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Abstract: Golden Camellia species are highly specific to certain soil environments. Most species are
only native to calcareous soils in karst regions, except for a few that grow only in acidic soils. Our
aim is to elucidate the adaptation mechanisms of the species of calcareous-soil golden Camellia (CSC)
and acidic-soil golden Camellia (ASC) to habitat soils through plant–soil nutrient characteristics and
their relationships. We investigated 30 indices for soils and plants. Compared with ASC, CSC had
more fertile soil, while their plant tissues exhibited stronger Ca, P, and Mn and weaker K storage,
which may be important mechanisms for adapting to habitat soils. However, ASC showed a higher
biological absorption coefficient (BAC) for nutrients, which may contribute to the adaptation of ASC
to relatively barren acidic soils. Both CSC and ASC showed much higher BAC and accumulation of Ca
than other nutrients. We also found that the concentrations of nutrients in the different tissues varied
considerably between species. Correlation analysis revealed 135 significant relationships between
the 30 indices, with the soil pH and soil Ca levels being the most important factors influencing the
nutrient uptake network. This information helps in understanding the adaptation mechanisms of
karst plants to habitat soils.

Keywords: golden Camellia species; karst plant; calcareous soils; acid soils; plant nutrition; adaptability

1. Introduction

Camellia sect. Chrysantha Chang, also known as the “the queen of camellias” or
“dreaming camellia”, is an evergreen shrub or small tree of the Theaceae family that
is famous for its golden camellia flowers [1]. These plants primarily grow in Guangxi
Province, South China, and North Vietnam [2]. Currently, about 20 species of golden
Camellia are distributed within China, most of which have a narrow distribution, and all of
which are on the List of National Key Protected Wild Plants in China (http://www.gov.cn/
zhengce/zhengceku/2021-09/09/content_5636409.htm, accessed date: 8 November 2021).
In natural environments, golden Camellia species grow in highly specific soil environments,
and most species are only native to calcareous soils, except for a few species that grow only
in acidic soils [3]. Depending on their preferred type of soil habitat, they can be divided
into calcareous-soil golden Camellia (CSC) and acid-soil golden Camellia (ASC). A recent
cultivation trial showed that CSC also grows normally in low-Ca environments, while
ASC is less well adapted to high-Ca environments [4]. The adaptation of these plants to
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environments with different Ca ion concentrations may be related to significant variations
in photosynthetic and physiological indices, such as their contents of chlorophyll, proline,
soluble sugars, or flavonoids [4,5]. However, our knowledge of the mechanisms by which
golden Camellia species adapt to different soil habitats, especially in the field, is still poor.

Nutrients play key roles in the growth and development of plants, and their profiles
can effectively reflect the adaptation mechanisms of plants to specific soil environments [6,7].
C, N, and P are basic elements required by all organisms and are the core elements used
to evaluate the nutritional status of plants [8], while certain nutrients, such as K, Ca, Fe,
Mg, and Mn, are sources of energy and regulators of many life activities, and thus are
considered essential elements in most plants [9]. Nutrients in plants may interact with each
other in unexpected ways to maintain the nutritional balance; for example, a deficiency
in a single element can lead to the enhanced or reduced uptake of other nutrients by the
plant [10]. These nutrients are also frequently used as important indicators for evaluating
soil fertility [11,12].

A considerable number of previous studies have investigated plant–soil nutrient
characteristics at different scales, i.e., at regional, ecosystem, and species levels [13–15],
providing valuable information on the nutrient interactions between plants and soils. Sev-
eral plants typical of karstic and non-karstic regions have been found to have significantly
different leaf Ca contents and Ca storage forms [14]. Cui et al. [15] observed that leaves from
a karst forest in Xishuangbanna, Yunnan, and Nonggang, Guangxi, were generally rich in
Ca and Mg due to the influence of carbonate rocks. Qi et al. [16] investigated plants of the
same genus from different geological backgrounds and revealed that the leaf Ca content of
Primula growing in karst soils was significantly higher than that of Primula in Danxia soils,
suggesting that soil type has an important influence on the enrichment of plant nutrients. In
golden Camellia species, previous studies have documented the nutrient uptake characteris-
tics and habitat soil physicochemical properties of only a few species [17,18]. Nevertheless,
the nutrient uptake characteristics of most golden Camellia species have not been reported.
Moreover, the lack of knowledge about the nutrient interrelationships between plants and
soils limits the successful conservation of this group of plants.

