PBSA (molecular mechanics Poisson–Boltzmann surface area) analysis. Precisely,
this method estimates free energy calculations by comparing energy differences between
protein–ligand systems and the energy components of individuals. The incorporation of
enthalpy and entropy terms during MM/PBSA calculations provided an accurate predic-
tion of total binding free energy. For each system, 500 snapshots from last 5 ns of MD
trajectories were taken for this analysis. Here, the g_mmpbsa tool (https://rashmikumari.
github.io/g_mmpbsa/, accessed on 22 June 2022) was utilized to carry out free energy
calculations [59,60]. The binding free energy of the system was calculated as

∆Gbind = ∆EMM + ∆Gsolv + T∆S

where ∆Gbind—total binding free energy; ∆EMM—gas-phase interaction energy between
protein and ligand; ∆Gsolv—solvation energy; T∆S—change in conformational entropy.
Finally, the average binding free energy of the complexes were calculated using the MmPb-
SaStat.py tool, a python-based script.

3. Results and Discussion
3.1. Homology Validation

The crystal structure of the humanized carboxyltransferase domain of yeast ACCase
(PDB: 3TV5) was selected as a template for homology modeling as it exhibited 54% simi-
larity to the query sequence. Thus, the 3D structure of E. crus-galli was constructed using
the homology modeling module of the Schrödinger software (Figure 1). The quality of
the developed model was assessed using various techniques. The Ramachandran plot of
the constructed model shows that the statistical distributions of ψ–φ dihedral angles were
non-violated. Moreover, 91.5% of amino acids were found in the energetically favored
regions indicating the perfect stereochemical model as shown in Figure 2a. Further, the
ERRAT score of 89.936 (Figure 2b) confirms that amino acids are folded properly in the
protein. In addition, the higher negative value of the Z-score (−7.95) implies a good quality
of the protein model (Figure 2c). Ultimately, the results of the various validation meth-
ods revealed that the predicted homology model of ACCase of E. crus-galli is reliable for
molecular modeling.

Figure 1. Three-dimensional view of modeled structure of ACCase.

https://rashmikumari.github.io/g_mmpbsa/
https://rashmikumari.github.io/g_mmpbsa/
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Figure 2. Validation of the homology structure of E. crus-galli. (a) Ramachandran plot represents the
presence of amino acids (black) in most favored (red) and allowed regions (yellow); (b) ERRRAT
plot analysis using SAVES tool. The plot calculates the OQF ** (% of protein) and the error value *
(confidence level of structure) of protein structure; and (c) Z−score calculation using ProSA tool
(black dot implies the range of score falls in X-ray crystallography).
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3.2. Tanimoto-Similarity-Based Screening

As an initial step in the virtual screening process, the BulkTanimoto similarity ()
function from the RDKit search algorithm was used to measure the similarities between the
molecules. Indeed, similarity values range from 0 (non-identical compounds) to 1 (identical
compounds) [47]. Accordingly, the Tc similarity of 1483 TPPT compounds was calculated
against the FPPE compound. The overall structural similarity of all the compounds ranged
from 0.17 to 0.52. Based on the recent literature evidence, a Tc value between 0.2 to 0.5
provides a good range to filter out similar molecules [61,62]. Keeping this in mind, a
threshold value of 0.2 was set, and the compounds above this range were considered for
further analysis. Ultimately, Tc similarity screened 1475 compounds, and these compounds
were used for the further optimization.

3.3. Binding Site Prediction and Molecular Docking

The binding region with a site score of 1.112 and a D score of 1.145 was selected to
generate the grid box with the dimensions of 21.66 × 25.52 × 15.43 Å. The binding site is
the essential region that contains the 26 active residues such as TYR256, PRO258, GLU259,
ASN260, THR261, YS262, ASP263, PRO264, ALA266, ALA267, ILE268, MET282, PHE283,
ALA315, VAL316, THR318, GLN344, LEU371, ASN373, PRO411, MET412, ALA413, GLY414,
GLU415, LYS442, and TRP539. Furthermore, the compounds screened from Tc similarity
were pre-processed using the LigPrep module of Schrödinger software. Successively,
molecular docking was carried out to determine the potential lead compound against the
target. Initially, all the 1475 compounds were subjected to HTVS docking to reduce the
number of compounds. Next, all the HTVS-screened compounds were passed to the SP
mode of docking. Toward the end, XP docking was performed for further refinement
and, thus, yielded the 558 lead compounds. It is worth noting that binding affinities with
the higher negative XP GScore (kcal/mol) indicate a greater affinity toward the target.
In the present study, the XP GScore of the screened compounds ranged from −12.829 to
1.388 kcal/mol. In order to find the most efficient compounds compared to FPPE, its XP
GScore (−5.977 kcal/mol) was fixed as a threshold. As a result, 197 compounds were
successfully screened and used for further investigation. The Tanimoto similarity and the
docking scores of the 197 lead compounds are shown in Table S1.

