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Abstract: Crop diseases and agricultural pests and pathogens are causing huge economic losses.
The actual means for dealing with them involve the use of damaging chemical pesticides that harm
the environment, threaten biodiversity, and undermine human health. This research was aimed
at developing an environmentally friendly means to cope with emerging oomycete disease from
tomato fields in the province of East-Azerbaijan. The oomycete disease causal agent was isolated
and identified as Ovatisporangium sp. using a combination of morphological features and molecular
methods. Six wood vinegars (pyroligneous acid) belonging to pine, pomegranate, pistachio, almond,
walnut, and cypress were produced during this study and examined against Ovatisporangium sp.
Their inhibition of volatile metabolites (VOCs) using different dilutions (1, 1/2, 1/4, 1/8, and 1/10)
was assessed against the mycelial growth of Ovatisporangium sp. In vitro analysis demonstrated
that pistachio, cypress, and almond dilution 1 (D 1) wood vinegar VOCs had the ability to stop the
mycelial growth of Ovatisporangium sp. All other treatments including pine, walnut, and pomegranate
with relevant dilutions significantly reduced the mycelial growth of Ovatisporangium sp. compared
with the control (p ≤ 0.05). Wood vinegar is therefore a potent means to cope with pathogenic
infections and allows plant protection against oomycete diseases.

Keywords: Ovatisporangium (Phytopythium); in vitro; pyroligneous acid; VOCs; wood vinegar
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1. Introduction

The application of synthetic pesticides including insecticides [1], fungicides [2], herbi-
cides [3], nematicides [4], and acaricides [5] is a common strategy to manage weeds, pests,
and the causal agents of plant disease. The side effects of these chemicals have negatively
impacted the environment and ecological niches [6–10]. Synthetic pesticides have impacted
human health and the environment [11]. They are among the top list of environmental
toxicants having impacts on the soil [12], water [13], crops [14,15], and animals, including
humans [16]. Nowadays, sustainable agriculture guidelines prohibit the use of numerous
synthetic agrochemicals in crops and fruits production based on their damaging effects on
the environment [17–20].

Thermo-pyrolysis is an environmentally friendly process used to produce organic
materials such as tar, wood vinegar, and biochar (charcoal added to compost) [21]. Plant-
derived bioproduct use in agriculture was historically documented in some regions, e.g.,
Greece and China [22,23]. Wood vinegar (pyroligneous acid (PA)) is an unpurified con-
centrated, extraordinary, oxygenated biomaterial extracted by the thermo-pyrolysis pro-
cesses [24,25]. Wood vinegar is composed of more than 200 compounds, 20% of which is
organic materials (e.g., phenol, alcohol, acids, and esters) and the remaining 80% is wa-
ter [26–28]. Wood vinegar has two major benefits: (i) management of plant diseases caused
by phytopathogens including fungi and bacteria and (ii) promotion of plant growth [29–31].
PA may significantly enhance the biodiversity of microbiota in soil, and improve soil bio-
logical, physical, and chemical conditions (improving seed germination, plant growth, fruit
size, and vegetable quality). Therefore, it can be efficiently used as an organic fertilizer with
pesticide properties [7,26,32]. Several woody plant biomasses, including Japanese cedar
‘Sugi’ [33], walnut [34], cherry [35], halophyte tree mangrove [36], small-flower chaste
tree [37], beech [38], oak [39], birch [40], rosemary [41], eucalyptus [42], and bamboo, ref. [6]
have been used for production of wood vinegar, with the final aim of increasing seedling
germination and the development of crops such as lettuce, cucumber, chrysanthemum, and
watercress [43,44].

The pesticidal effects of wood vinegar produced with mixed material was confirmed
to have a mortality rate of more than 90% for PA-treated aphid (Myzus persicae) and mite
(Tetranychus urticae) [44]. In Thailand, PA was used as a repellent against two important
pests, snails and slugs [45], and caused approximately 95% mortality rate in aphid popula-
tions on eggplant [46]. Wood vinegar termicidal effectiveness was reported on Japanese
termite Reticulitermes speratus [47]. Based on the presence of biomaterials, mainly phenols
and organic acids, among other compounds, wood vinegar has a herbicidal effect on weeds
propagules, especially in freshwater plants, e.g., Potamogeton, Hydrilla, and Spartina [48].

