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Abstract: Crop nitrogen is an efficient index for estimating crop yield. Using hyperspectral informa-
tion to monitor nitrogen in cotton information in real time can help guide cotton cultivation. In this
study, we used drip-irrigation cotton in Xinjiang as the research object and employed various nitrogen
treatments to explore the correlation between hyperspectral vegetation indexes and leaf nitrogen
concentration (LNC) and the canopy nitrogen density (CND) of cotton in different growth periods
and interannual. We employed 30 published hyperspectral vegetation indexes obtained through
spectral monitoring in 2019 and 2020 to screen for hyperspectral vegetation indexes highly correlated
with the nitrogen in cotton indexes. Based on the same group of hyperspectral vegetation indexes,
interannual and multi-temporal nitrogen estimation models of cotton were established using three
modeling methods: simple multiple linear regression (MLR), partial least-squares regression (PLSR),
and support vector regression (SVR). The results showed the following: (1) The correlations between
LNC and CND and vegetation index in individual growth periods of cotton were lower than those for
the entire growth period. The correlations between hyperspectral vegetation indexes and cotton LNC,
CND, leaf area index (LAI), and aboveground biomass (AGB), were significantly different between
years and varieties. The relatively stable indexes between vegetation and LNC were TCARI, PRI,
CCRI, and SRI-2, and the absolute values of correlation were 0.251~0.387, 0.239~0.422, 0.245~0.387,
and 0.357~0.533. In addition, the correlation between Clred-edge and REllinear and group indicators
(CND, AGB, and LAI) was more stable. (2) In the models established by MLR, PLSR, and SVR, the R2
value from the SVR method was higher in the estimation model based on the entire growth period
data and LNC and CND. (3) Using the same group of selected hyperspectral vegetation indexes to
estimate nitrogen in cotton in different growth stages, the accuracy of the estimation model of canopy
nitrogen density (CND) was higher than that of the estimation model for leaf nitrogen concentration.
The canopy nitrogen density most stable model was established by MLR at the flowering and boll
stages and the full-boll stage with R? = 0.532~0.665. This study explored the application potential of
hyperspectral vegetation indexes to the nitrogen of drip-irrigated cotton, and the results provide a
theoretical basis for hyperspectral monitoring for crop nutrients and canopy structure.

Keywords: vegetation index; canopy nitrogen density; different growth stage; support vector regression

1. Introduction

Cotton is an important global cash crop. During the past eight years, Xinjiang’s cotton
yield has accounted for 90.27% of China’s yield and 21.6% of global cotton production.
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Xinjiang’s consumption accounts for 67.5% in China and 22.5% worldwide. Nitrogen
is a necessary nutrient element for cotton growth. It plays an important role in crop
photosynthesis, growth, and development, and is one of the core factors determining crop
biomass and yield [1,2]. The leaf is the major organ for crop photosynthesis. Crop leaf
nitrogen content (individual) and canopy nitrogen density (population) not only reflect the
nitrogen nutrition status and growth characteristics of plants but also significantly affect
crop yield and quality. Research has shown that about 50% of the nitrogen contained in
leaves can be used after leaf senescence. Therefore, real-time monitoring of crop nitrogen is
conducive to the precision measurement of the nutrient content of crops.