3.4. MM/GBSA Screening Analysis

The MM/GBSA is one of the computationally intensive approaches that have a signifi-
cant correlation with the experimentally determined biological activity [63]. Therefore, a
binding free energy analysis was performed for the XP-docked complexes to examine the
fine levels of the compound’s activity against the ACCase. In general, the Prime algorithm
provides several energy attributes that provide a deeper understanding of the activity of
the compounds. Despite this, the current study focuses on a parameter such as ∆Gbind,
∆Gbind coulomb, ∆Gbind Hbond, ∆Gbind lipo, ∆Gbind Solv GB, and ∆Gbind vdW to screen
the final hit compounds. The ∆Gbind of FPPE (−77.03 kcal/mol) was used as a threshold
value to screen the potential compounds. This yielded a total of seven hit compounds
that possessed lower binding energy than the reference compound. Table 1 highlights the
Tanimoto similarity, docking score, and ∆Gbind of the seven lead compounds at the final
level of virtual screening. It is apparent from the table that the ∆Gbind score ranged from
−83.78 to −77.29 kcal/mol. Notably, ∆Gbind is an important factor in the effective binding
of the protein–ligand complex. In essence, lipophilicity (−42.32 kcal/mol) and van der
Waals (−44.46 kcal/mol) interactions are the major energy contributors in determining the
∆Gbind of the FPPE compound. A similar trend was also noted for all the seven screened hit
molecules. For instance, the lipophilicity and van der Waals of all the hit molecules ranged
from −42.56 to −35.05 kcal/mol and −53.40 to −27.22. Subsequently, herbicide-likeness
properties were analyzed for the seven screened hit compounds.
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Table 1. Tanimoto coefficient, docking score, and binding free energy contributions of hit compounds.

S. No. Compound
ID Name Tanimoto

Coefficient
XP GScore
(kcal/mol)

∆Gbind
(kcal/mol)

∆Gbind
Coulomb
(kcal/mol)

∆Gbind
Covalent

(kcal/mol)

∆Gbind
H-bond

(kcal/mol)

∆Gbind
Lipophilicity

(kcal/mol)

∆Gbind van der
Waals (vdW)

(kcal/mol)

1 91707 Fenoxaprop-P-ethyl 1 −5.977 −77.03 −5.13 6.07 −0.64 −42.32 −44.46
2 CNP0166854 Ligustaloside A 0.29 −10.974 −83.78 −37.71 1.96 −4.36 −35.05 −50.49
3 CNP0293269 Glucoiberverin 0.22 −9.093 −83.51 3.30 5.38 −1.47 −42.56 −35.90
4 CNP0288601 Isoacteoside 0.27 −12.829 −81.18 −53.07 9.29 −3.84 −37.25 −53.40
5 CNP0233323 Ophiohayatone B 0.32 −7.689 −81.05 −34.39 6.72 −2.57 −41.46 −41.75
6 CNP0232558 Iridin 0.33 −10.393 −79.61 −31.46 11.66 −3.52 −42.17 −49.75
7 CNP0259095 Sinigrin 0.22 −9.068 −79.21 6.98 3.65 −1.56 −39.38 −34.54
8 CNP0332060 Glucolepidiin 0.21 −10.593 −77.29 −9.08 8.06 −1.49 −37.78 −27.22

