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Abstract: Site-specific weed control offers a great potential for herbicide savings in agricultural
crops without causing yield losses and additional weed management costs in the following
years. Therefore, precision weed management is an efficient tool to meet the EU targets for
pesticide reduction. This review summarizes different commercial technologies and prototypes
for precision patch spraying and spot spraying. All the presented technologies have in common
that they consist of three essential parts. (1) Sensors and classifiers for weed/crop detection,
(2) Decision algorithms to decide whether weed control is needed and to determine a suit-
able type and rate of herbicide. Usually, decision algorithms are installed on a controller and
(3) a precise sprayer with boom section control or single nozzle control. One point that differs
between some of the techniques is the way the decision algorithms classify. They are based
on different approaches. Green vegetation can be differentiated from soil and crop residues
based on spectral information in the visible and near-infrared wavebands (“Green on Brown”).
Those sensors can be applied for real-time on/off control of single nozzles to control weeds
before sowing after conservation tillage and in the inter-row area of crops. More sophisticated
imaging algorithms are used to classify weeds in crops (“Green on Green”). This paper will
focus on Convolutional Neural Networks (CNN) for plant species identification. Alternatively,
the position of each crop can be recorded during sowing/planting and afterward herbicides
can be targeted to single weeds or larger patches of weeds if the economic weed threshold is
exceeded. With a standardized protocol of data communication between sensor, controller and
sprayer, the user can combine different sensors with different sprayers. In this review, an ISOBUS
communication protocol is presented for a spot sprayer. Precision chemical weed control can
be realized with tractor-mounted sprayers and autonomous robots. Commercial systems for
both classes will be introduced and their economic and environmental benefits and limitations
will be highlighted. Farmers ask for robust systems with less need for maintenance and flexible
application in different crops.

Keywords: automation; herbicide reduction; sensor-based weed control; site-specific weed management;
precision farming

1. Introduction

Weeds are distributed heterogeneously within agricultural fields [1]. They often
occur in aggregated patches with different size and shape. The aggregation in the
patches is higher for perennial weed species such as Cirisum arvense (L.) and Elymus
repens (L.) than for annual weeds [2]. Furthermore, the weed species composition varies
significantly within agricultural fields [3,4]. The occurring weed patches with their
specific weed composition often remain stable over many years if weed management
practices were applied across the entire field (flat spraying) [5]. Whether treatment with
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herbicides is useful depends on the specific case. In order to decide whether the use of
herbicides is beneficial in a particular field, economic weed thresholds are used. When
the weed infestation exceeds the economic weed threshold, the yield that is gained by
the use of herbicides is higher than the costs of the chemicals and their application [6].
Herbicide applications and other direct methods of weed control should be targeted to
areas with high weed infestation where the economic weed threshold is exceeded [5].
This method, the application of the economic weed threshold, is called site-specific
weed control. Site-specific weed control resulted in 23–89% less area treated with
herbicides, where weed populations were mapped and economic weed thresholds
were applied with no additional costs for weed control in the following years [4,7].
Therefore, site-specific weed management can be considered as an efficient approach
to achieve the targets of the EU commission to reduce the input of chemical synthetic
pesticides by 50% by 2030 [8]. Another way to meet these goals is to use mechanical
methods of weed control. However, these methods are not as effective under such
variable environmental conditions as chemical weed control [9].

Modern sensor and information technologies have been included in application
systems for herbicides leading to several commercial precise spraying systems for
arable and vegetable crops [5]. With the use of those systems, the productivity of farms
can be improved [10]. The spraying systems can be classified into detecting “Green on
Brown” or “Green on Green”. Green on Brown (GoB), as shown in Figure 1, differen-
tiates green vegetation from soil and crop residues based on spectral information in
the visible and near-infrared wavebands [11,12]. Green on Green (GoG) differentiates
between green crops and green weeds on the basis of more sophisticated imaging
algorithms [11], as shown in Figure 2. With GoB the target is to identify the presence
or absence of green plants, while GoG requires the classification of plant species or
groups of species, such as crop, grass-weeds, broadleaved weeds, and perennial weeds.
Those precise sprayers target high-density weed infestations (patch spraying), and
single plants (spot spraying). Sensor-controlled spraying systems are composed of
(1) sensors for the detection of weeds and crops, (2) expert systems to generate a deci-
sion on the need for weed control (on/off) and the optimum type and rate of herbicide
and (3) application systems to spray the herbicides. One development within these
technologies is the use of modular systems. Modular systems allow users to combine
different sensors, expert systems and sprayers. In a modular system, standardized
data communication should be used [13]. Although modular systems provide several
benefits for the user, most commercial systems for sensor-based herbicide spraying are
using proprietary communication systems that only operate with one specific sensor,
expert system and sprayer. There are a lot of changes in the agricultural markets,
especially with regard to artificial intelligence to comply with the new regulations. It
is difficult to keep an overview of what is developing, how and where. The current
literature still lacks a summary of what is happening with regard to chemical weed
control. The focus of this paper is to summarize the technology related to chemical
weed control. An overview of the innovations will be given, as well as an outlook
on those that are already under development. This review paper is intended to help
provide an overview of which innovations already exist and which will be developed
in the future. The objective of this review is to summarize those technologies, highlight
their benefits and limitations and give perspectives for new applications of site-specific
weed management in agricultural crops.
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Figure 1. Example picture of Veronica persica, RGB, Detection GoB.

Figure 2. Example picture of a field with Winter Wheat, RGB, Detection GoG.

2. Patch Spraying

Patch spraying, as shown in Figure 3, was mostly realized based on georeferenced
weed maps. Herbicides were sprayed in areas with weed infestations higher than the
economic weed threshold [5,14] and boom sections were turned off in areas with low
weed infestations. This approach saved 23–89% of herbicides in cereals, maize, sugar beet
and peas [7,15,16]. Savings were also realized by reducing the herbicide rate at locations
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with less problematic weeds or smaller weeds, which are more sensitive to herbicides [13].
Yields in the unsprayed areas were not lower than in the treated areas, and there was
no cause of any additional costs for weed control in the following years [4,7]. If the
heterogeneity of weed species distribution was considered and each weed species group
was treated separately with different herbicides using a GPS-controlled multiple-tank
sprayer, savings were even doubled [17]. Those results underline the enormous potential
of patch spraying for herbicide saving. In addition, patch spraying reduced herbicide load
into the environment and the risk of herbicide residues in the water and in the food chain.
It also reduced the selection of herbicide-resistant weed populations [7,15,16,18,19]. Jensen
and Lund applied patch spraying algorithms to protect endangered and rare weed species.
The sprayer was turned off at locations where rare weed species were present/mapped [20].
Despite these benefits, adaptation of patch spraying to practical farming was low because of
many technical constraints. Especially, spraying systems do not allow varying the herbicide
mixture according to the weed distribution maps. Patch spraying also requires higher effort
for data acquisition and documentation. Furthermore, the farmer will need to predict and
organize the usage of two or more herbicide solutions, each targeting specific weeds or
groups of weeds. With the right organizing and know-how, there is a high potential for
herbicide savings, but the economic benefits may disappear due to maintenance costs or
incorrect organization and programming [15,21].

Figure 3. Draft of Patchspraying green weed patches inside a crop field (brown).

Until the early 2000s, mostly offline patch spraying systems were used [22,23]. Un-
manned Aerial Vehicles (UAV) for weed sensing facilitated weed mapping and patch
spraying [21,24]. UAV-systems were capable to map and georeference the distribution of
perennial weed species such as Cirsium arvense with lower costs and more efficiently than
with near-ground-camera mapping [2]. However, weed mapping had to be performed
prior to patch spraying and georeferenced application maps were loaded into the board
computer of the sprayer [7,21]. Computer processors were not fast enough for real-time
weed/crop classification in digital images using more sophisticated algorithms [25]. The
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first real-time patch spraying system based on weed coverage data from digital images
was developed by Longchamps et al. in maize [26]. Another example is AgriCon [27], a
German company that commercialized the H-Sensor for site-specific weed control in real
time in cereals and maize. Both systems resulted in more than 50% herbicide savings.