PA antimicrobial activity has not yet been extensively explored. The antibacterial ef-
fects of PA were assayed on some phytopathogenic bacteria, e.g., Pectobacterium carotovorum
and Xanthomonas campestris pv. citri [49], Ralstonia solanacearum [33], Agrobacterium tumefa-
ciens [45], and Corynebacterium agropyri [50]; and plant pathogenic fungi and fungal-like
organisms, e.g., Colletotrichum orbiculare, Valsa mali, Helminthosporium sativum, Cochliobo-
lus sativus [27] Alternaria mali [51], Phytophthora infestans, and Phytophthora capsici [52].
Chen et al. [53] reported a strong effect of wood vinegar against white rot (Coriolus ver-
sicolor) and brown rot fungi (Gleophylum trabeum). Saberi et al. [54] demonstrated that
nonvolatile and volatile PA compounds had inhibitory effects on Sclerotinia sclerotiorum
and Rhizoctonia solani in greenhouse-cultivated cucumber. Saberi et al. [55] also evalu-
ated wood vinegar’s impact on damping-off of cucumber, and showed that significant
decreases in Pythium aphanidermatum and Phytophthora drechsleri mycelial growth occurred.
Chuaboon et al. [56] explored wood vinegar’s effect on rice diseases, and found that fungal
causal agents such as Curvularia lunata, Fusarium semitecum, Cercospora oryzae, Bipolaris
oryzae, and Alternaria padwickii were negatively affected. Additionally, Xu et al. [57] found
that Malus sp. and Pyrus sp. wood vinegar components inhibited the mycelial growth of
hiratake mushroom Pleurotus ostreatus. Given the lack of data concerning the effect of wood
vinegar on oomycetes and its mechanism of action, we aimed in this study to explore the
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in vitro inhibitory effect of volatile components of six trees’ wood vinegar extracts against
a Phytopythium isolate recovered from tomato fields.

2. Materials and Methods
2.1. Isolation

Phytopythium sp. isolates were recovered from tomato fields in the province of
East-Azerbaijan, Iran (Figure 1). Diseased crown and root pieces of Solanum lycoper-
sicum were surface-sterilized in H2O2 for 1 min, followed by incubation in hypochlo-
rite sodium 4% for 5 min and 70% alcohol for 30 s [58]. Samples were then washed in
sterile distilled water and dried on a Whatman towel for 5 min. Samples were placed
on a semiselective oomycete medium (corn meal agar medium (CMA) amended with
fluazinam + nystatin + ampicillin + rifampicin antibiotics) [59] and incubated at room tem-
perature for 2–3 days. Cultures were purified using a hyphal tip technique in water agar
(WA) media, and then preserved on CMA slant vials at 10 ◦C in the dark until use.
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2.2. DNA Extraction and Amplification

DNA was extracted from oomycete mycelia cultivated on corn meal agar with the
manual protocol described by Möller et al. [60]. The ITS-rDNA region was amplified with
thermal cycling processes using universal ITS4 (TCCTCCGCTTATTGATATGC) and ITS5
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(GGAAGTAAAGTCGTAACAAGG) primers [61]. All reactions were adjusted to 50 µL
total volume, including 5 µL 10× Ex Taq buffer (20 mM Tris/HCl, pH 8.0, 100 mM KCl),
4 µL 2.5 mM dNTP, 0.5 µM of forward and reverse primers, 1.25 U Taq DNA polymerase
(Takara Bio®), and 10 ng of DNA. Amplifications were carried out using a PerkinElmer
9700 thermal cycler (PerkinElmer®) machine using the following cycling profile: 95 ◦C for;
5 min followed by 30 cycles; denaturation step: 95 ◦C for 30 s; annealing step: 55 ◦C for
30 s; extension step: 72 ◦C for 1 min; and a final extension step: 72 ◦C for 7 min.

Purified amplicons were used for sequence analysis, and recovered sequences were
deposited in GenBank [59].

2.3. Sequencing and Phylogeny

Amplicons were sequenced in both the 3′ and 5′ sides using amplification PCR primers
and a BigDye Terminator v. 3.1 cycle sequencing kit (Applied Biosystems®, Waltham,
MA, USA) following the manufacturer recommendations. They were then analyzed on a
3130×l Genetic Analyzer (Applied Biosystems®). Raw sequence files were edited using
the SeqManII program (DNAStar®, Madison, WI, USA), and a consensus sequence was
generated [62]. The consensus sequence for each genomic region was blasted against the
NCBI’s GenBank sequence database for detection of closest neighbor taxa. The sequences
retrieved from GenBank together with the sequence provided in this paper were aligned
using the multiple-sequence alignment Mega 6 program [63]. Trees were generated us-
ing the maximum likelihood (ML) method [64], with evolutionary distances computed
using the Kimura 2-parameter model [65]. Bootstrap resampling of the data sets with
1000 replications was applied for branches support evaluation in the resulting trees [66].