3.5. Herbicide-Likeness

The selected hit molecules as well as the reference molecules were analyzed for their
herbicidal action over the target. Therefore, Tice’s 5 rules were followed to determine the
novel lead compound with potential herbicidal property. Table 2 highlights the molecular
descriptors of lead compounds calculated using the Tice rules. From the table, we found
that only three lead compounds fell under the desirable range for the four descriptors
MW, logP, HBA, and RB. Among the three lead molecules, the compound CNP0259095,
named sinigrin exhibited herbicidal activity against E. crus-galli as evidenced in the recent
literatures [44,64]. Prominently, sinigrin is a major glucosinolate (GS) that belongs to the
Brassicaceae plant family [65]. According to Bangarwa et al. investigation, hydrolyzed
sinigrin turns into a biologically active compound known as allyl isothiocyanate (allyl-ITC),
which exhibits potential herbicidal activity against weeds [44]. Of note, herbicides are
water-soluble agrochemicals that tend to have the lower MW and logP properties [57,66].
Interestingly, in our study the MW (358.36 Da) and logP (−4.52) descriptors of sinigrin
exhibited a lower range of values than the FPPE. Adding together, a lower RB (<12) indicates
good molecular flexibility between protein–ligand complexes [67]. Further, the screened hit
molecule was 22% similar to FPPE and exhibited better glide and MM/GBSA score than
the FPPE compound. In light of these evidences, we hope the sinigrin is well absorbed
by the susceptible plants and is effective against the ACCase receptor. Thus, sinigrin was
selected as lead hit molecule to accomplish the further analysis in the subsequent study.

Table 2. Herbicide-likeness analysis of hit compounds.

S. No. Compound ID MW
(150–500) * Da

LogP
(≤3.5) *

HBD
(≤3) *

HBA
(2–12) *

RB
(<12) *

1 91707 361.8 4.9 0 6 7
2 CNP0166854 556.51 −0.74 2 7 13
3 CNP0293269 407.48 −3.48 5 12 9
4 CNP0288601 624.58 −0.23 9 15 11
5 CNP0233323 564.49 −0.93 8 14 6
6 CNP0232558 522.45 0.07 6 13 7
7 CNP0259095 358.36 −4.52 4 11 6
8 CNP0332060 347.36 −3.67 5 11 6

MW—molecular weight; LogP—partition coefficient; HBD—hydrogen bond donors; HBA—hydrogen bond
acceptors; RB—rotatable bonds. * Values within parentheses are the standard threshold considered for the
herbicide screening.

3.6. Interaction Profile of FPPE and Sinigrin with ACCase

To understand the underlying mechanism of the protein–ligand complex, the binding
pattern of the complexes was analyzed. The ligand interaction diagram (LID) and docked
ACCase–FPPE and ACCase–sinigrin complexes are shown in Figures 3 and 4, respectively.
Despite the number of binding interactions, hydrogen bonding is one of the important
non-covalent interactions in stabilizing the protein–ligand complex [68]. Consistently, it is
apparent from the figure that the amino acids THR318 and ASN373 are the key residues
involved in hydrogen bond interaction in both FPPE and the sinigrin complex (Figure 3a).
In addition, the residues VAL316, CYS262, THR261, and GLU259 form more hydrogen
bonds with the sinigrin. Figure 3b clearly shows that the ACCase–sinigrin complexes
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have more hydrogen bonds than ACCase–FPPE complexes, which is represented by pink
lines. Table 3 highlights the hydrogen bond length (Å) of each interacting residue in FPPE
and sinigrin compounds. Apart from the hydrogen bond, solvent exposure was noticed
on both ligand molecules residing on the surface of the ACCase receptor. Of note, the
influence of water on amino acids is indicated by a wide range of solvent exposure. Thus,
the ligands that showed solvent exposure are often referred to as solvent-friendly binders,
which play a key role in the stabilization of specific protein structures [69,70]. Importantly,
the solvent-exposed scaffold of sinigrin was bound to the interacting residues THR 318,
GLU259, and CYS262. Thus, the sinigrin compound was consistently a solvent-friendly
binder with the receptor. Contrastingly, no residues interacted with the solvent-exposed
scaffolds of FPPE. Overall, we found that sinigrin exhibited greater binding stability for
ACCase due to higher levels of hydrogen bonds and good solvent exposure. Finally,
dynamic analysis was performed to analyze the molecular insights of the ACCase–FPPE
and ACCase–sinigrin complexes.