Field sprayers were designed to apply equal rates of herbicides homogeneously across
the entire field. Patch spraying, however, requires continuous opening and closing of
boom sections and the adjustment of the spray rate. With improvements in sensor and
information technologies for weed mapping and real-time weed detection, several patch
spraying technologies were included in field boom sprayers. Multiple nozzle carriers,
e.g., Amazone VarioSelect® were developed for remote selection of nozzle size during the
application [20]. This allowed a variation in spray rate in wide ranges. Several sprayer
manufacturers developed pneumatic spray nozzle control systems for faster opening and
closing of boom sections and individual spray nozzles [20,28]. Computing capacities and
graphical interfaces of spray computers were improved to process georeferenced data of
weed maps, to connect to online sensors, and to control the status of the boom sprayer [28].
Gerhards and Oebel [7] developed and tested a GPS-controlled three-tank sprayer based
on GoG with a 21 m wide spray boom (Kverneland Cerberus). Each of the three tanks was
controlled separately based on georeferenced spray maps. Spray maps were generated
based on georeferenced images that were taken by bi-spectral cameras and the automatic
weed classification was based on shape analysis. One tank was used for the control of
annual broadleaved weeds, one tank contained herbicide against grass-weeds and one
tank was used for the control of perennial weed species [7]. Patch-spraying with the
Cerberus sprayer on average saved 50% of herbicides in cereals, oil-seed rape, sugar beet,
and maize. [7]. Amazone has developed a commercial sensor-guided patch-sprayer, the
AmaSelectSpot with DroneLink [29]. It uses an offline approach, where the field is scanned
with an RGB-camera before the application. DroneLink creates an overview map from
the captured images with the help of an integrated software. By the use of Artificial
Intelligence, an application map is generated. A safety zone of 1 m is created around the
detected treatment spots to ensure that all weeds have been sprayed. Depending on the
weed density herbicide reduction can reach up to 80% [29].

Another example for real-time spraying of weed patches is Agrifac [30]. Three RGB
cameras are mounted on the self-propelled sprayer. The cameras identify weed patches
and nozzles/boom sections are turned on and off at a driving speed of 10–14 km h−1.
A different approach to vary the herbicide mixture during the application is a direct
injection system [31], e.g., Danfoil, Denmark and Dammann/JKI, Germany [32]. Herbicides
are mixed with water in the hydraulic system that is close to the nozzles. By the use of the
system, no herbicide residues remain in the tank after the application [32].

Gonzales-de-Soto et al. [33] developed a robotized patch sprayer based on GoG. The
direct-injection sprayer boom has 12 high-speed solenoid valves mounted at a range of
0.5 m. Each solenoid valve controls one nozzle separately. Weed detection can be performed
offline by an external device that creates a work plan before the treatment or on-board
and work in real-time. With the help of GPS and a base station, the position on the field
is tracked and with the help of the laser obstacles in the front are recognized. The system
speed was about 3 km h−1. The system was tested in wheat and showed that the treatment
is only applied in the desired area. Savings of herbicides were dependent on the location
and the distribution of the weeds. The accuracy of detected weeds could reach up to about
99% [33].

A special form of path spraying is band-spraying. The aim of band spraying is to apply
herbicides only on the intra-row area, where weed competition is high and mechanical
weeding is more complicated. Usually, herbicides are only applied in strips of 10–15 cm [34].
If RTK-GPS and autosteering systems are used during seeding, then band-spraying with
pre-emergence herbicides is also possible. In combination with post-emergence inter-row
hoeing, very high weed control efficacy can be achieved, and 60–70% herbicide savings can
still be realized in sugar beet, maize and soybean [34].
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With the increasing amount of data processing on the sprayer, a need for standardized
communication between sensor, controller and sprayer came up. So far, most of the current
precision spraying systems represent proprietary systems with their own protocols for
sensor, controller and sprayer [35]. Therefore, it is not possible to connect different sensors
and actuators to those systems. Standard communication protocols such as ISOBUS allow
the connection of different sensors to one controller and send decisions from the controller
to different sprayers [35]. Systems using ISOBUS such as Agrointelli from Robotti in
Denmark can process data from cameras, spectrometers and GPS receivers in one controller.
Tasks generated from these sensor data can be transferred into precise seeding, fertilization
and plant protection operations [36]. The standard protocol of ISOBUS can also be used
for diagnostics and data exchange with farm management systems. By using ISOBUS the
acceptance of patch spraying could increase.

3. Spot Spraying

In contrast to patch spraying, spot spraying systems have a closer/tighter “field of
application” and target single plants [37], as shown in Figure 4. The fact that individual
weed plants or smaller weed patches can be sprayed decreases the number of sprayed areas.
In patch spraying, a threshold is set for spraying weed patches. Spot spraying can also
spray smaller areas [37]. This means that invasive species already targeted from individual
plants will spread less in the field. The two methods differ fundamentally in their approach
and both types have their advantages and disadvantages.

Figure 4. Draft of spot spraying, single plants inside a crop field (brown).

Plants are usually classified into crop or weeds. With the development of more
sophisticated hardware and detection algorithms, it was also possible to classify and
protect rare/beneficial weeds. When spot-spraying is applied in emerged crops with non-
selective herbicides with an GoG approach, classification accuracy must be almost 100% to
ensure that no crops will be destroyed [37,38].
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With the use of spot spraying, a binary decision (spray/not spray) for each single
target is made. Therefore, the economic weed threshold as used for patch spraying or the
decision algorithms for patch spraying is not used for spot spraying [39]. If non-selective
herbicides were used for spot-spraying in crops, a minimum distance of weeds from crops
needs to be defined in order to prevent crop damage. Herbicide savings for spot-spraying
can be considerably high, up to 99% [5,37,40]. Spot spraying is realized in real-time systems
with a camera directly mounted on the tractor or the robot. In the case of several mounted
tanks, the system has the flexibility to adjust the herbicide application for specific weeds or
groups of weeds. Multiple-tank sprayers or direct injection systems can be combined with
spot spraying if each weed group is treated with a specific herbicide [41].

Artificial intelligence algorithms can be used for plant species detection. Since 2015,
mostly Convolutional Neural Networks (CNNs) were applied for plant species classifi-
cation [42]. Of course, it is possible to use a CNN also for patch spraying. Because spot
spraying is aimed at smaller targets, the CNN is explained on the basis of spot spraying
to emphasize the extreme learning ability of the neural networks. Deep Learning is the
predecessor of Convolution Neural Networks (CNNs). CNNs were first introduced by
LeCun et al. [43] and have shown a great potential for achieving high accuracy regarding
tasks such as image classification and object detection. They can even be a valuable can-
didate for fine-grained decisions and classification [44]. CNNs consist of mainly three
different layers, convolutional layers, pooling layers and fully connected layers [45]. The
convolutional layer convolves the whole image and generates feature maps, the pooling
layer reduces the dimensions and network parameters, and the connected layer converts
the 2D feature map into a 1D feature vector for more feature representation [45]. The CNN
uses feature extraction layers and classification layers, which makes the output highly
reliant [46].

The powerful technique of Artificial Neural Networks and the CNNs that are a part of
it enable the successful identification of plants and weeds. Generally, the basic structure of
a neural network consists of a layer into which data are inserted, layers hidden in between
and a layer outputting the data [47].

There are different kinds of CNNs. For example, the LeNet first appeared in the
1990s [48]. However, it was difficult to implement until 2010 due to limited computing
power and storage capacity. LeCun managed to bring LeNet to the state of the art through a
backpropagation algorithm and some experimentation. LeNet-5 [48], as it was established,
consists of two convolutional layers, two subsampling layers, two fully connected layers
and an output layer with a Gaussian connection [49]. As the performance of computer
hardware improved, the use of CNNs became more popular [49].

In 2012, Alex Krizhevesky won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) competition with AlexNet [50]. AlexNet is a deeper and broader CNN model
that showed the best recognition accuracy compared to previous approaches. In the first
convolutional layer, convolution and max-pooling with Local Response Normalization are
performed [49]. A total of 96 different receptive filters are used, with a size of 11 × 11. In
the next layer, the same steps are performed using 5 × 5 filters [49]. From the third to the
fifth layer, the steps are performed again, this time using 3 × 3 filters [49]. AlexNet consists
of two fully connected layers with dropout, a softmax layer at the end, three convolutional
layers, and two fully connected layers [49]. To use this model, two networks are trained in
parallel, which are similar in structure [49].