As such, in this study, the nutrient profiles of habitat soils, roots, stems, and leaves
were analyzed for 14 golden Camellia species from calcareous or acidic soils. We aim
to explore: (1) What are the differences in nutrients between calcareous and acidic soil
habitats? Are these differences in the soils reflected in the concentrations of elements in the
plant tissues? (2) What are the differences in nutrient uptake by different golden Camellia
species? We are particularly interested in the variation in the uptake and storage of Ca by
plants. (3) Are there some significant interrelationships in the nutrient exchange between
plants and soil? This information will help to reveal the adaptability of golden Camellia
species to different soil habitats and provide a scientific basis for their conservation.

2. Materials and Methods
2.1. Plant Materials

The study areas were in Guangxi Zhuang Autonomous Region, China. The 10 species
of CSC were C. impressinervis (CIM), C. perpetua (CPE), C. longzhouensis (CLO), C. pingguoen-
sis var. terminalis (CPT), C. flavida (CFL), C. huana (CHU), C. pubipetala (CPU), C. limonia
(CLI), C. grandis (CGR), and C. pingguoensis (CIM), and the four species of ASC were C.
tunghinensis (CTU), C. nitidissima (CNI), C. euphlebia (CEU), and C. parvipetala (CPA). Dr.
Shengfeng Chai undertook the formal identification of the plant material used in this study.
Voucher specimens of this material were deposited in the herbarium of Guangxi Institute of
Botany, (voucher number: SFC2017001-SFC2017014). The soil and plant samples were taken
from pristine habitats, and the collection sites are shown in Figure 1. The vegetation cover
at the collection sites on the northern edge of the tropics was mainly limestone evergreen
forest and limestone montane seasonal rainforest, and those in the southern subtropics
were evergreen broad-leaved forests with mountain gullies and streams 120–350 m above
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sea level, as well as limestone karst slope foothills, crested trough valleys, and depressional
valley zones.
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Figure 1. Collection sites of 14 species of golden Camellia. The map was downloaded from Geospatial
Data Cloud (https://www.gscloud.cn, accessed date: 12 October 2021).

2.2. Sample Collection and Measurements

One representative population of each species of golden Camellia at the collection
sites was selected, and three adult plants at a similar growth stage in that population
were separately sampled as three replicates. First, about 1 kg of soil was collected from
the surface layer (0–20 cm) near the roots of the plant. The soils were then taken to the
laboratory, where they were naturally dried and impurities were removed, and they were
then ground, sieved, and stored in hermetic bags. In addition, 0.5–1.0 cm of the lateral roots,
stems of 1–3 annuals, and leaves of 1 annual were collected from the plants accordingly.
These plant samples were taken back to the laboratory in separate clean envelopes, washed,
dried, crushed, and then sealed in bags for storage.

A total of 42 soil samples and 126 plant samples were taken. For soil samples, the pH
was determined by the glass electrode method; the OM content was determined by the
high-temperature external heat potassium dichromate oxidation–volumetric method; the
total N and P were determined by a graphite digestion–automatic chemical interruption
analyzer; the total K was determined by a graphite digestion–flame photometer; and
the total Ca, Mg, Fe, and Mn were determined by microwave digestion–flame atomic
absorption spectrophotometry. For the plant samples, the contents of nutrients (N, P, K, Ca,
Mg, Fe, and Mn) were determined separately for the root, stem, and leaf samples using
the same method as described above. A total of 30 different indices were measured in the
soil and plant samples. To effectively quantify the absorption capacity of the plants for
each nutrient in the soil, the biological absorption coefficient (BAC) for each nutrient was
calculated with reference to the equation of de la Fuente et al. [19]:

BACE = [(CPR + CPS + CPL)/3]/CS (1)

where CPR, CPS, and CPL are the element’s (E) mean concentrations in the root, stem, and
leaf parts of the plants expressed in g kg−1 d.w., and CS is the element’s mean concentration
in soil expressed in g kg−1. Typically, BAC values in the range of 0.01–0.1, 0.1–1, and 1–10
indicate weak, moderate, and strong absorption, respectively.