Figure 3. Interaction pattern of (a) fenoxaprop-p-ethyl and (b) sinigrin within the active site
of ACCase.

Figure 4. Docked pose of ACCase with (a) fenoxaprop-p-ethyl and (b) sinigrin.
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Table 3. The bond length of the amino acids involved in forming hydrogen bond interactions.

S. No. Binding Residues Fenoxaprop-P-Ethyl (Å) Sinigrin (Å)

1 THR 318 1.93 2.37
2 ASN 373 2.03 2.00

3 CYS262 NI
2.61
2.36

4 VAL 316 NI 1.85
5 GLU 259 NI 1.78
6 THR 261 NI 2.54

NI—no interactions.

3.7. MD Simulation Analysis

The molecular dynamic (MD) simulation was carried out for 100 ns to explore the
dynamic profiles of protein at the atomic level during the binding of inhibitors. The
parameters RMSD, RMSF, and H-bond occupancy were calculated using the gmx_rms,
gmx_rmsf, and gmx_hbond tools of GROMCS to determine the fluctuations and stability of
the protein–ligand system. In addition, principal compound analysis (PCA) was performed
with gmx_covar and gmx_anaeig tools for analyzing the atomic motions of proteins during
binding. Moreover, all simulation plots were visualized in Xmgrace. Notably, the reference
and hit compounds are represented in black and red throughout the study.

3.7.1. Structural Stability of Protein–Ligand Complexes

The RMSD of the backbone carbon atom relative to the protein was used to assess the
conformational and structural stability of complexes [35]. Accordingly, higher RMSD values
depict lesser stability of protein, whereas lower RMSD confirms the protein’s stability [67].
Figure 5 represents the RMSD (nm) plot of the reference (FPPE) and hit (sinigrin) molecules
over the 100 ns simulation. Initially, the trend line of RMSD gradually increased up to 10 ns
in both ACCase–FPPE and ACCase–sinigrin complexes. Furthermore, in the interval from
10 to 20 ns, the ACCase–FPPE complex reflected an abrupt rise in RMSD value (~1.2 nm).
In contrast, the ACCase–sinigrin complex maintained a lesser deviation of 1 nm till 25 ns.
Notably, the trend line of each complex showed a slight surge until 50 ns, then the line
was steady between 50 and 70 ns. Thereafter, the trend line subsided quickly at 80 ns
with an RMSD of ~1.05 nm. Subsequently, a sudden rise in RMSD value (~1.35 nm) was
observed for the ACCase–FPPE complex in the interval of 80–85 ns, and it attained a
stable conformation toward the end. Conversely, only a little upsurge was noted for the
ACCase–sinigrin complex at 83 ns with an RMSD of ~1.2 nm, and it remained stable till the
end of the simulation. Therefore, it is worth mentioning that the identified lead molecule
was more dynamically stable than the native complex.

3.7.2. Flexibility Analysis of Protein–Ligand Complexes

The RMSF calculates the fluctuation and flexibility of each residue of the protein
complex during the progression of simulation [71,72]. The lower RMSF value indicates
the rigid nature of residues, whereas the flexible region has a higher RMSF value [35,71].
Figure 6 represents the RMSF plot of ACCase–FPPE and ACCase–sinigrin complexes. The
figure clearly shows that the ACCase–FPPE complex exhibited the highest fluctuations
(>1.16 nm) for the residues LEU104, ASP105, and SER106 at the N-terminal region. Similarly,
the ACCase–sinigrin complex shows a higher deviation due to the residues PRO1, ARG92,
and GLU88 with the RMSF values of ~0.1775, ~0.1557, and ~0.1461 nm, respectively.
However, the above-mentioned residues are not found in the active site region; thus, they
have no significant effect on binding. Subsequently, the residues ALA296, PHE146, LEU269,
ALA315, and MET321 of the ACCase–FPPE complex showed the lowest deviation ranging
from ~0.019 to ~0.025 nm. In addition, the residues HIE213, VAL316, VAL345, and THR523
of ACCase exhibited subtle fluctuations (~0.014 to ~0.017 nm) upon sinigrin binding, thus
indicating the complex’s stability. In essence, the active site residues of the protein–hit
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complex were substantially rigid and exhibited a minimum deviation of less than ~0.1 nm.
In addition, the binding residues GLU259, THR261, CYS262, THR318, VAL316, and ASN373
were relatively stable in both complexes during the process of simulation. It is important
to note that, VAL316 exhibited lower fluctuations (~0.0144 nm) than other residues and
was involved in forming hydrogen bonds with the ACCase–sinigrin complex. The RMSF
and RMSD plots of the protein–hit complex illustrate the consistent results throughout the
simulation. This depicts the better stability of the ACCase–sinigrin complex. Moreover,
these findings are well correlated with the docking and MM/GBSA results.