Hyperspectral monitoring is considered by researchers to be a promising tool and tech-
nology for nondestructive detection of crop nitrogen, mainly due to the strong correlation
between nitrogen and other variables (e.g., chlorophyll), and researchers have found charac-
teristic wavelengths for nitrogen estimation in vegetation spectra [3-5]. The spectral index
comprises the reflectance of multiple spectral bands obtained by mathematical calculation.
The research shows that the model established by vegetation indexes is more stable and
is more widely used for the inversion of crop physiological and nutrient information [6].
At present, researchers mostly use vegetation indexes to calculate crop physiological and
biochemical indexes [7,8]. The research results of Farrah et al. [9] confirmed that normalized
difference vegetation index (NDVI) could be used as an effective method to estimate the leaf
nitrogen status of cotton at different growth stages. Wang et al. [10] estimated leaf nitrogen
content (n%), canopy nitrogen density (CND), and nitrogen nutrition index (NNI) of winter
wheat during the entire growth period by using vegetation indexes. This research showed
that the correlations between simple ratio pigment index (SRPI), modified red-edge simple
ratio index (mSR705), ratio index-1dB (RI-1dB), Vogelmann red-edge index (VOG), and
red-edge position based on linear interpolation method (REPliner) and each nitrogen index
were not significantly affected by growth period, and the estimation model R? for CND
was more than 81%. The accuracy of the estimation model was better than the accuracy
of N% and NNI, but the model will be saturated when using a single vegetation index to
estimate CND. Ciganda et al. [11] showed that the red-edge chlorophyll index Clred-edge
was sensitive to the canopy structure. Tarpley et al. [12] analyzed the relationship between
nitrogen concentration in cotton leaves and multiple spectral ratio indexes and conducted
cluster analysis according to the prediction accuracy and overall accuracy. It was found
that the prediction accuracy and overall accuracy were relatively high when using the
ratio of red-edge position to the near-infrared band. Li [13] studied the estimation of the
winter wheat spectral index in different areas, years, varieties, and growth stages. Their
results showed that the simple ratio of reflectivity at 370 nm and 400 nm (R370/R400)
displayed the most consistent estimation accuracy in an indoor experiment (R? = 0.58) and
field experiment (R? = 0.51), indicating that the growth stage had a significant impact on
the performance of different vegetation indexes and the selection of a sensitive wavelength
for plant nitrogen concentration (PNC) estimation. Studies have shown that when using
the spectral index to estimate crop nitrogen, there are clear differences in the applicable
spectral index for different crops or different varieties and ecological areas of the same
crop [14,15].

In addition, modeling methods such as deep machine learning can achieve better
prediction effects than using sensitive spectral features alone or vegetation indexes [16],
and these methods can be applied to the monitoring of crop nutrients and growth indica-
tors [17-19]. Yao et al. [20] compared the methods of artificial neural network and support
vector machine regression (SVR) and showed that SVR was the preferred method for esti-
mating crop nutrient contents. The authors suggested that an artificial neural network is
suitable for the establishment of models with large sample sizes. Wang et al. [15] studied
the generalized PLSR (gPLSR) model using the hyperspectral reflectance of leaves, and this
method could well retrieve leaf nitrogen concentration (r = 0.85).

In the application of vegetation indexes, most researchers have used the data of the
entire growth period to estimate nitrogen. There are few research results for crop nitrogen
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hyperspectral monitoring in different growth periods. In the process of cotton planting in
Xinjiang, the technology of water and fertilizer integration is used for nitrogen application.
Xinjiang cotton needs eight times the amount of water and fertilizer drip irrigation in the
whole growth period, so more attention should be paid to the nitrogen nutrition status in
different growth periods of cotton. Real-time and accurate estimation of the nutrient status
of cotton in each growth period would be more conducive to the accurate management
of cotton and the optimization of yield. The present study is based on data for the leaf
nitrogen concentration (LNC) and canopy nitrogen density (CND) of two varieties of
drip-irrigated cotton at different growth stages from April 2019 to September 2020. Some
relatively stable vegetation indexes were selected by using Pearson’s correlation analysis of
30 hyperspectral vegetation indexes and two nitrogen indexes (LNC and CND) employed in
three modeling approaches: simple multiple linear regression (MLR), partial least-squares
regression (PLSR), and support vector regression (SVR). The models were used to explore
the potential of estimating the nitrogen nutrition status of cotton in each growth period
based on a multi-vegetation index in order to provide theoretical support for the application
of remote sensing technology in cotton nutrition monitoring and diagnosis.

2. Materials and Methods

This study is divided into two parts, as shown in Figure 1. In the first part, according
to the correlation between LAI, AGB, SLW, and LNC and CND in cotton, the hyperspectral
vegetation indexes required for the study were selected. The correlation analysis between
nitrogen and hyperspectral vegetation indexes for two years was used to determine the
vegetation indexes for nitrogen estimation. In the second part of the study, MLR, PLSR,
and SVR were used to establish cotton nitrogen estimation models in each growth period.