2.4. Preparation of PA

Six trees (pine, pomegranate, pistachio, almond, walnut, and cypress) were selected
in this study. Pyroligneous acids were extracted following the procedures described by
Bridgwater et al. [67,68] and Mohan et al. [26].

2.5. In Vitro Evaluation of Wood Vinegar VOCs for Inhibition of Phytopythium

We poured 15 mL of potato dextrose agar (PDA) medium in one side of two-compartment
petri dish plates and inoculated with 3 mm Phytopythium agar discs. On the other side of
the plate, sterile distilled water was used as a control, and different PA dilutions (1, 1/2,
1/4, 1/8, 1/10) were poured. The plates were then sealed with Parafilm M® and incubated
at room temperature [49]. After 2–3 days, oomycete growth (mm) was recorded, and the
percentage of inhibition was estimated with the following formula [51]:

X = (A − B)/A × 100 (1)

where X is percentage of inhibition, A is the growth of fungi in the control petri plate, and
B is the growth of fungi in each treated petri plate.

2.6. Statistical Analysis

The data statistical analysis was carried out using variance analysis (ANOVA) and,
when significant effects were detected, the groups were compared with a post hoc Tukey’s
HSD test. The level of significance used for all statistical tests was 5% (p < 0.05). IBM SPSS
Statistics v. 24 was used for the analysis.

3. Results
3.1. Molecular Identification of Phytopythium Isolate

Different samples of collected pathogenic isolates were analyzed using the growth
patterns on petri plates and morphological characteristics and subjected to DNA identifica-
tion. The ITS-rDNA sequences of the specimens recovered from tomato (ON409943) were



Agronomy 2022, 12, 1609 5 of 13

identical and formed a clade with 82% bootstrap support with related Phytopythium species
in the tree, including Pp. delawarense, Pp. citrinum, and Pp. litorale (Figure 2).
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strap values of more than 50% from 1000 replications are shown on respective branches. Pythium
kandovanense (CCTU 1813) was used as outgroup.

3.2. Efficacy of VOCs Dilutions against Phytopythium Growth

The PA of almond (dilutions: 1, 1/2 and 1/4), cypress (dilution: 1), pine, pomegranate,
and walnut (dilution: 1), and pistachio (dilutions: 1 and 1/2) had the best inhibition
rates of Phytopythium mycelial growth. Pistachio (D1 and D1/2) and almond (D1/2 and
D1/4) treatments produced similar results that were significantly different from the control.
Almond, cypress, and pistachio dilution 1 completely inhibited the growth of Phytopythium
(Figures 3 and 4).

Pistachio, almond, and cypress wood vinegars dilution 1 had the best inhibition rates,
and were significantly similar to each other and different from other treatments. In the
next stages, pomegranate, walnut, and pine had the best inhibitory effects. Significantly,
the walnut treatment had a low inhibition rate of the mycelial growth of Phytopythium sp.
in comparison with other wood vinegars (Figure 5A). In dilution 1/2, the wood vinegars
of pistachio, almond, cypress, pomegranate, walnut, and pine had effective inhibitory
effects against mycelial growth of Phytopythium. Pomegranate and cypress treatments
had the same impact (Figure 5A). In dilution 1/4, treatments using the PA of pistachio,
almond, pomegranate, walnut, cypress, and pine had the strongest to lowest impact on
growth of Phytopythium mycelia, respectively (Figure 5A). In dilution 1/8, the treatments of
almond, cypress, pistachio and pomegranate, walnut, and pine proved effective against
Phytopythium sp., (Figure 5A). In dilution 1/10, we noticed a decrease in the inhibition rate
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of Phytopythium sp. using almond, pistachio, pomegranate, cypress, walnut, and pine wood
vinegars (Figure 5A).
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Generally, the comparison of the inhibition rates of wood vinegars toward Phytopy-
thium sp. allowed us to conclude that all VOCs significantly decreased the mycelial growth
of Phytopythium sp. We also concluded that there was no difference in Phytopythium sp.
percentage of inhibition among them (Figure 5B).

