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Abstract: Improving nitrogen (N) use efficiency is important for achieving sustainable rice production
in China. Physiological N use efficiency (PNUE) is a measure of a plant’s ability to convert absorbed
N into biomass, and can be calculated as the product of the fraction of intercepted radiation to
N absorption (FIRNA) and radiation use efficiency (RUE). This study evaluated the relationships
between PNUE with FIRNA and RUE in three widely grown, high-yielding rice varieties using data
obtained from two N fertilization experiments conducted in 2020 and 2021. The results show that
PNUE was significantly positively related to FIRNA, but not significantly related to RUE in all three
rice varieties. PNUE increased by 7.4–10.3 g g−1 for each 10 MJ g−1 increase in FIRNA. These results
suggest that FIRNA can serve as an indicator for assessing PNUE in rice, which has implications for
the phenotypic identification of rice varieties with high PNUE.
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Improving rice yields by overcoming yield-limiting factors, such as soil nutrient defi-
ciencies, is critical to ensuring food security in China [1], where approximately 65% of the
population consumes rice as a staple food [2]. Nitrogen (N) is the most limited nutrient
for rice growth and development in almost all environments [3]. With the advent of the
fertilizer industry, synthetic N fertilizer application became a common means of supple-
menting N-deficient indigenous soils for rice production and has immensely contributed to
increased rice yields in China [4].

However, over the past several decades, increases in N fertilizer inputs in China have
resulted in diminishing returns [5] and led to large amounts of N lost to the environment by
leaching, volatilization, and denitrification [6]. The lost N has had various environmentally
damaging impacts, including surface water eutrophication [7], soil acidification [8], and
enhanced N deposition [9]. These environmental impacts have posed substantial challenges
to the sustainable development of rice production in China, highlighting an urgent need to
improve the N use efficiency of rice.

Physiological N use efficiency (PNUE) is a measure of the ability of a plant to produce
biomass using absorbed N [10], and can be calculated using Equation (1). Taking into
consideration that biomass production is a product of canopy intercepted radiation and
radiation use efficiency (RUE, i.e., biomass produced per unit of radiation intercepted) [11],
the calculation of PNUE can be expressed by Equation (2) and rearranged as in Equation (3).

PNUE =
Biomass production

N absorption
(1)

PNUE =
Intercepted radiation × RUE

N absorption
(2)
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PNUE =
Intercepted radiation

N absorption
× RUE (3)

In Equation (3), the fraction of intercepted radiation to N absorption (FIRNA) can be
regarded as the effect of absorbed N on radiation intercepted by the plant canopy. This
effect is biologically significant as changes in N absorbed by the plant can alter architectural
characteristics of the canopy, such as leaf area and angle [12,13], which are critical factors
determining the capacity of the canopy to intercept incoming radiation (i.e., the percent
of radiation intercepted) [14,15]. RUE itself is related to N absorption because N is a
major constituent of numerous chloroplast components and plays an important role in
photosynthesis [16].

From Equation (3), it is clear that PNUE can be improved by increasing FIRNA, RUE,
or both. However, our recent study shows that there is a negative relationship between RUE
and FIRNA [17]. Therefore, an increase in PNUE only can be achieved by increasing FIRNA
or RUE, but not both. In the present study, we evaluated the relationships of PNUE with
FIRNA and RUE in rice plants by using data obtained from two N fertilization experiments
(I and II) conducted in 2020 and 2021. Our objective was to determine whether FIRNA or
RUE can serve as an indicator for assessing PNUE in rice.

Three hybrid rice varieties (i.e., Deyou 4727, Guiliangyou 2, and Y-liangyou 900) were
used in this study. These three varieties had been approved as “super” rice varieties by the
Ministry of Agriculture and Rural Affairs of China due to their high-yield performance, and
have been widely grown by Chinese rice farmers. In the experiment I, Deyou 4727 and Y-
liangyou 900 were grown under four N application rates (0, 120, 180, and 240 kg N ha−1) in
each year. The experiment was arranged in a split-plot design with three replicates, where
the main plot was assigned to N rate and the subplot (33 m2) to variety. In experiment
II, Guiliangyou 2 was grown under a factorial combination of two N application rates
(150 and 225 kg N ha−1) and three N split-application ratios at the basal, early-tillering,
and panicle-initiation stages (6:3:1, 5:3:2, and 4:3:3) in each year. The N treatments in
factorial combinations were arranged in a completely randomized block design with three
replicates and a plot size of 35 m2. In both experiment I and II, transplanting was conducted
at a hill spacing of 20 cm × 20 cm with two seedlings per hill.