Figure 5. Root mean square deviation (RMSD) plot of fenoxaprop-p-ethyl (black) and sinigrin (red)
ACCase complex structures over 100 ns simulation.

Figure 6. Root mean square fluctuation (RMSF) plot of fenoxaprop-p-ethyl (black) and sinigrin (red)
ACCase complex structures over 100 ns simulation.
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3.7.3. Hydrogen Bond Occupancy

The stability of the protein–ligand complex is maintained by various binding in-
teractions including electrostatic, π–π stacking, hydrogen bonds, hydrophobic interac-
tions, etc. [35]. Amongst other interactions, the hydrogen bond (H-bond) plays a prominent
role in determining the affinity and stability of the protein–ligand complexes [73]. In this
study, the existence of hydrogen bonding was observed for the ACCase–FPPE and ACCase–
sinigrin complexes using MD trajectory (Figure 7). The figure depicts that the sinigrin (hit)
forms ~0–5 H-bonds with the binding site of the protein. While FPPE (reference) exhibits
only ~0–2 H-bonds with the protein. It is important to mention that the obtained results
were well correlated with the docking results. From the analysis, the ACCase–sinigrin
complex showed the highest occupancy rate of H-bonds, which confirms the stability of
the system during simulation.

Figure 7. Hydrogen bond interaction of fenoxaprop-p-ethyl (black) and sinigrin (red) with ACCase
over 100 ns simulation.

3.7.4. Essential Dynamics

One of the most prominent techniques for understanding the probable conformational
changes of proteins is the essential dynamics (ED). In general, ED is a method of retrieving
substantial motion from atomic trajectories of proteins using the application of principal
component analysis (PCA) [72]. It is important to note that the first few eigenvectors
play a critical role in analyzing the collective motion of the protein [71]. Therefore, in this
study, the first two eigenvectors (PC1 and PC2) were used to perform PCA with the aid
of a covariance matrix [67,72]. Further, the eigenvalues retrieved from the diagonalized
covariance matrix provide information about the correlated motions of the protein. The
color gradient of the covariance matrix from blue to red specifies the anticorrelated and
positively correlated motions of atom pairs [74]. As shown in Figure 8a,b, the covariance
matrix of the ACCase–FPPE complex showed a strong negative correlation (dominance of
blue color) in comparison to the that of ACCase–sinigrin complex. In addition, the stability
of the protein–ligand complex was calculated by the trace of diagonalized covariance
matrix value. A lower trace value indicates higher stability while a higher trace value
depicts higher flexibility of the protein–ligand system [75]. In our study, the trace value
of the reference and the hit compound was 103.329 and 74.4338 nm2, respectively. Thus,
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the lower trace value of the hit compound confirms the overall stability of the ACCase–
sinigrin complex than the native complex. Moreover, the 2D projection plot of PCA is
another method to illustrate the dynamics of a protein in the essential subspace of the
system [76]. Noteworthily, the protein–ligand system occupying less space was more stable,
whereas the largely occupied system was less stable [77]. From Figure 8c, we observed
that the overall motion of the ACCase–FPPE complex was confined within the eigenvalues
ranging from −18 to 13 nm and −9 to 18 nm along with the projection of eigenvector1
and eigenvector2. Similarly, the ACCase–sinigrin complex showed eigenvalues of −9 to
23 nm and 5 to −12 nm. Therefore, our study confirms that less space was occupied by the
ACCase–sinigrin complex than the ACCase–FPPE complex as shown in Figure 7. Thus, the
outcome of the PCA analysis was well correlated with the previous findings and confirms
the higher stability of the ACCase–sinigrin complex.