https://www.gscloud.cn
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2.3. Statistical Analysis

R v4.1.1 [20] was used for statistical analysis. First, all indices were tested for nor-
mality with the Shapiro–Wilk test at ≥ 0.9; when necessary, the indices were subjected to
mathematic transformations (e.g., logarithm, sine, or cosine). Then, a t-test was performed
to compare the differences between the indices of the soil, roots, stems, and leaves of CSC
and ASC. Differences in the nutritional characteristics (N, P, K, Ca, Mg, Fe, and Mn in roots,
stems, and leaves) between species were compared using ANOVA followed by Duncan’s
multiple comparison test (p < 0.05). The nutrient characteristics in the roots, stems, and
leaves were clustered using the “ward.D” method [21]. Analyses of the correlations be-
tween 30 indices were tested by Pearson’s correlation coefficient. Significant correlation
coefficients were extracted using a threshold of p < 0.05, followed by the construction of
relationship network plots using Cytoscape v3.8.2 [22]. Heat maps were drawn using
TBtools v1.098669 [23].

3. Results
3.1. Differences in Habitat Soil between CSC and ASC

The soil pH preferred by CSC species ranged from 6.61 (CIM) to 7.53 (CPI), while
the soil pH of ASC species ranged from 3.81 (CNI) to 5.86 (CPA) (Table 1). The mean soil
organic matter (OM) content for calcareous soil (8.05%) was significantly higher (p < 0.05)
than that for acidic soil (5.95%). The content of each nutrient was ranked as Fe > Mg > K
> Ca > N > Mn > P for calcareous soils, and Fe > K > Mg > N > Ca > P > Mn for acidic
soils. Except for the K content, all other nutrients were present at higher concentrations in
calcareous soils than in acidic soils.

Table 1. The pH, organic matter (OM), and major nutrient contents of the habitat soils of golden
Camellia species.

Species Soil-pH Soil-OM
(%)

Soil-N
(g kg−1)

Soil-P
(g kg−1)

Soil-K
(g kg−1)

Soil-Ca
(g kg−1)

Soil-Mg
(g kg−1)

Soil-Fe
(g kg−1)

Soil-Mn
(g kg−1)

CIM (n = 3) 6.61 ± 0.48 b 6.30 ± 1.76 cd 4.03 ± 1.64 bc 1.88 ± 0.21 ab 9.87 ± 1.91 a 2.54 ± 0.94 de 6.35 ± 1.44 cde 105.83 ± 8.89 a 2.19 ± 0.15 c
CPE (n = 3) 7.00 ± 0.51 ab 5.58 ± 0.72 cd 1.56 ± 0.37 ef 0.54 ± 0.06 e 1.00 ± 0.30 h 3.31 ± 0.96 bcd 7.31 ± 0.13 cd 90.00 ± 1.99 b 1.20 ± 0.05 de
CLO (n = 3) 6.93 ± 0.25 ab 9.17 ± 0.89 b 2.96 ± 0.22 cde 2.03 ± 0.27 a 2.35 ± 0.10 gh 5.12 ± 1.01 ab 9.93 ± 0.46 b 86.39 ± 5.66 bc 2.70 ± 0.37 bc
CPT (n = 3) 6.90 ± 0.35 ab 12.31 ± 2.69 a 6.69 ± 1.64 a 0.74 ± 0.04 de 2.33 ± 0.29 gh 1.95 ± 0.76 e 7.95 ± 0.20 c 80.20 ± 3.29 bcd 1.32 ± 0.19 d
CFL (n = 3) 7.21 ± 0.21 ab 7.29 ± 0.83 c 2.21 ± 0.50 cdef 1.78 ± 0.20 bc 6.65 ± 0.97 bcd 3.53 ± 1.26 bc 5.75 ± 0.44 de 88.44 ± 1.79 bc 4.31 ± 1.16 a
CHU (n = 3) 7.19 ± 0.37 ab 6.95 ± 1.66 c 2.68 ± 0.53 cdef 1.06 ± 0.04 d 8.03 ± 1.09 b 4.50 ± 1.48 ab 3.83 ± 1.36 f 52.17 ± 10.46 f 3.50 ± 0.80 ab
CPU (n = 3) 7.28 ± 0.13 ab 9.87 ± 1.60 b 3.06 ± 0.50 cde 1.69 ± 0.33 bc 4.63 ± 0.56 def 5.96 ± 1.49 a 13.87 ± 1.12 a 88.26 ± 6.91 bc 2.91 ± 0.23 bc
CLI (n = 3) 6.93 ± 0.17 ab 6.46 ± 1.21 cd 3.85 ± 1.42 bcd 0.85 ± 0.07 de 4.5 ± 0.1 ef 3.49 ± 0.57 bc 3.68 ± 0.08 f 82.72 ± 2.76 bc 2.75 ± 0.46 bc
CGR (n = 3) 6.98 ± 0.59 ab 6.62 ± 0.67 c 5.05 ± 1.00 b 1.07 ± 0.33 d 3.87 ± 0.11 fg 5.88 ± 1.62 a 7.89 ± 0.92 c 70.09 ± 10.52 de 2.81 ± 0.74 bc
CPI (n = 3) 7.53 ± 0.28 a 9.94 ± 1.10 b 2.17 ± 1.16 def 1.50 ± 0.20 c 3.10 ± 0.89 fg 5.38 ± 1.36 a 9.75 ± 1.23 b 77.25 ± 2.16 cd 2.36 ± 0.60 c