Another example is GoogLeNet, which won the ILSVRC 2014 [49]. The model, de-
veloped by Christian Szegedy and Google, was designed to reduce the computational
complexity of a CNN [49]. So-called “InceptionLayers” with variable receptive fields were
built into the network, which captured sparse correlation patterns in the new feature map
stack [49]. This improved the recognition accuracy [49]. A 1 × 1 convolution kernel was
added to the naive inception layer and the final inception layer, which enabled dimension-
ality reduction before computationally intensive layers [49]. With its 22 layers, it comprised
more layers than previous networks [49].
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Another network is the VGG16. The VGG 16 performed well in the 2014 ILSVRC [47].
It proved to be one of the best-performing networks with a Top-1 accuracy of 71.3% and
a Top-5 accuracy of 90.1% [47]. Even with small image datasets, the VGG16 can achieve
high performance and accuracy [51]. The input to the VGG16 is based on a three-channel
RGB image of size 224 × 224 pixels [47]. The architecture selects 16 layers, of which 13 are
convolutional layers and 3 are fully connected layers [47]. The activation function for
each convolutional layer and the first two fully connected layers are Rectified Linear Units
(ReLUs) [50]. Despite its high performance, it is less computationally intensive compared
to other networks [47].

ResNet-50 has a similar architecture as VGG16, but with a trend toward increased layer
depth [47]. At the center of ResNet-50 are 3 × 3 convolutional layers with a ReLU activation
function. Before and after each of the 3 × 3 convolutional layers, 1 × 1 convolutional layers
are generated [47]. In ResNet-50, only one pooling layer is used and batch normalization
is performed. Compared to the previously mentioned VGG16, ResNet-50 has three times
more layers and identity mapping capability [51]. An alternative shortcut for the gradient
is created and, thus, the problem of the vanishing gradient is reduced [47]. This allows the
ResNet-50 to be trained faster than the VGG-16, and although the network is deeper than
the VGG16, it can bypass a CNN layer when it is not necessary [47]. A three-channel RGB
image with a size of 224 × 224 pixels is also used as an input. The algorithm is one of the
best to train new datasets due to the residual management used [47].

Xception stands for Extreme Version of Inception [52]. The introduction of Xception
has fundamentally changed the way CNNs are designed [47]. While ResNet-50 increased
the depth of the network to solve the image classification problem, Xception takes a different
approach [47]. It is not the depth of the network that is increased, but the width. In a
classical inception model, several different layers are to be computed in parallel over the
input and merged in the output [47]. The increased width is created by three different
convolutional layers and a max-pool layer that are activated in parallel [47]. Each output
is combined in a single concatenation layer [47]. Therefore, in each layer, a 5 × 5, 3 × 3
and 1 × 1 convolutional transformation and an additional max-pool are performed [47].
How each layer can be used is determined by the concatenation layer of the model [47].
In the Xception network, the inception modules are replaced [47]. Depth wise separable
convolutions are used, which compute the spatial correlations on each output channel
independently from the others [47]. To capture the cross-channel correlation, a 1 × 1
convolution is performed at the end in depth [47]. Due to the 71 layers formed here, the
depth is even deeper than the ResNet-50 [47]. The input is now different from the other
networks [47]. The three-channel RGB image here has a fixed size of 299 × 299 pixels. By
increasing the degrees of freedom through the width approach, the best detection scenarios
are used for specific tasks [47].

The CNN uses feature extraction layers and classification layers, which makes the
output highly reliant [46]. The use is influenced by the parameter selection, if the selection
is changed, the performance changes [38]. However, CNNs need fewer parameters than
other forms of neural networks, which makes them much faster and simplifies the training
process [46], and because of that, the network is less vulnerable for overfitting [46]. How-
ever, under- and overfitting is still a problem, in combination with a small database or less
training time [45]. Even the robustness of the weed classification can be improved by using
images, taken under different conditions [53]. All in all, the use of CNN for large-scale net-
work implementation is easier to handle than with different kinds of neural networks [46].
The performance reliability of the CNN is due to the hardware that is used [46]. Clearly, the
accuracy of the detecting depends on the used CNN. If the classification is more difficult,
for example, when the crop looks similar to the weed, a larger neural network is needed,
combined with a high level of computational processing [54]. Alzubaidi et al. [46] came to
the conclusion that are a few features that could be changed about the CNN in order to
improve it, for example, to expand the dataset or to increase the training time [46].
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CNNs have the advantage, that they can detect relevant features, without human
interaction [46,55]. One problem with the use of CNNs is the quality of the pictures [56]. If
the information given in the picture is less informative than expected, the labeling of weeds
and crop is more difficult [56]. That means that if the information given is not enough, the
recognition accuracy gets worse. Regardless, an accuracy of about 95% can be achieved [56].
Furthermore, the weeds on the field do not always look the same [14], and by that, the
database could contain gaps, even if it is already a large database. Another point regarding
pictures is that pictures are made under different conditions [14]. Different conditions
generate different pictures of the same growing stage and sometimes are not comparable.
All in all, the data acquisition is quite time consuming [14]. A large database is needed
to train the CNN. By that, it is ensured that plants are recognized correctly [14]. A large
database means a lot of work to deal with, before the work in the field can actually start.

CNNs, in general, start by learning local features from the bottom and gradually as-
sembling them at the top to more complicated features [42]. Finally, they enable conclusions,
decisions and classifications [57]. This enables CNN algorithms to “learn” very complex
functions [57] by dividing the task by hand into more simple steps. Through repetition
and supervised learning CNNs can achieve the desired outcome [57], building multi-layer
learning models [46]. Although the use of CNNs is relatively new, recent publications have
reached high classification accuracies of 99% for classifying segments as crop, soil, grass
and broadleaf weeds [5,58]; 96% on a blob-wise crop/weed classification [59]; 97–98% for
classifying between 12 different crop and weed species [47]; 94% between twelve different
plant species [60]; and 95% of eight Australian weed species [61]. CNNs need fewer param-
eters than other forms of Neural Networks, which makes them much faster and simplifies
the training process [46], because the Network is less vulnerable for overfitting [46]. Still,
under- and overfitting is a problem in combination with a small database or not enough
training epochs [45]. To improve the robustness of the weed classification, images should
be taken under different conditions [53].

The decision making based on CNNs is by now mostly used in medical images with
remarkable performance [62]. Another sector where CNNs are used for decision making is
for robots. An adaptive anchoring module is presented that enables robots to improve their
mobility and manipulation capabilities [63]. In agricultural sectors, the decision making by
CNNs is not that widespread. To our knowledge, only Rautaray et al. have presented a
model that can detect diseases in paddy plants by the use of CNNs [64].

There are different kinds of sensors that can be operated by a CNN. Mostly cameras
are integrated into systems that use CNNs as, for example, in the Ecorobotix from ARA, a
multi-camera vision system is used. CNNs have not only found favor in the agricultural
sector. Different sectors tested different combinations of sensors with CNNs. Especially
distance sensors have been used in research. Gao et al. used a CNN in combination with
LIDAR in autonomous vehicles [65]. A problem that occurs here as well is disturbance
variables that complicate the application. Autonomous vehicles in road traffic must also be
able to detect objects quickly, precisely and accurately [65]. Various research groups have
already carried out tests, for example, combining two heterogeneous neural networks and
a support vector machine model for RGB-D-based object recognition and segmentation [66].
However, with the use of LIDAR and CNNs, the classification accuracy is superior in
comparison to the use of only RGB or depth data [65]. Other sensors that have already been
combined with CNNs are Ultrasonic Sensors. Kim et al. used reflected ultrasonic signals
in combination with CNNs for road type identification [67]. The identification of the type
of road surface is an important issue for automatic driving vehicles or robots. Ultrasonic
sensors have the advantage that they are easy to handle, relatively cheap, and can adapt
fast to changing conditions [67]. Other studies investigated the combination of CNNs with
optical and electronic processing [68]. The idea behind the combination is to overcome
the bottleneck in data transmission by electronically processing data in chips with parallel
optical inputs and outputs. The functionality of detectors and emitters is combined in one
device [68]. A totally different sector where CNNs were combined with different sensors is
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within aeroengine control systems [69]. This is thermal machinery, which has to be highly
reliant. An intelligent fault diagnosis method was established by combining the continuous
wavelength transform with a CNN [69]. In the agricultural sector, so far, spot sprayers
have been designed for only specific applications; e.g., “See & Spray” from Blue River
Technology [70], a brand acquired by John Deere, USA, was developed for spot spraying
only in cotton and soybean. The AiCPlus camera system from Bilberry [71], France; can
distinguish Rumex spp. and Taraxacum officinale in oil radish. A separate algorithm must
be developed for each plant species, which greatly increases the programming effort [72].
Even though the technique is quite new and a huge programming effort is required, spot
spraying has been integrated into several new systems (Table 1).