Figure 8. Principle component analysis (PCA). (a) Covariance matrix of ACCase–fenoxaprop
-p-ethyl and (b) ACCase–sinigrin complexes. (c) 2D projection motion of fenoxaprop-p-ethyl (black)
and sinigrin (red) complex protein in phase space with the first two eigenvectors.
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3.7.5. Free Energy Landscape (FEL) Analysis

The protein folding patterns and conformational changes of the protein–ligand com-
plex was predicted using Gibbs free energy along with the principal components [67]. The
color ramp from blue to red of the FEL plot indicates the more and less stable regions of
the protein–ligand complex as shown in Figure 9a,b. Importantly, the highly stable regions
are referred to as energy minima conformation [78]. It is evident from the figure that both
the reference and hit complex had global energy minima conformation with a slight varia-
tion. However, the ACCase–sinigrin complex showed a wider energy basin, whereas the
ACCase–FPPE complex showed a narrow energy basin. In concordance with the previous
results, FEL analysis also undoubtedly proves that the hit complex is thermodynamically
more favorable than the reference complex.

Figure 9. Free energy landscape of (a) ACCase–fenoxaprop-p-ethyl and (b) ACCase–sinigrin complexes.

3.8. MM/PBSA Calculation

The molecular dynamic conformations of the complexes were used to estimate the
binding free energy calculations. It is notable that the binding free energy values obtained
from MM/PBSA studies were very well correlated (R2 = 0.71) with the experimentally de-
termined binding affinity values [79]. The average binding free energy and their associated
energy terms of sinigrin and fenoxaprop-P-ethyl are arranged in Table 4. It is evident from
the table that van der Waal interaction energy was the most dominant contributor to the
total binding free energy value in both systems. This implies that both systems have a
significant amount of hydrophobic interaction between protein and ligand molecules [80].
The electrostatic and polar energy components displayed marginally equivalent values in
both cases. However, the higher deviation in SAV energy displayed by the sinigrin system
(−81.638 ± 64.592 kJ/mol) supports the better binding potential of this compound. Overall,
the average binding free energy value of sinigrin (−145.631 ± 73.851 kJ/mol) was higher
than that of fenoxaprop-P-ethyl (−129.390 ± 111.326 kJ/mol). Thus, we conclude that
sinigrin was the better candidate, making a tight-bound complex with the target protein
than the fenoxaprop-p-ethyl.
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Table 4. Binding free energy analysis of the protein–ligand complexes calculated by MM/PBSA.

S. No. Energy Sinigrin (kJ/mol) Fenoxaprop−P−Ethyl (kJ/mol)

1 Van der Waal energy −105.790 ± 60.492 −102.784 ± 57.997
2 Electrostatic energy −4.901 ±5.543 −5.353 ±8.379
3 Polar solvation energy 46.698 ± 47.823 34.996 ± 28.300
4 SAV energy −81.638 ± 64.592 −56.249 ± 81.862
5 Binding energy −145.631 ± 73.851 −129.390 ± 111.326

4. Conclusions

The ideal investigation of this work focused on identifying the promising phytotoxic
herbicides against the ACCase target of E. crus-galli. Here, we adopted computational
approaches to design and discover the novel herbicide compound. Initially, Tanimoto
similarity was employed to filter out the non-identical compounds. Molecular docking
minimized the false-positive hits based on the binding affinity toward the target. As a result,
197 compounds showing higher XP GScore than the reference (FPPE) compound were
considered for the analysis. Further, binding free energy was calculated for the XP-docked
complexes that ultimately resulted in seven lead compounds. Note that herbicide-likeness
was analyzed based on the Tice rule. From the analyses, three lead compounds produced
satisfactory results. In essence, literature evidence unveiled that sinigrin would serve
as the most promising natural phytotoxin herbicide against the ACCase enzyme among
the three compounds. Of note, the sinigrin complex exhibited better results in terms of
RMSD, RMSF, hydrogen bond, and PCA analysis than FPPE during simulation studies.
In addition, the binding energy resulted from MM/PBSA analysis certainly validate the
activity of the sinigrin against ACCase protein. This collective evidence indicates that
the sinigrin compound might act as a potential phytotoxin for weed management in the
paddy field. Overall, the attempt of our study has laid the foundation for developing novel
bioherbicides in the future.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agronomy12071635/s1: Table S1: Tanimoto similarity and docking
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