Acquisition of N
agronomic data Nitrogen treatment

and hyperspectral in cotton field
data v
Bud stage, Initial flowering stage,
Flowering and bolling stage, Full-boll period
[

3 v ]
Canopy Growth indexes Nitrogen indexes
hyperspectral reflectance (LAI, AGB, SLW) (LNC, CND)
I T T
Selection of \L calculation \*laﬁon[
modeling N N
parameters Hyperspectral Agronomic parameters related to nitrogen
vegetation indexes (LNC, CND, LAI, AGB)
I I
N
Selection of hyperspectral LNC,CND
vegetation indexes Whole growth period
‘ correlation ‘
T
Establishment 0z
of nitrogen Four growth Determination of MLR, PLSR,
estimation model stages modeling parameters SVR

[ I ]
N

Establishment of nitrogen estimation model
in different growth stages of cotton

Figure 1. Flow chart illustrates important steps employed in this study.

2.1. Experimental Design

The experiment was conducted in the second (85°59'41" E, 44°19'54” N) of the teach-
ing experimental fields of Shihezi University from April 2019 to September 2020. The
sunshine times from April to September 2019 and 2020 in the test area were 9.17 h/day
and 9.43 h/day; the active accumulated temperatures from April to September 2019 and
2020 were 20.92 °C/day and 21.77 °C/day, and the frost-free periods were 171 and 168 d.
The soil was a loam that contained organic matter at 19.06 g/kg, total nitrogen 12.8 mg/kg,
available phosphorus (P) 20.8 mg/kg, and available potassium (K) 165.1 mg/kg at the
depth of 0-20 cm in 2019.

In order to obtain cotton plants with different nitrogen contents in this experiment,
six nitrogen application levels were set: NO (0 kg/ha), N1 (120 kg / ha), N2 (240 kg/ha),
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N3 (360 kg/ha), N4 (480 kg/ha), and NC (278 kg/ha). The application timing of nitrogen
fertilizer (urea, nitrogen content 46%) was synchronized with the drip application timing of
local farmers. Nitrogen fertilizers were delivered using urea to cotton plants through drip
irrigation over eight applications. The specific schedule of fertilizer applications is shown
in Table 1. The base fertilizer of the cotton field was 150 kg/hm? of calcium superphosphate
and 150 kg/hm? of potassium sulfate.

Table 1. Application amount of integrated drip irrigation of water and fertilizer in field experiment.

Fertilizer Water Volume Fertilizer Water Volume
Date (2019) Percent (m3/m?) Date (2020) Percent (m3/m?)
4-29 0% 0.022 4-30 0% 0.022
5-02 0% 0.030 5-05 0% 0.030
6-14 5% 0.033 6-15 5% 0.033
6-22 10% 0.060 6-24 10% 0.061
6-30 15% 0.051 7-05 15% 0.051
7-09 20% 0.045 7-14 20% 0.043
7.18 25% 0.049 7.20 25% 0.049
7.25 12% 0.045 7.27 12% 0.045
8.03 8% 0.042 8.02 8% 0.042
8.12 5% 0.034 8.12 5% 0.034
8.18 0% 0.037 8.19 0% 0.037

In 2019, the tested varieties were Xinluzao 45 (type II fruit branch, light green of leaf
color) and Xinluzao 53 (type I fruit branch, dark green of leaf color), and the tested variety
was Xinluzao 53 in 2020. The central planting area was mulched with drip irrigation for
six planting rows of cotton plants spaced 0.66 m apart and 0.1 m within the row (Figure 2).
The planting density was 21.50 x 10* plants/ha. The plot area was 25 m?. Each nitrogen
application treatment was repeated three times for a total of 18 plots in a randomized
block design. In 2019, the sowing date of cotton was April 24; the emergence date was
May 2, and the topping date was July 9. In 2020, the sowing date was April 18; the
emergence date was April 30, and the top pruning date was July 10. Prevention and control
of diseases and pests, application of herbicides, etc., were managed according to the local
field. The growth rates of cotton were similar in the two years, and each growth period
was approximately synchronous.
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Figure 2. The top view of cotton test area (left) and internal row spacing configuration diagram of
cotton field experimental community (right).
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2.2. Data Acquisition
2.2.1. Sample Collection Time and Sample Size

In this study, the samples of leaf nitrogen content, aboveground biomass (AGB), leaf
area index (LAI), and canopy hyperspectral reflectance in cotton were obtained according
to the main reproductive period of cotton. The total sample size of the effect was 180; the
total sample size of Xinluzao 45 (2019-45) was 180, and the total sample size of Xinluzao 53
(2019-53) was 156 in 2019. In 2020, the total sample size of Xinluzao53 (2020-53) was 180
(Table 2).