Table 1. Overview of commercially available Spot Spraying systems with the currently used technol-
ogy, the sensors, the access, the application and the possible herbicide reduction.

Product/Trade
Mark Company Technology Sensors Access Herbicide

Reduce Application

Robotti Agrointelli Combining Deep Learning
and BigData

RTK-GPS,
autonomous, Lidar,

Camera
Close 40–60% Robot

ARA Ecorobotix
CNN-based weed detection

in sugar beet and spot
spraying

Multi-camera vision
system Open Up to 95% Tractor-

mounted

Bilberry Bilberry AI-based weed detection
and spot spraying RGB camera Open More than

80% Robot

Weedseeker Trimble Agriculture Infrared Sensors High-resolution blue
LED-spectrometer Open 60–90% Tractor-

mounted

Weed-It Weed-It Detection of green
vegetation

Blue LED-lighting
and spectrometer Open

95% (only in
crop-free

areas)

Tractor-
mounted

FD20 Farmdroid
RTK-GPS recorded position

of crop seeds and spot
spraying

RTK-GPS Open unknown Robot

H-Sensor AgriCon AI-based weed detection in
cereals and maize Bi-spectral camera Close 50% Tractor-

mounted
Blue River’s see

and spray
Blue-River

Technologies
CNN-based weed detection
in cotton and spot spraying RGB-cameras Close Up to 90% Tractor-

mounted

EcoPatch Dimensions Agri
Technologies

AI-based weed detection
and spot spraying RGB-camera Closed unknown Tractor-

mounted

Kilter AX-1 Kilter Systems
RTK-based crop detection
and selective spraying in

vegetables
robot Open unknown Robot

Greeneye GreeneyeTechnology AI-based weed detection
and spot spraying RGB-camera Open unknown Tractor-

mounted

Avirtech-MIMO Avirtech UAV-based weed mapping
and patch spraying 4D Radar imaging Close unknown Drone

Smart Spraying BASF, Bosch,
Amazone

Camera-based weed
coverage measurement and

spot spraying
Bi-spectral camera Close 70% Tractor-

mounted

4. Integration of Precision Systems on Tractors

Agricultural spraying machines already separate the spray boom into sections, and with
the use of the current technology, activation of each nozzle separately is possible [73–75].
With the help of the ISOBUS, tractors can achieve a certain level of precision. ISOBUS is a
standard protocol for sprayers and tractors. It enables communication between different
components, for example, between a sensor, the tractor and the implement [35]. One objec-
tive of the research is to develop a CNN-based modular spot spraying system combined
with an ISOBUS-capable sprayer to detect and classify weeds in real time. [76]. Since each
module is developed independently to operate with the ISOBUS standard, each new tool
that provides precision applications can potentially be included in existing machines, and
used in the system [76].

Figure 5 shows possibilities that could be implemented in the future when a modular
system is introduced to the market. Different sensors are able to detect and thereby solve
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different parts of work in the field. RTK-GNSS is used for the positioning of the crop and
thereby detection of the crop row [77]. The next sensor shown is the RGB-camera. With the
use of RGB-cameras, it is possible to detect weeds on a large scale in agricultural fields [78].
Additionally, weeds and crops can be identified and the crop rows can be detected. Another
approach is by the use of multispectral cameras, especially the utilization of Infra-Red
wavelengths [79]. Plant material reflects the light in the near infrared, while it absorbs
the majority of the light in the visible spectrum. Detection based on the spectral ranges
in the red (610–690 nm) and near-infrared (above 700 nm) range can easily differentiate
between plants and foreign objects, e.g., stones, mulch and straw. The high signal-to-noise
ratio that this setup provides makes such systems reliable for variable light conditions
and high working speeds [80]. Distance sensors can also be used, which are relatively
low cost and customer friendly. Sensors such as Lidar or Ultrasonic sensors have been
used for site-specific weed management [38,47,81,82]. By the use of this combination, the
height detection of the crop is possible. This means that the system knows which height
the crop should be. By that, smaller and bigger plants should be treated, as those plants
are not the desired crop. The mentioned sensors can also have a secondary function, as
they can regulate the appropriate height of the implement. Exact height guidance using
a laser for a sprayer boom can reduce the herbicide drift by reducing greater distances
between boom and canopy or by increasing the uniformity and efficacy of the treatment
at lower distances. The sprayer is adapted to not harm the crop during the work, and
the herbicide is applied where it is needed. Typically, the sprayer boom is adapted to a
height of 40 cm above the canopy level. Concerning the hoe, the guidance and the choice of
the respective hoeing sweep must be adapted to the soil, the crop, the weed population
and the weed density for a sufficient control. By the use of a 3D camera, crops can be
identified even if there are weeds on the field [83]. A GoG recognition is possible, which
means that weeds and crops are differentiated. Through the images that are produced,
the height of the plant can be detected and, again, the height guidance of the implement
can be set up. Three-dimensional cameras are also able to detect the crop rows. Another
sensor is a spectrometer. With the use of a spectrometer, the weeds and crops are differed
by their spectral differences. The use of the spectrometer has already proven to have some
commercial use [84]. Using a spectrometer is a safe and fast way to detect weeds in the
field. The recognition is a GoB identification.

With the combination of sensors and applications, different machines can be operated.
As shown in Figure 5, the Inter-row hoe works between the rows of the crop. Therefore,
it only needs a sensor for crop row detection to operate. More sophisticated sensors are
needed, for example for the Intra-Row-hoe. The Intra-Row-hoe works between the rows
of the crop and inside the row, between the crops. If the crop row is detected, the weeds
are identified as weeds and the height of the implement is adjusted, so that the Intra-
Row-hoe can operate. Between the rows of the crop, which are identified, every plant
is treated. By detecting weeds, the hoe can operate inside the row and treat every weed
growing there [77]. For Band spraying, another combination of sensors is needed. As the
band sprayer combines an Inter-Row-hoe and a sprayer, it needs similar sensors. Crop
row detection is necessary for the hoe to operate between the rows. As the sprayer only
applies herbicides inside the row and the crop row is already detected, it needs the height
guidance of the implement to apply the herbicide precisely. The last sensor needed is height
guidance, to detect how big the crops are and which plants do not fit in the pattern of the
crop [19]. The next machine shown is the patch sprayer. Again, it needs more sensors than
the machines before. The weeds have to be identified, in order to spray only the weeds.
Therefore, the crop is also identified to not spray the crops. A height detection sensor is
needed to detect how high the crop is, and the implement again needs height guidance [7].
For the last machine, the spot sprayer is shown. It needs the same sensors as the patch
sprayer. It has a closer field of view, but the sensors need to stay the same. A spot sprayer
needs more sophisticated algorithms, which are not shown in the present figure [11].
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Figure 5. Overview of sensors with suitable icons, application and implementation options with
drafts of the working methods, that should be possible to be controlled via ISOBUS-Connection.

A project that aims to realize these possibilities is DACWEED (Detection and ACtua-
tion for WEED management), shown in Figures 6 and 7 [76], a project funded by EIT FOOD.
Existing technologies, artificial intelligent processes and smart tools controlled by ISOBUS
should be developed and improved. By working with existing modules site-specific weed
management with commercially available components should be made possible. It will be
possible to “plug-in” an independent sensor system and turn any section-controlled sprayer
into a site-specific sprayer. This enables the farmer to use the sprayer and tractor he already
owns, and connect it with the new technology of spot spraying [76]. A CNN is the basis of
the weed detection. The CNN differentiates between weeds or crop, decides if a specific
nozzle should open, and sends the information through the ISOBUS to the implement [76].
Patch spraying is conducted in maize, potato and sunflower and a CNN was trained for
nine weed species including Alopecurus myosuroides Huds, Amaranthus retroflexus L., Avena
fatua L., Chenopodium album L., Lamium purpureum L., Matricaria chamomila L., Setaria spp.,
Solanum nigrum L. and Stellaria media Vill [47]. For horticultural crops, DACWEED was
trained for tomato in Spain with the main weed species Solanum nigrum L., Setaria viridis
(L.) Beauv, Cynodon dactilon L. and Cyperus rotundus L [85]. A total of 105,000 images,
taken with a Jai camera as shown in Figure 6, of the species were used for training the
VGG16, ResNet-50, and Xception networks with learning transfer methods. After the
training, the detection system was connected to the ISOBUS terminal of a tractor. The
results of the support system decisions could be transferred to the sprayer via the standard
ISOBUS protocol. The system could achieve identification accuracies between 77% and 98%
(VGG16/Xception) for the classification and categorization of weed species [85]. Due to
the speed of activation and deactivation of the valves, it was not possible to fragment the
crop into smaller areas. In typical fields with moderate weed infestation, the system can
achieve 40–60% herbicide savings. While these percentages can increase in cases of spare
weed presence [85]. The aims of the project are to reduce the amount of herbicide used,
and increase the precision of the application by opening the nozzles only where and when
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it is needed. Those steps can lead to more sustainable agriculture for consumers and the
environment [76].