CSC (n = 30) 7.06 ± 0.25 ** 8.05 ± 2.15 ** 3.43 ± 1.54 ** 1.31 ± 0.53 ** 4.63 ± 2.78 ** 4.16 ± 1.41 ** 7.63 ± 3.06 ** 82.13 ± 14.10 ** 2.61 ± 0.93 **

CTU (n = 3) 5.00 ± 0.37 d 8.01 ± 0.14 bc 2.11 ± 0.35 def 0.76 ± 0.02 de 7.1 ± 1.31 bc 0.60 ± 0.12 e 6.62 ± 1.12 cde 50.71 ± 2.30 f 0.50 ± 0.10 de
CNI (n = 3) 3.81 ± 0.23 e 5.59 ± 1.44 cd 3.24 ± 0.94 cde 0.64 ± 0.03 e 6.07 ± 0.61 cde 0.40 ± 0.16 e 3.85 ± 1.11 f 51.20 ± 4.18 f 0.33 ± 0.07 e
CEU (n = 3) 5.21 ± 0.57 d 6.20 ± 0.95 cd 2.18 ± 0.27 def 0.73 ± 0.06 de 9.83 ± 1.31 a 0.48 ± 0.10 e 6.34 ± 1.87 cde 61.19 ± 2.89 ef 0.63 ± 0.23 de
CPR (n = 3) 5.86 ± 0.15 c 3.97 ± 1.06 d 1.07 ± 0.18 f 0.56 ± 0.10 e 7.47 ± 1.98 bc 1.47 ± 0.33 e 5.15 ± 1.30 ef 29.99 ± 7.55 g 0.73 ± 0.41 de

ASC (n = 12) 4.97 ± 0.86 ** 5.94 ± 1.69 ** 2.15 ± 0.89 ** 0.67 ± 0.09 ** 7.62 ± 1.59 ** 0.74 ± 0.50 ** 5.49 ± 1.26 ** 48.27 ± 13.11 ** 0.55 ± 0.17 **

Data are the mean ± standard deviation. Different letters after the data in the same column indicate significant
differences (p < 0.05) after Duncan’s multiple comparison test. The bold text represents the average values of
each index of CSC and ASC, and ** indicates extremely significant differences (p < 0.01) between CSC and ASC
according to the t-test.