Table 2. Sample acquisition time and sample size.

Year- Item Bud Stage Initial Flowering  Flowering and Full-Boll Boll Opening
Varieties v & Flowering Stage Stage Bolling Stage Period Sage
Date 6-19 6-27 7-12 7-30 8-8 //
2019-45 Sample size 36 36 36 36 36
Date 6-20 7-6 7-12 7-30 8-8 //
201953 gample size 36 30 36 18 36
Date 6-17 6-28 // 7-27 8-11 8-30
202053 gample size 36 36 36 36 36

Notes: // indicates that no samples were collected during this growth period.

2.2.2. Determination of Aboveground Biomass and Leaf Area Index in Cotton

Six cotton plants were selected for each experimental treatment and divided according
to different organs of stem, leaf, bud, and boll. The plant leaf area was measured using an
American LI-3100C area meter, and then the leaf area index (LAI) was calculated according
to the plant leaf area [10]. After measuring the leaf area, all organs were heated for 30 min
at 105 °C, then dried to a constant weight at 80 °C. The dry matter weight of each organ
was calculated, and the sum of the biomasses of each organ represented the aboveground
biomass (AGB) of the cotton plant [2].

2.2.3. Leaf Nitrogen Content and Canopy Nitrogen Density of Cotton

The nitrogen concentration in cotton leaves was determined by the Kjeldahl method.
The dry leaf samples of the plant were crushed, sifted through a 100-mesh sieve, and the
cotton leaf samples were digested with HyO,-H;SOy4, using a 50 mL volume of the digestion
solution. Then, a 10 mL aliquot was placed in a Kai nitrogen determiner for distillation
(Haineng-K9840 automatic Kai nitrogen determiner), and the distilled solution was titrated
with (1/2) H,SOy to determine the nitrogen concentration (LNC) of cotton leaves.

Canopy nitrogen density (CND) is defined as the total leaf nitrogen per unit land area,
g/ m?2, which is calculated as follows [10]:

CND = LNC x SLW x LAI 1)
where SLW is specific leaf weight, referring to the dry mass of leaves per unit leaf area, g/cm?.

2.2.4. Acquisition of Hyperspectral Data of the Cotton Canopy

The hyperspectral data of the cotton canopy were obtained using an SR-3500 portable
full-spectrum ground object spectrometer (Spectral Evolution Company, Lawrence, MA,
USA) [21,22], and the parameters are shown in Table 3; we used the difference method to
make the bandwidth of the instrument spectrum consistent, which was 1 nm.
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Table 3. Technical parameters of SR-3500 portable full-spectrum ground object spectrometer.

Technical Indicators Parameter Technical Indicators Parameter
Spectral range 350-2500 nm Field of View 25°; Integrating sphere
3.5 nm (350-1000 nm) 1.5 nm (350-1000 nm)
Spectral resolution 10 nm (1000-1900 nm) Spectral bandwidth 3.8 nm (1000-1900 nm)
7 nm (1900-2500 nm) 2.5 nm (1900-2500 nm)

The canopy spectra of drip-irrigated cotton were measured on sunny, cloudless, wind-
less days or on days with low wind speed (<grade 2), and the time range of the mea-
surement day was controlled from 12:00 to 16:00. During measurement, the sensor probe
was pointed vertically downward, and the vertical height from the cotton canopy top was
about 1 m (Figure 3). Six points were collected for each experimental treatment, and five
spectral data values were collected for each point. Finally, the average value of the five data
points was used as the canopy spectral value of the sampling point of the plot. To ensure
the measurement accuracy and reduce the influence of cloud and solar height changes
on spectral reflectance, standard whiteboard correction was carried out for each group of
targets before and after observation.
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Figure 3. Acquisition of hyperspectral reflectance data of cotton canopy (2019-45, 19 June).