Figure 6. Setting of the project DACWEED source: DACWEED.

Figure 7. Setting of the project DACWEED source: DACWEED.
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Another spot sprayer that uses ISOBUS is the system of Bilberry [71]. It can be
combined with any kind of sprayer. By the use of Artificial Intelligence, it detects the weeds
and opens the nozzles only at the position of the weed. It is possible to use the system
for GoG and for GoB. Another advantage of the system is that it can be used for different
growing stages of the weed [71]. Weedseeker, another system able to use the ISOBUS
connection, is capable of linking different machines and implements [86]. The different
approaches make it possible for the farmer to work independently. However, the majority
of spot sprayers do not use ISOBUS to connect between different implements. For their
operation, each system relies on its specific technique, for the sprayer or the camera or most
typically both. DACWEED aims to improve and facilitate standardized communication
between sensors and implement [76].

5. Discussion

The different technologies for patch- and spot spraying highlight the potential of
herbicide savings, which are up to 90% [22]. The herbicide reduction was significant
regardless of which patch/spot spraying technology was used. Besides the herbicide
reduction, the environmental risks associated with herbicide use were reduced, including
herbicide leaching into the groundwater, herbicide resistance development in weeds, and
herbicide residues in the food chain and drift [7]. By reducing the herbicide load into the
environment, the diversity of weed species and insects can also be increased and rare weed
species can be protected [87,88].

The amount of saved herbicide differs due to different locations and different man-
agement strategies, for example, different crop rotations. Another changing variable is
the field in which the system was tested. A lot of systems are tested in cereal crops, with
monocot weeds [41]. In each field and crop, there are heterogeneous weed distribution
and weed infestation levels. The spatial variable application could be less efficient under
different conditions [41]. To address the previously mentioned heterogeneous conditions in
a field, there are several construction-related options. One option is to use small robots that
can individually drive to individual plants and spray them precisely [89]. In cases where
this is not practical, for example, due to the size of the field, it makes sense to adjust the
spray boom. The height of the spray boom can be adjusted and the individual nozzles can
be individually controlled and directed to the plant [73]. Certainly, new nozzles that can
provide the appropriate dosage in the predefined flow will need to be developed. Which of
the above-mentioned options is more appropriate must be decided on a case-by-case basis,
as the same option is not best for every field and every type of crop. Nevertheless, all tests
on all different fields show that a reduction could be achieved and, thus, herbicides and
costs could be saved. It needs to be mentioned that the risk of weed escape can increase with
patch spraying as more weeds are left untreated in the field [22]. Even though Wiles [22]
proved that the weed escape even decreased by 0.04–0.11 plants m−2 when using a patch
sprayer. The outcomes of site-specific weed management in total are specific for every field
and cannot be predicted overall [22]. If the characteristics of weed populations are included
in the spraying decision, site-specific weed management might be more beneficial [22]. The
control of weeds can be more successful when multiple herbicides are used because of the
lower chance of weed escape [22]. That can save both more herbicides and more costs in
the long term. Still, there is a need for the support of farmers regarding which decision to
make on which specific field [22].

However, when comparing the different sprayers, the cost of the sprayer must be
considered. If the costs for patch sprayers are compared to the costs for flat sprayers, the
sprayer cannot be recommended [22]. The additional management costs cannot be com-
pensated with the additional return [22]. However, by the use of sprayers with Artificial
Intelligence, the herbicides and labor can be used more cost efficiently [54]. In the calcula-
tion should be included: the size of the farm, so as to decide the size of the sprayer that
should be chosen; the training of the technology; and the refilling of the sprayer [90]. Fur-
ther investigation should be made into choosing different systems and cheaper components



Agronomy 2022, 12, 1620 15 of 21

for farmers with small fields [90]. Whether the sprayer based on Artificial Intelligence is
more economic than the labor costs is dependent on each specific case. Examples show that
the costs where a robotic platform would be profitable must be immensely cheaper than the
available industry solution, which makes it unrealistic [91]. It is clear that in the beginning,
the system has to be established on the specific farms. That means that it has to be trained
to the actual conditions and crops. It takes time to explain the new machines to the farmers
and for them to become used to the technique, which might take more time than with a
conventional sprayer. Compared to the time that is gained later and the herbicides that are
saved, the advantages predominate overall. The current market is mainly dominated by
patch sprayers. Although some spot spraying systems are already commercially available,
they do not yet dominate the market. This is due to the fact that their price currently limits
their commercial availability [92]. When considering the economics of robotic platforms,
there are other points that need to be mentioned. For a tractor must work efficiently, the
size of the boom in relation to the size of the fields on a farm must be considered [90]. On
smaller farms with smaller fields, a smaller boom is more economical. On larger farms with
larger fields, a larger boom is more economical [90]. If the size of the boom changes, many
parameters change. For example, looking at a robot with movable nozzles, the conditions
are different from those of a tractor with a mounted sprayer [89]. The robot is able to drive
directly over individual plants, stop there, and with its movable nozzles, spray the plant
with precision [89]. This is different from a tractor with a mounted sprayer up to 36 m
wide. The tractor would have to stop over the individual plants and readjust the spray
boom each time to achieve the same precision. However, if this were the norm, the system
would lose efficiency, which would negate the economy through lost time and increased
fuel consumption. Larger farms need to be time efficient to complete the work at the right
time, and in the right weather conditions [90]. The type of farm, as well as the size of the
farm, must be considered when determining the economic efficacy [90]. The efficacy of a
spot sprayer, moreover, depends on the crop in which the sprayer is used. Not all crops
were tested. This means that further investigation on different crops is necessary. Another
point is the difference between the crop and the weed. The bigger the difference in their
optical appearance, the better it can be differed. To use a spot sprayer for different kinds of
crops that are really similar to weeds, such as, for example, for wheat, which is sown in
narrow rows less than 20 cm apart, further investigation is necessary [11]. It is easier to use
a spot sprayer in crops with wider row spacing, for example, maize with up to 75 cm row
spacing, than in crops with narrow row spacing, for example, cereals with 12.5–15 cm row
spacing [19]. More space in between the rows offers more space for the sensor to detect the
weeds. When looking at the shape of the weeds compared to the crop, problems can occur.
For example, looking at Lolium perenne L. in a wheat field [93], it is more difficult to detect
the differences between the two plants than, for example, Veronica persica P. in a maize field.
The choice of crop, as well as the weeds present, must be included in the evaluation of the
accuracy of a machine. Another important point relates to the basis of detection. If it is
a GoG analysis in which green plants are to be distinguished from green weeds, a more
complex algorithm is necessary [94]. In addition, it cannot always be assumed that the
crop and weeds are in the same growth phase [94]. The growth phases of the plants can
be similar in some cases, making classification more difficult [94]. When looking at the
definition of weeds, problems arise. If maize is growing in a winter wheat field, the wheat,
which is otherwise considered a crop, might be classified as a weed. The algorithm must
therefore recognize which field it is and whether the crop in this case is possibly a weed.

Even if huge technical improvements are made, there is still space for further inves-
tigation [45]. The systems are still unstable under different conditions [45]. Systems still
have problems with different biotic and abiotic disturbances such as overlapping of the
crops or influences such as changing light conditions [3]. The systems still have to be tested
under a wider range of conditions [3]. There are still problems with the computational
speed, which is limiting when using real-time approaches [94].
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Many of the techniques mentioned above are based on the use of CNNs. Even though
the use of CNNs for large-scale network implementation is easier to handle than with
different kinds of Neural Networks [46], the performance reliability of CNNs is due to
the hardware that is used [46]. Clearly, the accuracy of the detection depends overall on
the CNN used. If the classification is more difficult, for example, when the crop looks
similar to the weeds, a larger Neural Network is needed combined with a high level of
computational processing [54]. Alzubaidi et al. [46] showed that there are a few features
that could be changed about CNNs in order to improve them. For example, to expand
the dataset or to increase the training time [46]. A problem with the use of CNNs is the
quality of the images [56]. If the information given in the picture is less informative than
expected, the labeling of weeds and crop is more difficult [56]. This means that if there
is not enough information given, the recognition accuracy gets worse. Regardless, an
accuracy of about 95% could be achieved [56]. Furthermore, the weeds on the field do
not always look the same [14], and therefore, the database could contain gaps, even if it
is already a large database. A CNN needs a huge database to be trained to ensure that
plants are recognized correctly [14]. A large database means a lot of programming effort
before the work on the field can start. Another point regarding images is that they must be
taken under different conditions presenting a higher diversity of the plant [14]. Moreover,
the data acquisition is quite time consuming [14]. One solution to address the problem of
the huge database required is a method based on RICAP (Random Image Cropping and
Patching). This method is extended, which allows it to be used for data augmentation
of semantic segmentation tasks. Based on experimental evaluations, it was found that
this method is suitable for achieving an increase in performance compared to the original
form [95].