3.2. Differences in Major Nutrients Contents and Biological Absorption Coefficients between CSC
and ASC

Eleven nutrient indices (mainly P, K, and Ca) of the plants differed significantly
(p < 0.05) between CSC and ASC, eight of which were observed in the aerial parts (stems
and leaves) (Table 2). P and Ca were significantly higher in the roots, stems, and leaves
of CSC than in ASC, while the opposite was true for K. Fe and Mn differed significantly
(p < 0.05) only in the stems. In terms of the nutrient uptake capacity, all species had the
highest BACCa and the lowest BACFe (Figure 2). Among the species, CEU had the highest
cumulative BAC values for the seven elements, while CPU had the lowest. CPE showed the
highest BACN and BACK. As a whole, CSC showed lower BAC values of most elements
compared with ASC.
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Table 2. Nutrient differences in the roots, stems, and leaves of CSC and ASC.

Indices (g kg−1) CSC (n = 30) ASC (n = 12)

Root-N 4.46 ± 2.31 NS 5.72 ± 2.79 NS
Root-P 0.89 ± 0.52 ** 0.53 ± 0.10 **
Root-K 2.45 ± 1.48 * 3.46 ± 1.593 *
Root-Ca 17.60 ± 9.13 * 11.16 ± 11.31 *
Root-Mg 2.30 ± 1.13 NS 2.62 ± 1.09 NS
Root-Fe 0.39 ± 0.30 NS 0.31 ± 0.11 NS
Root-Mn 0.75 ± 0.70 NS 0.71 ± 0.54 NS
Stem-N 4.39 ± 2.10 NS 4.01 ± 1.15 NS
Stem-P 0.93 ± 0.39 ** 0.62 ± 0.08 **
Stem-K 2.76 ± 1.33 * 4.32 ± 1.94 *
Stem-Ca 22.98 ± 10.33 ** 6.62 ± 2.03 **
Stem-Mg 3.06 ± 1.55 NS 2.46 ± 1.42 NS
Stem-Fe 0.30 ± 0.20 * 0.43 ± 0.24 *
Stem-Mn 0.98 ± 0.87 ** 0.32 ± 0.08 **
Leaf-N 8.65 ± 5.63 NS 7.12 ± 3.85 NS
Leaf-P 0.84 ± 0.30 ** 0.61 ± 0.14 **
Leaf-K 6.46 ± 2.63 ** 10.62 ± 4.32 **
Leaf-Ca 20.59 ± 10.14 * 13.45 ± 7.22 *
Leaf-Mg 2.26 ± 0.84 NS 2.40 ± 1.41 NS
Leaf-Fe 0.28 ± 0.16 NS 0.29 ± 0.11 NS
Leaf-Mn 1.49 ± 1.42 NS 0.77 ± 0.37 NS

Data are the mean ± standard deviation. * and ** indicate significant differences between CSC and ASC at the
p = 0.05 and p = 0.01 levels, respectively, and NS indicates no significant difference.

Agronomy 2022, 12, x FOR PEER REVIEW  6  of  12 
 

 

 

Figure 2. Biological absorption coefficient of each nutrient in golden Camellia species. The right sub‐

scripts of BAC in the legend represent the different elements. The black and red species labels rep‐

resent CSC and ASC, respectively. 

3.3. Nutrient Characteristics of Golden Camellia Species 

The one‐way analysis of variance  (ANOVA) of  the nutrient contents of  the  roots, 

stems, and leaves of 14 species of golden Camellia showed extremely significant (p < 0.01) 

differences  in all 20  indices except  for  the  leaf Fe content  (p < 0.05)  (Figure 3).  In most 

species, the accumulation of N in the leaves was much higher than that in the stems and 

roots, with the leaf N content being the highest in CLO, at 18.01 g kg‐1. We found that two 

species (CFL and CPI) showed a strong preference for P, as both had considerably higher 

P contents in their roots, stems, and leaves than the other species. The K content formed a 

similar pattern to N, with a higher content in the leaves than the stems and roots in most 

species. However, the Ca content showed greater divergence between species, with most 

of the CSC plants exhibiting a decrease in Ca in the order of stems, leaves, and roots, while 

ASC exhibited a decrease in the order of leaves, roots, and stems. Mg mainly accumulated 

in the stems of most species, including CPT, CGR, CLO, and CLI, and in the leaves in a 

few species, such as CTU and CPE. All species displayed higher Fe contents in the aerial 

parts than the roots, except for CPU. The distribution of Mn in golden Camellia species 

showed remarkable variability; for example, Mn was mainly concentrated in the roots of 

CPI, CPT, and CPA; in the stems of CLO, CGR, and CIM; and in the leaves of CHU, CFL, CPU, 

CPE, and CTU. Cluster analysis showed that CTU, CTE, and CNI had similar elemental up‐

take characteristics in the roots, stems, and leaves, while CPA was close to other CSCs (espe‐

cially CPT). In most species, the concentration of Ca was much higher than that of other nutri‐

ents, indicating that Ca is an important plant nutrient in golden Camellia species. 