4. Discussion

An emerging disease in tomato fields in the province of East-Azerbaijan in Iran
was used as the starting point of this research. We were able to isolate the causal agent
pathogen and identify its phylogenetic position using a combination of morphological and
molecular features. Using the recommendations of Belbahri et al. [18], we avoided the use
of environmental and health-damaging synthetic pesticides and managed to find a smart
method that combines the use of agricultural biomass waste to treat the disease causal
agents giving, therefore, a high added value to these agricultural wastes.

This study showed that the VOCs of wood vinegar recovered from different woody
tree materials significantly inhibited the mycelial growth of Phytopythium sp. In line with
our findings, the antifungal and antioomycete effects of different wood vinegars and their
effective usage for management of some plant diseases have been documented [33,49,67,68].
Several scientists unambiguously demonstrated that the antifungal effect of wood vinegar
is related to its phenolic compounds [67,69,70]. Guaiacol, 4-ethyl, 2, methoxy phenol, 6-2,
dimethoxy phenol, and ethyl acetate are the most important phenolic compounds that have
antifungal impacts [71]. Additionally, the existence of phenolic compounds and acetic acid
in PA improves its antifungal effect [72,73]. Based on a broad diversity of wood vinegar
compounds, it is impossible to consider a single mechanism responsible for its antifungal
effects. This finding suggests that several continuous mechanisms are used to provide
the observed antimicrobial impact [74]. For instance, in comparison to wood vinegar, a
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combination of compost and wood vinegar had the ability to decrease up to 67% of the
symptoms of muskmelon root rot caused by Monosporascus cannonbalus [74]. Recent reports
targeting the antibacterial, antifungal, and antioomycete wood vinegar effects highlighted
the huge potential of wood vinegar for controlling plant pests and diseases [75]. This
resulted in a significantly reduced disease incidence of many pests in greenhouse and field
conditions [76].

Wood vinegar is a low-price material, and Grewal et al. [21] suggested that its price
represents only one-third of the cost of synthetic fungicides. It also has the advantage of
being a recycled material that can be efficiently used in organic agriculture, in contrast with
synthetic pesticides that are prohibited. Moreover, wood vinegar was efficiently used in
tomato seed priming for the mitigation of abiotic stresses, and allowed efficient germination
and seedling growth [77].

Additionally, wood vinegar was shown to improve the growth, yield, and quality of
diverse crops [78], as well as the abiotic stress tolerance of these crops [79]. Wood vinegar
has a positive impact on plant growth mainly through the presence of methanol and furfural
compounds [80]. Esters compounds can increase chlorophyll and stimulate photosynthesis,
and may help sugar and amino acid production, allowing increased resistance of plants
to pests and pathogens [55]. Wood vinegar consists of 15 important elements including
Na, Al, Mn, K, Ca, Fe, Cd, Cr, Cu, As, P, Pb, Zn, and Mo [36] that have key roles in plant
life cycles and that increase photosynthesis. Among them, Fe is one of the most important
elements that is a part of all enzymes and the oxidation-reduction reactions necessary
for chlorophyll synthesis [81]. The coexistence of acetic acid with cations may cause a
complex solution where the ionic bond is replaced with a covalent bond, preventing Fe
sedimentation and the water drainage of other elements [81–83]. Therefore, in the next
step, the identification of the effective volatile compounds of wood vinegars used in the
current study is strongly suggested.

Wood vinegar was also shown to improve soil physico-chemical parameters [82] as
well as microbiome content, including plant-growth-promoting rhizobacteria [83]. Actually,
its crop growth promoting properties are partly linked to its ability to improve rhizosphere
chemical properties and regulate the bacterial community [83].

Future experiments will include the use of wood vinegars in in vivo experiments using
a tomato–Ovatisporangium sp. patho-system. We also intend to check whether wood vinegar
can be applied as a general strategy to cope with oomycete diseases in other patho-systems.

5. Conclusions

In this study, we tackled a local problem concerning the emergence of new emerging
oomycete disease in tomato fields in the province of East-Azerbaijan in Iran. We identified
the causal agent of tomato root rot disease and developed environmentally friendly means
of coping with this disease. Our results clearly documented the usage of wood vinegar to
manage the disease. Wood vinegar, in addition to being a means of dealing with agricultural
biomass waste, allows control of Ovatisporangium sp. Our strategy provides, therefore, an
environmentally sound and sustainable practice toward the cleaner production of tomatoes.
We suggest the use of wood vinegar as a general strategy to cope with oomycete diseases.
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