2.3. Hyperspectral Vegetation Indexes Selected in This Research

When crops lack nitrogen, a series of changes will occur in the nitrogen, chlorophyll,
leaf area, and biomass of the plant. Because there are a large number of spectral indexes
that can be used to estimate nitrogen content, leaf area, and biomass, this study referred
to the relevant literature and selected 30 indexes with clear physical significance and
high recognition for comparative analysis. The specific calculation methods and literature
sources of each index are shown in Table 4.



Agronomy 2022,12, 1319

7 of 22

Table 4. List of hyperspectral vegetation indexes used in this study.

Generic Name (Abbreviation) Formula Literature Source
Chlorophyll/nitrogen Normalized Difference Vegetation Index (NDVI) (R800 — R680)/(R800 + R680) [23]
Difference Vegetation Index (DVI) R800 — R680 [23]
Structure Insensitive Pigment Index (SIPI) (R800 — R445)/(R800 + R680) [24]
Modified red-edge normalized difference vegetation (R750 — R705)/(R750 + R705 — 2R445) [25]
index (mND705) ;
Simple Ratio Index (SRI-1) R800/R680 [25]
Modified Simple Ratio Index (MSRI) (R750 — R445)/(R705 — R445) [25]
The MERIS terrestrial Chlorophyll Index (MTCI) (R750 — R710)/(R710 — R680) [23]
Modified Chl"r"géyel)l( ‘3\5’[‘“&0&%‘)"“ in Reflectance [(R700— R670) — 0.2 x (R700 — R550)] x (R700/R670) [26]
Optimized Soil-adjusted Vegetation Index (OSAVI) (R800 — R670)/(R800 + R670 + 0.16) [27]
Transformed Chlorophyll Absorption in Reflectance 3 x [(R700 — R670) — 0.2 x (R700 — R550)] x [28]
Index (TCARI) (R700/R670)
Enhanced Vegetation Index (EVI) 2.5 x (R800 — R680)/(R800 + 6 x R680 — 7.5 x R450 + 1) [29]
Atmospherically Resistant Vegetation Index (ARVI) (R800 — 2 x R680 + R450)/(R800 + 2 x R680 — R450) [29]
Vogelmann Red-Edge Index 1 (VOG1) R740/R720 [30]
Vogelmann Red-Edge Index 2 (VOG2) (R734 — R747)/(R715 + R726) [31]
Vogelmann Red-Edge Index 3 (VOG3) (R734 — R747)/(R715 + R720) [31]
Photochemical Reflectance Index (PRI) (R531 — R570)/(R531 + R570) [32]
PRI and red-edge Chlorophyll Index (PRI*CI) (R531 — R570)/(R531+R570) x (R760/R700-1) [33]
Plant senescence reflectance index (PSRI) (R678 — R500)/R750 [34]
Carotenoid /chlorophyll ratio index (CCRI) [(R720 — R521) x R705]/[(R750 — R705) x R521] [23]
Simple ratio vegetation index (SRI-2) R515/R570 [35]
Chlorophyll index in red-edge (CIred-edge) R800/R720-1 [36]
AGB Normalized Dry Matter Index (NDMI) (R1650 — R1722)/(R1650 + R1722) [71
Normalized Difference Tillage Index (NDTI) (R1650 — R2215)/(R1650 + R2215) [37]
705nm Normalized Difference Vegetation (NDVI705) (R750 — R705)/(R750 + R705) [38]
Cellulose Absorption Index (CAI) 100 x [0.5 x (R2010+R2211) — R2101] [26]
LAI Modified triangular vegetation index 1 (MTVI 1) [120 x (R800 — R550) — 2.5 x (R670- — R550)] [39]
Modified triangular vegetation index 2 (MTVI 2) 15 x [12 x (R800 — R550) — 25 x (R670 — R550)] [39]
\/(z x R800 + 1)2 — (6 x R800 — 5 x VR670) — 0.5
Transformed triangular vegetation index (TTVI) 05 [(783 = 740) &;1;3675 1;7%;4]0) — (865 —740) x [39]
Standardized LAI-determining index (sLAIDI*) s x ((R1050 — R1250)/(R1050 + R1250) x R1555,s =1 [19]
The linear interpolation of red-edge inflection 700 + 40 x [(Rred-edge — R700)/(R740- —R700)] [40]

point (REIPlinear)