Figure 2. Biological absorption coefficient of each nutrient in golden Camellia species. The right
subscripts of BAC in the legend represent the different elements. The black and red species labels
represent CSC and ASC, respectively.



Agronomy 2022, 12, 1511 6 of 12

3.3. Nutrient Characteristics of Golden Camellia Species

The one-way analysis of variance (ANOVA) of the nutrient contents of the roots,
stems, and leaves of 14 species of golden Camellia showed extremely significant (p < 0.01)
differences in all 20 indices except for the leaf Fe content (p < 0.05) (Figure 3). In most
species, the accumulation of N in the leaves was much higher than that in the stems and
roots, with the leaf N content being the highest in CLO, at 18.01 g kg−1. We found that
two species (CFL and CPI) showed a strong preference for P, as both had considerably
higher P contents in their roots, stems, and leaves than the other species. The K content
formed a similar pattern to N, with a higher content in the leaves than the stems and roots
in most species. However, the Ca content showed greater divergence between species,
with most of the CSC plants exhibiting a decrease in Ca in the order of stems, leaves, and
roots, while ASC exhibited a decrease in the order of leaves, roots, and stems. Mg mainly
accumulated in the stems of most species, including CPT, CGR, CLO, and CLI, and in the
leaves in a few species, such as CTU and CPE. All species displayed higher Fe contents in
the aerial parts than the roots, except for CPU. The distribution of Mn in golden Camellia
species showed remarkable variability; for example, Mn was mainly concentrated in the
roots of CPI, CPT, and CPA; in the stems of CLO, CGR, and CIM; and in the leaves of CHU,
CFL, CPU, CPE, and CTU. Cluster analysis showed that CTU, CTE, and CNI had similar
elemental uptake characteristics in the roots, stems, and leaves, while CPA was close to
other CSCs (especially CPT). In most species, the concentration of Ca was much higher
than that of other nutrients, indicating that Ca is an important plant nutrient in golden
Camellia species.

3.4. Plant–Soil Nutrient Relationships of Golden Camellia Species

A total of 135 significant (p < 0.05) relationships were detected between 30 soil and
plant indices (Figure 4). Among them, the highest number of significant relationships (16)
was found between soil pH and other indices, followed by soil Ca (15), indicating that
the pH and Ca content of soil have the most important effects on nutrient absorption by
golden Camellia plants. There were 13 and 11 significant relationships between the soil P
and Mn and other indices, respectively, such as between the soil P and root P (R = 0.54),
stem P (R = 0.75) and leaf P (R = 0.60), and soil Mn and leaf Mn (R = 0.49) and stem Mn
(R = 0.32), further indicating the significant effects of the soil habitat on nutrient absorption.
When the relationships among the plant indices were assessed, stem Mg had the highest
number of significant relationships (13) with the other indices, while the leaf Fe had the
lowest, i.e., one significantly negative relationship with leaf Mn (R = −0.31), indicating that
stem Mg is susceptible to the influence of other nutrients, while the opposite is true for leaf
Fe. There were strong positive relationships between the three essential nutrients N, P, and
K in different tissues of golden Camellia species; for example, leaf N and stem N (R = 0.86),
leaf N and root N (R = 0.78), and stem N and root N (R = 0.68), suggesting that the amount
of absorption of these essential elements by other tissues of the plant is reflected in the
leaves. In contrast, there were negative associations between the Mg contents of different
tissues; for example, leaf Mg and stem Mg (R = −0.32). In addition, we found significant
synergistic effects (for example, the correlation coefficients for the relationship between Ca
and Mn were as high as 0.71, 0.73, and 0.70 in the roots, stems, and leaves, respectively) and
antagonistic effects (for example, root N and root Ca (R = −0.44) and root Mn (R = −0.44),
stem Fe and stem Mn (R = −0.42), and stem K and stem Mg (R = −0.43)) on the absorption
of several elements.
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Figure 4. Plant–soil nutrient relationships of golden Camellia species. The heat map shows the
correlation coefficients between 30 indices of soil and plants. * and ** indicate significant correlation
coefficients at the p = 0.05 and p = 0.01 levels. Networks were constructed by extracting significant
correlation coefficients from the heat map (p < 0.05). The circles indicate indices, their colors corre-
spond to the indexes on the heat map, and the values underneath each index indicate the number of
connected nodes. The color of the lines between the circles represents the correlation coefficient.