Most of the solutions for site-specific weed management are isolated solutions based
on a specific technique, a point that the project DACWEED is dealing with. Machines
and solutions that are already available should be combined to enable the use of the
given technology. Sensors and implements of different companies should be comparable,
increasing the flexibility of the farmer [76,96]. For example, if instead of an RGB camera,
an RTK-GNSS is used, less computational power will be needed [47]. With the use of
the RTK-GNSS while seeding, the position of the crop is known. With the position of the
crop, a row guidance is possible. A band sprayer needs only row guidance to operate,
together with the sensors to adapt the implement. Between the rows, the hoe is operating,
and inside the row, the sprayer is applying the herbicide. By not spraying between the
rows, the herbicide reduction can achieve up to around 80% without the need of more
sensors [97,98]. With these connections, a lot of possibilities arise without the need for many
different sensors or different machines. Even though the systems are still not flawless, there
are promising approaches to bring the robotic systems forward [3]. It could be possible
in the future to use such systems not only for the application of herbicides, but also for
fertilization and several specific tasks in the agricultural landscape [33].

6. Conclusions

Patch spraying and spot spraying are potential alternatives for flat-rate applications
of herbicides in agricultural crops. They both guarantee high weed control efficacy with
much less herbicide use. Patch spraying probably fits better in large-scale arable crops
such as cereals, maize and soybean. It can be implemented on large boom sprayers and
realized with conventional driving speeds. Spot spraying is more attractive for high-value
crops, such as vegetable crops and sugar beets. Due to complex weed/crop classification
with CNNs, driving speed is lower. Therefore, spot spraying has been realized in several
commercial robot systems. The attractiveness of those robot systems can be increased if
they can be operated in many different crops. So far, they are still limited to a few specific
applications. Besides significant herbicide savings, patch spraying and spot spraying allow
the protection of rare and endangered weed species, which would increase weed biodiver-
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sity in agricultural fields. Therefore, patch spraying and spot spraying can contribute to
the EU-Green Deal target for reducing herbicide use and increasing biodiversity.

Author Contributions: All authors contributed extensively to this work. Conceptualization, A.A.,
R.G., G.G.P., M.S. (Michael Spaeth) and M.S. (Marcus Saile); writing—original draft preparation,
A.A.; writing—review and editing, A.A., R.G., G.G.P., M.S. (Michael Spaeth) and M.S. (Marcus Saile);
visualization, A.A., R.G. and M.S. (Michael Spaeth); supervision, R.G., G.G.P. and M.S. (Michael
Spaeth); project administration, R.G. and G.G.P.; funding acquisition, EIT-Food. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by EIT FOOD as projects # 20140 and 20140-21. DACWEED:
Detection and ACtuation system for WEED management. EIT FOOD is the innovation community
on Food of the European Institute of Innovation and Technology (EIT), an EU body under Horizon
2020, the EU Framework Programme for Research and Innovation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the research team that helped to make the first trials a
success. Especially to Dionisio Andújar, Centre for Automation and Robotics; Manuel Pérez-Ruiz,
Universidad de Sevilla; Jacob Carballido, R&D Director, Soluciones Agrícolas de Precisión S.L.; Juan
Manuel Lopez Correa Universidad de Sevilla; and Enrique Apolo-Apolo Universidad de Sevilla.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

GMOs Genetic modified organisms
GoG Green on Green
GoB Green on Brown
DL Deep Learning
CNN Convolutional Neural Network
RICAP Random Image Cropping and Patching
ILSVRC Large Scale Visual Recognition Challenge
ReLUs Rectified Linear Units

References
1. Marshall, E. Field-scale estimates of grass weed populations in arable land. Weed Res. 1988, 28, 191–198. [CrossRef]
2. Rasmussen, J.; Nielsen, J.; Streibig, J.C.; Jensen, J.E.; Pedersen, K.S.; Olsen, S.I. Pre-harvest weed mapping of Cirsium arvense in

wheat and barley with off-the-shelf UAVs. Precis. Agric. 2021, 20, 983–999. [CrossRef]
3. Slaughter, D.; Giles, D.; Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 2007, 61, 63–78.

[CrossRef]
4. Gerhards, R.; Christensen, S. Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat

and winter barley. Weed Res. 2003, 43, 385–392. [CrossRef]
5. Gerhards, R.; Andújar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, S.; Fernandez-Quintanilla, C. Advances in

site-specific weed management in agriculture—A review. Weed Res. 2022, 62, 123–133. [CrossRef]
6. Thornton, P.K.; Fawcett, R.H.; Dent, J.B.; Perkins, T.J. Spatial weed distribution and economic thresholds for weed control. Crop

Prot. 1990, 9, 337–342. [CrossRef]
7. Gerhards, R.; Oebel, H. Practical experiences with a system for site-specific weed control in arable crops using real-time image

analysis and GPS-controlled patch spraying. Weed Res. 2006, 46, 185–193. [CrossRef]
8. European Commission. The European Green Deal. Brussels 2019, 11, 24.
9. Pannacci, E.; Tei, F. Effects of mechanical and chemical methods on weed control, weed seed rain and crop yield in maize,

sunflower and soyabean. Crop Prot. 2014, 64, 51–59. [CrossRef]
10. Lowenberg-DeBoer, J.; Huang, I.; Grigoriadis, V.; Blackmore, S. Economics of robots and automation in field crop production.

Precision Agric. 2020, 21, 278–299. [CrossRef]
11. McCarthy, C.; Rees, S.; Baillie, C. (Eds.) Machine Vision-Based Weed Spot Spraying: A Review and Where Next for Sugar-

cane? In Proceedings of the 32nd Annual Conference of the Australian Society of Sugar Cane Technologists (ASSCT 2010),
Bundaberg, Australia, 11–14 May 2010.

http://doi.org/10.1111/j.1365-3180.1988.tb01606.x
http://doi.org/10.1007/s11119-018-09625-7
http://doi.org/10.1016/j.compag.2007.05.008
http://doi.org/10.1046/j.1365-3180.2003.00349.x
http://doi.org/10.1111/wre.12526
http://doi.org/10.1016/0261-2194(90)90003-P
http://doi.org/10.1111/j.1365-3180.2006.00504.x
http://doi.org/10.1016/j.cropro.2014.06.001
http://doi.org/10.1007/s11119-019-09667-5


Agronomy 2022, 12, 1620 18 of 21

12. Gibson, P.J.; Power, C.H. Introductory Remote Sensing: Digital Image Processing and Applications; Routledge: London, UK, 2000;
ISBN 0415189616.

13. Gerhards, R.; Sökefeld, M.; Timmermann, C.; Kühbauch, W.; Williams II, M.M. Site-Specific Weed Control in Maize, Sugar Beet,
Winter Wheat, and Winter Barley. Precision Agric. 2002, 3, 25–35. [CrossRef]

14. Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop
recognition in smart farming. Comput. Electron. Agric. 2019, 174, 105450. [CrossRef]

15. Christensen, S.; Søgaard, H.T.; Kudsk, P.; Nørremark, M.; Lund, I.; Nadimi, E.S.; Jørgensen, R. Site-specific weed control
technologies. Weed Res. 2009, 49, 233–241. [CrossRef]

16. Berge, H.F.M.; van der Meer, H.G.; Steenhuizen, J.W.; Goedhart, P.W.; Knops, P.; Verhagen, J. Olivine weathering in soil, and its
effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): A pot experiment. PLoS ONE 2012, 7, e42098. [CrossRef]

17. Gutjahr, C.; Sökefeld, M.; Gerhards, R. Evaluation of two patch spraying systems in winter wheat and maize. Weed Res. 2012, 52,
510–519. [CrossRef]

18. Lutman, P.; Miller, P. Spatially variable herbicide application technology; opportunities for herbicide minimisation and protection
of beneficial weeds. Res. Rev. 2007, 62, 64.