Canopy-intercepted radiation, biomass production, and plant N absorption were
determined to calculate FIRNA, RUE, and PNUE. Briefly, daily incident solar radiation
was recorded during the rice-growing season with an on-site weather station (Vantage
Pro2, Davis Instruments Corp., Hayward, CA, USA). At the panicle-initiation, heading, and
maturity stages, the percentage of solar radiation intercepted by the canopy was measured
using a SunScan canopy analysis system (Delta-T Devices Ltd., Burwell, Cambridge, UK)
to calculate the canopy-intercepted radiation. Ten plants were sampled from each plot at
the maturity stage. Plant samples were hand threshed, and filled and unfilled grains were
separated by submerging them in tap water. After oven-drying at 70 ◦C to a constant weight,
the dry weights of straw and filled and unfilled spikelets were measured to determine the
biomass production. N concentration in each organ was determined with a segmented
flow analyzer (Skalar SAN Plus, Skalar Inc., Breda, The Netherlands) to calculate the plant
N absorption.

The experimental details and the data of FIRNA, RUE, and PNUE are provided in the
Supplementary Materials (Methods S1; Table S1). Linear regression analysis was performed
for PNUE against FIRNA and RUE for each variety (Statistics 8.0, Analytical Software,
Tallahassee, FL, USA).

The results show that PNUE was significantly positively related to FIRNA (Figure 1a),
but not significantly related to RUE in all three varieties (Figure 1b); FIRNA explained 74%,
85%, and 79% of the variation in PNUE in Deyou 4727, Guiliangyou 2, and Y-liangyou 900,
respectively. From the regression equations presented in Figure 1a, it was shown that PNUE
increased by 7.7, 7.4, and 10.3 g g−1 for each 10 MJ g−1 increase in FIRNA in Deyou 4727,
Guiliangyou 2, and Y-liangyou 900, respectively.
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Figure 1. Relationships between physiological N use efficiency (PNUE) and (a) the fraction of canopy-
intercepted radiation to plant N absorption (FIRNA) and (b) radiation use efficiency (RUE) in three
widely grown, high-yielding rice varieties (i.e., Deyou 4727, Guiliangyou 2, and Y-liangyou 900).

The results of this study suggest that FIRNA can be used as an indicator for assessing
PNUE in rice. Previous studies related to the improvement of PNUE in rice have been
mainly focused on canopy physiological and ecological traits, such as leaf photosynthetic N
use efficiency (i.e., the ratio of photosynthetic rate to nitrogen content per unit leaf area) [18]
as well as canopy N and light distribution [19]. However, the indicator identified in this
study that relates to PNUE, i.e., FIRNA, is a composite of canopy radiation interception
and plant N absorption. This indicates that not only canopy characteristics but also root
traits related to plant N absorption and the effect of absorbed N by the plant on canopy
characteristics should be considered in terms of improving PNUE in rice. As for the canopy
characteristics, special attention should be paid to the canopy architectural traits (e.g., leaf
area and angle) that determine the canopy radiation interception.

FIRNA as an indicator for assessing PNUE has implications for the phenotypic identi-
fication of rice varieties with high PNUE. FIRNA can be increased by increasing canopy-
intercepted radiation with maintained or reduced plant N absorption. The increase in
canopy-intercepted radiation can be achieved by increasing canopy occupation volume
through the altering of leaf area and/or leaf angle [20]. Under the condition of increased
canopy occupation volume, maintained or reduced plant N absorption can lead to a de-
crease in leaf color as a result of the N-dilution effect [21,22]. These results suggest that
canopy occupation volume and leaf color are important phenotypic traits related to FIRNA
and PNUE. The canopy occupation volume can be calculated in a high-throughput manner
based on the canopy point clouds [20], while the leaf color can be identified by existing
phenotypic diagnostic tools, such as camera-based high-throughput imaging systems [21].
However, to achieve the phenotypic identification of high PNUE in rice, further investi-
gations are required to establish the multiple relationships between PNUE with canopy
occupation volume and leaf color.

In conclusion, this study identifies FIRNA as an indicator for assessing PNUE in
rice. This finding has implications for the phenotypic identification of rice varieties with
high PNUE.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12071603/s1, Method S1: Experimental details; Table S1:
The fraction of intercepted radiation to N absorption (FIRNA), radiation use efficiency (RUE), and
physiological N use efficiency (PNUE) in rice in two N fertilization experiments.
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