4. Discussion

Previous studies highlighted the higher pH and Ca content of calcareous soils in
comparison with acidic soils [14,24]. Our results support the previous studies and, in
addition, further confirmed that calcareous soils were enriched with higher contents of OM
and most nutrients, such as N (3.45 g kg−1), P (1.31 g kg−1), and Mg (7.63 g kg−1) (Table 1).
This may be attributed to the abundance of Ca in the bedrock of karstic calcareous soils.
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Elemental Ca is reported to have adsorption and precipitation effects on other nutrients,
thus allowing for better nutrient fixation in the soil [25]. The soil bedrock of acidic soils is
mostly sand shale with a low Ca content, which, together with the acidic soil environment,
exacerbates Ca and Mg leaching [26] and promotes the decomposition of OM [27], which
may lead to a further decrease in soil fertility. In addition, different topographies, soil
textures, weathering environments, and other factors may also lead to differences in soil
nutrients [28]. For example, both the N content and P content of CSC soils were higher
than those previously observed in karst limestone soils in northwestern Guangxi [29]. Our
results suggest that CSC colonized a relatively more fertile habitat than ASC.

The differences in the nutrient elements in soils may directly lead to different distribu-
tions of the corresponding nutrient elements in plants [30]. Thus, the ability of plants to
store soil nutrients can serve as an adaptive response to soil nutrient variability [31]. The
differences in Ca, P, Mn, and K enrichment between CSC and ASC may be a direct result
of differences in the amount of nutrients in the habitat soils (Tables 1 and 2), suggesting
that golden Camellia species are more sensitive to variations in these elements in the soil.
Conversely, although the contents of several other nutrients, such as N, Fe, and Mg, also
differed considerably between limestone and acidic soils, significant differences in enrich-
ment were not observed in the nutrient tissues of most species (Tables 1 and 2), suggesting
that the uptake of this class of nutrients by golden Camellia species is weakly regulated by
the soil environment. In most species, the accumulation of N, P, and K elements by leaves
is dominant, compared with stems and roots (Figure 3). This may be due to leaves being
a vital organ for plants to carry out vigorous metabolic functions requiring many basic
elements [32,33]. However, the accumulation of several nutrients, especially Ca and Mn,
showed significant differences between tissues and species (Figure 3). In regions of high
habitat heterogeneity, plants adapt to specific conditions by adjusting their nutrient and
water uptake, biomass, spatial distribution characteristics, and morphological structure [34].
Different golden Camellia species may be better adapted to karst or non-karst areas with
high habitat heterogeneity by regulating nutrient accumulation between different tissues.
For instance, the difference in Mn accumulation between CSC and ASC was mainly ob-
served in the stem, while the difference in K accumulation was mainly observed in the
leaves (Table 2). Thus, a key insight is to focus on integrating the nutritional contents
of different tissues when studying the plants’ nutritional characteristics in these highly
heterogeneous habitats [35].