Rred—edge = (R670 — R780)/2

2.4. Model Establishment Method and Model Evaluation Index

The concentration gradient method (2:1) was used to divide the data of each growth
period and the entire growth period for 2019-45, 2019-53, and 2020-45 into a calibration
set and a verification set. Based on the selection of the vegetation index, multiple linear
regression (MLR), partial least-squares regression (PLSR), and support vector regression
(SVR) were used to construct the model. MLRA and PLSR were implemented in the
software the Unscrambler X 10.4 (2016, CAMO Analytics company, Trondheim, Norway),
and SVR was implemented in the software MATLAB R2021b.

The performance of the models was evaluated by several indicators, including the
test set determination coefficient (R?c) and verification set determination coefficient (R%v),
the test set root mean square error (RMSEc) and verification set root mean square error
(RMSEV), and the predicted relative standard deviation (RPD). The best model should have
R2c and R2v values close to 1, low values of RMSEc and RMSEy, and a high RPD value.

3. Result
3.1. Statistical Analysis of the LNC in Cotton
3.1.1. Data Distribution Characteristics of Nitrogen and Biomass, Leaf Area Index, and
Specific Leaf Weight of Drip-Irrigation Cotton

Table 5 shows the sample characteristics of various indicators of drip-irrigation cotton
from 2019 to 2020. Among the two-year data, LAI was the most stable, with little difference
in mean or standard deviation (SD) and with the ranges 2.813~2.948 and 1.336~1.691,
respectively. For biomass, Xinluzao 53 was greater than that of Xinluzao 45, and the values
of LNC and CND were higher than those of Xinluzao 45, indicating that the nitrogen
demand of Xinluzao 53 was higher than that of Xinluzao 45 in the processes of growth
and development. LNC and CND for Xinluzao 53 were lower in 2020, despite a significant
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increase in the biomass. Indeed, max value (49.846 g/kg) of LNC is higher in 2020, but
mean value (31.963 g/kg) of LNC and mean SD (2.713) of CND remain lower in 2020. The
reason for this phenomenon was that the sufficient temperature and sunshine hours during
cotton growth in 2020 were higher than those in 2019, resulting in the larger leaf area and
biomass of cotton compared with 2019. However, the leaf nitrogen content per unit did not
increase significantly (mainly controlled by cotton genotypes), which led to the low value
of CND. From the analysis of interannual data, there were certain differences in canopy
nitrogen density between years and varieties. From the existing data, the leaf nitrogen
concentrations LNC, CND, and AGB were different between years. For Xinluzao 53, the
average value of LNC in 2019 was 19.46% higher than in 2020, but the maximum value of
LNC (49.846) and the SD value (7.306) in 2020 were greater than those in 2019, indicating
that the LNC data in 2020 were more discrete than in 2019. The data characteristics of
specific leaf weight were similar to those of leaf nitrogen concentration. The data dispersion
in 2020 was greater than that in 2019, and there were some differences among varieties.

Table 5. Overall characteristics of samples in the entire growth period.

Index (unit) Varieties Sample Number Mean Maximum Minimum SD RSD
2019-45 180 38.182 45.815 26.547 3.904 0.102

LNC (g/kg) 2019-53 156 38.292 46.928 29.262 3.595 0.094
2020-53 180 31.963 49.846 16.318 7.306 0.229

2019-45 180 8.247 21.737 1.995 4.469 0.542

CND (g/mz) 2019-53 156 9.418 22.099 2.509 3.71 0.394
2020-53 180 7.242 18.991 3.034 2.713 0.375