19. Gerhards, R.; Kollenda, B.; Machleb, J.; Möller, K.; Butz, A.; Reiser, D.; Griegentrog, H.-W. Camera-guided Weed Hoeing in Winter
Cereals with Narrow Row Distance. Gesunde Pflanz. 2020, 72, 403–411. [CrossRef]

20. Jensen, P.; Lund, I. Static and dynamic distribution of spray from single nozzles and the influence on biological efficacy of band
applications of herbicides. Crop Prot. 2006, 25, 1201–1209. [CrossRef]

21. Mink, R.; Dutta, A.; Peteinatos, G.; Sökefeld, M.; Engels, J.; Hahn, M.; Gerhards, R. Multi-Temporal Site-Specific Weed Control
of Cirsium arvense (L.) Scop. and Rumex crispus L. in Maize and Sugar Beet Using Unmanned Aerial Vehicle Based Mapping.
Agriculture 2018, 8, 65. [CrossRef]

22. Wiles, L.J. Beyond patch spraying: Site-specific weed management with several herbicides. Precision Agric. 2009, 10, 277–290.
[CrossRef]

23. Audsley, E. Operational research analysis of patch spraying. Crop Prot. 1993, 12, 111–119. [CrossRef]
24. Rasmussen, J.; Nielsen, J.; Garcia-Ruiz, F.; Christensen, S.; Streibig, J.C. Potential uses of small unmanned aircraft systems (UAS)

in weed research. Weed Res. 2013, 53, 242–248. [CrossRef]
25. Fernández-Quintanilla, C.; Peña, J.M.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the current state of the art of

weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 2018, 58, 259–272. [CrossRef]
26. Longchamps, L.; Panneton, B.; Simard, M.-J.; Leroux, G. An Imagery-Based Weed Cover Threshold Established Using Expert

Knowledge. Weed Sci. 2014, 62, 177–185. [CrossRef]
27. Agricon. H-Sensor. Available online: https://www.agricon.de/?gclid=EAIaIQobChMI556z4o769wIVS7TVCh0zjATfEAAYASAAEgK9

m_D_BwE (accessed on 2 March 2022).
28. Böttger, H.; Langner, H. Neue Technik zur variablen Spritzmitteldosierung. Landtechnik 2003, 58, 142–143. [CrossRef]
29. Amazone. Anhängefeldspritze UX AmaSpot. Available online: https://amazone.de/de-de/produkte-digitale-loesungen/

landtechnik/pflanzenschutztechnik/anhaengefeldspritzen/anhaengefeldspritze-ux-amaspot-76572?gclid=EAIaIQobChMI7
6LQg5yl9wIVl-N3Ch3H_gcqEAAYASAAEgJfSPD_BwE (accessed on 2 March 2022).

30. Agrifac. Camera Spraying. Available online: https://www.agrifac.com/de (accessed on 25 May 2022).
31. El Abdellah, A. A Feasibility Study of Direct Injection Spraying Technology for Small Scale Farming: Modeling and Design of a

Process Control System. Ph.D. Thesis, Universite de Liege, Liege, Belgium, 2015.
32. Pohl, J.; Rautmann, D.; Nordmeyer, H.; van Hörsten, D. Direkteinspeisung im Präzisionspflanzenschutz—Teilflächenspezifische

Applikation von Pflanzenschutzmitteln. Gesunde Pflanz. 2019, 71, 51–55. [CrossRef]
33. Gonzales-de-Soto, M.; Emmi, L.; Perez-Ruiz, M.; Aguera, J.; Gonzales-de-Santos, P. Autonomous systems for precise spraying e

Evaluation of a robotised patch sprayer. Biosyst. Eng. 2016, 146, 165–182. [CrossRef]
34. Kunz, C.; Schröllkamp, C.; Koch, H.-J.; Eßer, C.; Schulze Lammers, P.; Gerhards, R. Potentials of post-emergent mechanical weed

control in sugar beet to reduce herbicide inputs. Landtech. Agric. Eng. 2015, 70, 67–81. [CrossRef]
35. Paraforos, D.; Sharipov, G.; Griepentrog, H. ISO 11783—Compatible industrial sensor and control systems and related research: A

review. Comput. Electron. Agric. 2019, 163, 104863. [CrossRef]
36. Auernhammer, H. ISOBUS in European Precision Agriculture. In Proceedings of the Second International Summit on Precision

Agriculture, Beijing, China, 11–15 September 2014.
37. Oebel, H.; Gerhards, R.; Beckers, G.; Dicke, D.; Sökefeld, M.; Lock, R.; Nabout, A.; Therburg, R.-D. (Eds.) Site-specific weed

control using digital image analysis and georeferenced application maps—First field experiences. In Proceedings of the 22nd
German Conference on Weed Biology and Weed Control, Stuttgart-Hohenheim, Germany, 2–4 March 2004.

38. Andújar, D.; Weis, M.; Gerhards, R. An ultrasonic system for weed detection in cereal crops. Sensors 2012, 12, 17343–17357.
[CrossRef]

39. Christensen, S.; Heisel, T.; Walter, A.M.; Graglia, E. A decision algorithm for patch spraying. Weed Res. 2003, 43, 276–284.
[CrossRef]

40. Griepentrog, H.; Ruckelshausen, A.; Jørgensen, R.; Lund, I. Precision Crop Protection—The Challenge and Use of Heterogeneity:
Autonomous Systems for Plant Protection; Springer: Dordrecht, The Netherlands, 2010; ISBN 9789048192779.

http://doi.org/10.1023/A:1013370019448
http://doi.org/10.1016/j.compag.2020.105450
http://doi.org/10.1111/j.1365-3180.2009.00696.x
http://doi.org/10.1371/journal.pone.0042098
http://doi.org/10.1111/j.1365-3180.2012.00943.x
http://doi.org/10.1007/s10343-020-00523-5
http://doi.org/10.1016/j.cropro.2006.03.014
http://doi.org/10.3390/agriculture8050065
http://doi.org/10.1007/s11119-008-9097-6
http://doi.org/10.1016/0261-2194(93)90137-8
http://doi.org/10.1111/wre.12026
http://doi.org/10.1111/wre.12307
http://doi.org/10.1614/WS-D-13-00050.1
https://www.agricon.de/?gclid=EAIaIQobChMI556z4o769wIVS7TVCh0zjATfEAAYASAAEgK9m_D_BwE
https://www.agricon.de/?gclid=EAIaIQobChMI556z4o769wIVS7TVCh0zjATfEAAYASAAEgK9m_D_BwE
http://doi.org/10.15150/lt.2003.1458
https://amazone.de/de-de/produkte-digitale-loesungen/landtechnik/pflanzenschutztechnik/anhaengefeldspritzen/anhaengefeldspritze-ux-amaspot-76572?gclid=EAIaIQobChMI76LQg5yl9wIVl-N3Ch3H_gcqEAAYASAAEgJfSPD_BwE
https://amazone.de/de-de/produkte-digitale-loesungen/landtechnik/pflanzenschutztechnik/anhaengefeldspritzen/anhaengefeldspritze-ux-amaspot-76572?gclid=EAIaIQobChMI76LQg5yl9wIVl-N3Ch3H_gcqEAAYASAAEgJfSPD_BwE
https://amazone.de/de-de/produkte-digitale-loesungen/landtechnik/pflanzenschutztechnik/anhaengefeldspritzen/anhaengefeldspritze-ux-amaspot-76572?gclid=EAIaIQobChMI76LQg5yl9wIVl-N3Ch3H_gcqEAAYASAAEgJfSPD_BwE
https://www.agrifac.com/de
http://doi.org/10.1007/s10343-019-00452-y
http://doi.org/10.1016/j.biosystemseng.2015.12.018
http://doi.org/10.15150/LT.2015.2661
http://doi.org/10.1016/j.compag.2019.104863
http://doi.org/10.3390/s121217343
http://doi.org/10.1046/j.1365-3180.2003.00344.x


Agronomy 2022, 12, 1620 19 of 21

41. Miller, P. Patch spraying: Future role of electronics in limiting pesticide use. Pest Manag. Sci. 2003, 59, 566–574. [CrossRef]
[PubMed]

42. Zhang, Q.; Liu, Y.; Gong, C.; Chen, Y.; Yu, H. Applications of Deep Learning for Dense Scenes Analysis in Agriculture: A Review.
Sensors 2020, 20, 1520. [CrossRef]

43. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

44. Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. (Eds.) CNN Features off-the-shelf: An Astounding Baseline for Recognition.
In Proceedings of the 2014 Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28
June 2014.

45. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. Deep learning for visual understanding: A review. Neurocomputing 2016,
187, 27–48. [CrossRef]

46. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
53. [CrossRef] [PubMed]

47. Peteinatos, G.; Reichel, P.; Karouta, J.; Andújar, D.; Gerhards, R. Weed Identification in Maize, Sunflower, and Potatoes with the
Aid of Convolutional Neural Networks. Remote Sens. 2020, 12, 4185. [CrossRef]

48. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

49. Alom, M.; Taha, T.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.; van Esesn, B.; Awwal, A.; Asari, V. The History Began from
AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018, arXiv:1803.01164.

50. Krizhevsky, A.; Sutskever, I.; Hinton, G. (Eds.) ImageNet classification with deep convolutional neural networks. In Proceedings
of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.

51. Theckedath, D.; Sedamkar, R.R. Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks. SN Comput. Sci.
2020, 1, 79. [CrossRef]

52. Bah, M.; Hafiane, A.; Canals, R. Deep learning with unsupervised data labeling for weed detection in line crops in uav images.
Remote Sens. 2018, 10, 1690. [CrossRef]

53. Kounalakis, T.; Triantafyllidis, G.; Nalpantidis, L. Deep learning-based visual recognition of rumex for robotic precision farming.
Comput. Electron. Agric. 2019, 165, 104973. [CrossRef]

54. Partel, V.; Kakarla, S.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed
management utilizing artificial intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [CrossRef]

55. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

56. Milioto, A.; Lottes, P.; Stachniss, C. (Eds.) Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots
Leveraging Background Knowledge in CNN’s. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018.

57. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
58. dos Santos Ferreira, A.; Matte Freitas, D.; Da Gonçalves Silva, G.; Pistori, H.; Theophilo Folhes, M. Weed detection in soybean

crops using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324. [CrossRef]
59. Potena, C.; Nardi, D.; Pretto, A. Fast and Accurate Crop and Weed Identification with Summarized Train Sets for Precision

Agriculture. In Intelligent Autonomous Systems 14: Proceedings of the 14th International Conference IAS-14, Shanghai, China, 3–7 July
2016; Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H., Eds.; Springer International Publishing: Cham, Switzerland,
2017; pp. 105–121. ISBN 9783319480367.

60. Elnemr, H. Convolutional Neural Network Architecture for Plant Seedling Classification. IJACSA 2019, 10, 146–150. [CrossRef]
61. Olsen, A.; Konovalov, D.; Philippa, B.; Ridd, P.; Wood, J.; Johns, J.; Banks, W.; Girgenti, B.; Kenny, O.; Whinney, J.; et al. Deepweeds:

A multiclass weed species image dataset for deep learning. Sci. Rep. 2019, 9, 2058. [CrossRef]
62. Villain, E.; Mattia, G.; Nemmi, F.; Peran, P.; Franceries, X.; Le Lann, M. Visual interpretation of CNN decision-making process

using Simulated Brain MRI. In Proceedings of the 2021 IEEE 34th International Symposium on Computer-Based Medical Systems
(CBMS), Aveiro, Portugal, 7–9 June 2021; pp. 515–520, ISBN 978-1-6654-4121-6.

63. Shahin, S.; Sadeghian, R.; Sareh, S. Faster R-CNN-based Decision Making in a Novel Adaptive Dual-Mode Robotic Anchoring
System. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5
June 2021; pp. 11010–11016, ISBN 978-1-7281-9077-8.

64. Rautaray, S.; Pandey, M.; Gourisaria, M.; Sharma, R.; Das, S. Paddy Crop Disease Prediction—A Transfer Learning Technique.
IJRTE 2020, 8, 1490–1495. [CrossRef]

65. Gao, H.; Cheng, B.; Wang, J.; Li, K.; Zhao, K.; Li, D. Object Classification Using CNN-Based Fusion of Vision and LIDAR in
Autonomous Vehicle Environment. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5506812. [CrossRef]

66. Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning Rich Features from RGB-D Images for Object Detection and Segmentation.
arXiv 2014, arXiv:1407.5736v1. Available online: https://arxiv.org/pdf/1407.5736 (accessed on 2 May 2022).

67. Kim, M.-H.; Park, J.; Choi, S. Road Type Identification Ahead of the Tire Using D-CNN and Reflected Ultrasonic Signals. Int. J.
Automot. Technol. 2021, 22, 47–54. [CrossRef]

http://doi.org/10.1002/ps.653
http://www.ncbi.nlm.nih.gov/pubmed/12741525
http://doi.org/10.3390/s20051520
http://doi.org/10.1162/neco.1989.1.4.541
http://doi.org/10.1016/j.neucom.2015.09.116
http://doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://doi.org/10.3390/rs12244185
http://doi.org/10.1109/5.726791
http://doi.org/10.1007/s42979-020-0114-9
http://doi.org/10.3390/rs10111690
http://doi.org/10.1016/j.compag.2019.104973
http://doi.org/10.1016/j.compag.2018.12.048
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.compag.2017.10.027
http://doi.org/10.14569/IJACSA.2019.0100841
http://doi.org/10.1038/s41598-018-38343-3
http://doi.org/10.35940/ijrte.F7782.038620
http://doi.org/10.1109/TII.2018.2822828
https://arxiv.org/pdf/1407.5736
http://doi.org/10.1007/s12239-021-0006-6


Agronomy 2022, 12, 1620 20 of 21

68. Jankowski, S.; Buczynski, R.; Wielgus, A.; Pleskacz, W.; Szoplik, T.; Veretennicoff, I.; Thienpont, H. Digital CNN with Optical
and Electronic Processing. In Proceedings of the ECCTD’99 European Conference on Circuit Theory and Design, Stresa, Italy, 29
August–2 September 1999.

69. Gou, L.; Li, H.; Zheng, H.; Pei, X. Aeroengine Control System Sensor Fault Diagnosis Based on CWT and CNN. Math. Probl. Eng.
2020, 2020, 5357146. [CrossRef]

70. Blue River Technology. See & Spray: The Next Generation of Weed Control. Available online: https://bluerivertechnology.com/
(accessed on 3 March 2022).

71. Bilberry. AiCPlus Camera System. Available online: https://bilberry.io/ (accessed on 16 March 2022).
72. Redaktion Profi. Agrifac AiCPlus: Spot Spraying Mit Kamera. Profi. Available online: https://www.profi.de/spot-spraying-mit-

kamera-11962018.html (accessed on 2 March 2022).
73. Zanin, A.; Neves, D.; Teodora, L.; Silva Junior, C.; Silva, S.; Teodora, P.; Baio, F. Reduction of pesticide application via real-time

precision spraying. Sci. Rep. 2022, 12, 5638. [CrossRef]
74. Shanmugasundar, G.; Gowtham, M.; Aswin, E.; Surya, S.; Arujun, D. Design and fabrication of multi utility agricultural vehicle

for village farmers. In Recent Trends in Science and Engineering; AIP Publishing: Melville, NY, USA, 2022; p. 20212.
75. Meshram, A.T.; Vanalkar, A.V.; Kalambe, K.B.; Badar, A.M. Pesticide spraying robot for precision agriculture: A categorical

literature review and future trends. J. Field Robot. 2022, 39, 153–171. [CrossRef]
76. Peteinatos, G.; Andújar, D.; Engel, T.; Supervía, D.; Gerhards, R. (Eds.) DACWEED. A Project to Integrate Sensor Identification into

Tractor Actuation for Weed Management; Sustainable Integrated Weed Management and Herbicide Tolerant Varieties; University of
Southern Denmark Odense: Odense, Denmark, 2019.

77. Kunz, C.; Weber, J.; Gerhards, R. Benefits of Precision Farming Technologies for Mechanical Weed Control in Soybean and Sugar
Beet—Comparison of Precision Hoeing with Conventional Mechanical Weed Control. Agronomy 2015, 5, 130–142. [CrossRef]

78. Gupta, S.D. Plant Image Analysis: Fundamentals and Applications; Taylor and Francis: Hoboken, NJ, USA, 2014; ISBN 9781466583016.
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