The nutrient uptake of plants in karst or non-karst habitats is thought to be related
to their calcicole or calcifuge behavior [24]. Therefore, we are particularly interested in
the Ca absorption characteristics of golden Camellia species. The Ca uptake efficiency and
accumulation of golden Camellia species were much higher than those of other nutrients
(Figures 2 and 3), implying that soil Ca is one of the most important elements affecting
growth and development. Depending on their Ca requirements, plants can be classified as
calciphile, calcicole, calcifuge, sub-calcifuge, or neutral [36]. Calcicoles, in particular, are
characterized by their ability to grow normally in high-Ca soils and are rarely found in
acidic soils, while calcifuges grow well in acidic soils but are harmed by a slight increase
in the soil Ca content. Calcicoles generally have a greater capacity for Ca uptake and
storage than calcifuges [14–16,35]. In fact, CSC and ASC are calcicole and calcifuge plants,
respectively. The study of calcicole or calcifuge behavior in plants remains a hot topic;
however, it has rarely been discussed at the genus or species scales. Luo et al. [37] found
that most typical calcicoles in karst forests were characterized by low P and K and high Ca
and Mg, and most are P-limited plants (N/P > 16). However, CSC exhibited high P and
similar Mg levels to ASC, except for the K and Ca uptake characteristics consistent with
typical calcicoles. Furthermore, the N/P values in the roots, stems, and leaves of CSC were
all lower than 14, indicating that they were N-limited, rather than P-limited [37]. These
elemental uptake characteristics may reveal a unique mechanism for the adaptation of
golden Camellia species to different soil habitats.
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In terms of the uptake efficiency of different nutrients, golden Camellia species had a
low BAC for Fe, the most abundant element in the soil, but a high BAC for other, less abun-
dant nutrients (Figure 2). Similar nutrient absorption characteristics have been reported
in previous studies of plants, such as several dominant species of Burretiodendron hsienmu,
Litsea dilleniifolia, and Cephalomappa sinensis in the tropical and subtropical karst forest
regions of Guangxi [38], as well as the endemic limestone species Triadica rotundifolia [39].
Interestingly, ASC has a higher BAC than CSC for most nutrients. This suggests that the
more efficient nutrient uptake efficiency may allow ASC to adapt to more infertile acidic
soil habitats.

The soil pH and soil Ca content have significant effects on plant nutrient uptake,
growth, and development by influencing the physical, chemical, and biological properties
of the soil [39,40]. We further confirmed that these two important soil indices have the most
extensive effects on plants by constructing a network of relationships between the major
nutrient contents of Camellia spp. and soil (Figure 4). The plant index with the highest
correlation with both the soil pH and soil Ca was Stem-Ca, indicating that the Ca content
in the stems of golden Camellia species would be most affected if there were changes in the
soil pH or Ca. Therefore, it is necessary to focus on the soil pH and soil Ca content in the
future cultivation or conservation of golden Camellia species. Additionally, we identified
a few significant relationships between the nutrient elements. The relationships between
some nutrients were mentioned in previous reports; for example, the synergistic effects
of N and P [40]. However, the interactions between some nutrients in this study were
inconsistent with previous reports. For instance, in Brassica napus, an elevated Mn content
had a significant inhibitory effect on the absorption of both Ca and Fe [41]; however, in
golden Camellia species, Mn showed a significant synergistic effect with Ca. On the one
hand, this may be due to the unique biological properties distinguishing the species. On
the other hand, synergistic or antagonistic interactions between nutrients in plant–soil
systems may be closely related to their concentrations [42]. The absorption of K and Mg, as
an example, was synergistic when the soil K content was low, and antagonistic when the
soil K content was high [43]. It is worth noting that K and Mg showed antagonistic effects
in this study, suggesting that the K content of the habitat soil was more than adequate for
golden Camellia species. Nevertheless, the nutrient interrelationships between plants and
soils need to be further verified in conjunction with physiological experiments.

5. Conclusions

By investigating the nutrient characteristics of the habitat soils and plant tissues of
14 species of golden Camellia, the following conclusions were drawn: (1) neutral to weakly
alkaline calcareous soil habitats are more fertile than acidic soil habitats. (2) CSC exhibited
stronger Ca, P, and Mn and weaker K storage than ASC, yet ASC had higher nutrient
uptake efficiency, suggesting their contrasting mechanisms of adaptation to habitat soils.
(3) A complex soil–plant nutrient exchange network was found, in which soil Ca and soil
pH play important roles. Overall, this study provides a scientific basis for the conservation
of the germplasm resources of this rare species by revealing the adaptation of plants of the
golden Camellia species to different types of soils from the perspective of plant nutrition.
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