2019-45 180 2.813 7.597 0.666 1.691 0.601

LAI 2019-53 156 2.919 6.849 0.741 1.308 0.448
2020-53 180 2.948 7.431 0.725 1.336 0.453

2019-45 180 5.833 19.09 0.87 4.651 0.797

AGB (t/ha) 2019-53 156 7.003 27.314 1.219 4.498 0.642
2020-53 180 9.692 32.340 1.319 6.509 0.672

2019-45 180 79.989 105.687 53.051 7.582 0.095

SLW (g/mz) 2019-53 156 87.871 113.07 58.401 8.030 0.091
2020-53 180 86.300 196.303 42.84 26.016 0.301

3.1.2. Correlation between Nitrogen and AGB, LAI, and SLW at Different Growth Stages
of Cotton

Nitrogen is the main factor affecting canopy indexes of cotton. This study considered
cotton leaf nitrogen concentration (LNC) and canopy nitrogen density (CND) as nitrogen
in cotton indexes; we studied the correlations with canopy indexes (AGB, LAI, and SLW)
and analyzed the nutritional status of two cotton varieties in each growth period in 2019. It
can be seen from Figure 4 that the correlation between LNC and SLW, AGB, and LAI of the
two varieties of drip-irrigation cotton did not reach a significant level at any growth stage.

CND and AGB, and LAI of cotton showed extremely significant correlations in each
growth period. In 2019, the correlations between CND and LAI of the two varieties reached
the maximum values at the beginning of flowering, 0.935 and 0.944, respectively, and
the correlations between CND and AGB reached the maximum values at the bud stage,
0.941 and 0.925, respectively (Figure 4). The correlations between CND and LAI and
AGB of cotton at each growth stage were significantly higher than that of LNC, and the
correlations were relatively stable. This was mainly because the nitrogen content of cotton
leaves changed little during the entire growth period (Table 4), but AGB and LAI changed
significantly with the growth process. This can be seen from Table 4 (RSD = 0.439~0.797).
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Figure 4. Correlations between nitrogen and AGB, LAI, and SLW at different growth stages of cotton
in 2019 ((a): Xinluzao 45, (b): Xinluzao 53) (** indicates that significant difference is achieved under
p <0.01).

The correlation between SLW obtained from drip-irrigation cotton and nitrogen index
in cotton showed that SLW and LNC showed a very weak correlation, and the significant
correlation with CND was only in the cotton bud stage, with a maximum correlation
coefficient of 0.565. There were significant differences among varieties. Therefore, the SLW
index was not considered in the later spectral index analysis.

3.2. Correlation between Nitrogen in Cotton and Hyperspectral Vegetation Indexes
3.2.1. Correlation Analysis between Nitrogen in Cotton Indexes and Hyperspectral
Vegetation Indexes at Different Growth Stages

By analyzing the correlations between nitrogen indexes LNC, CND, and vegetation
indexes in each growth period of cotton (Figures 5 and 6), the highest correlation between
LNC and vegetation index of Xinluzao 45 in 2019 appeared in the flowering and boll
periods (Figure 5c). The vegetation index with the highest correlation coefficient was
sLAIDI* (r = —0.617), followed by MTVI 1 (r = —0.574). The period with the highest
correlation between canopy nitrogen density and vegetation index was the peak boll period.
The vegetation index was NDTI, with Pearson’s correlation coefficient r = 0.516, followed
by sLAIDI¥, with r = —0.501. The correlation between vegetation index and LNC and CND
in other growth periods was weak, with r < 0.4.

In 2019, the highest correlation between LNC and vegetation index of Xinluzao 53
occurred in the peak boll period (Figure 6), and the index with the highest correlation
coefficient was sLAIDI*, r = 0.400, followed by the NDMI index, with a correlation coeffi-
cient with LNC of —0.366. The vegetation index with the highest correlation with canopy
nitrogen density was CCRI, r = 0.577, followed by REIP, r = —0.562, each of which appeared
in the full-boll period (Figure 3d). In this growth period, the correlations of 14 hyperspectral
vegetation indexes reached above 0.5.

3.2.2. Correlation Analysis between Vegetation Index and Nitrogen Index during the Entire
Growth Period of Cotton

This study analyzed the correlation between nitrogen data and vegetation index in the
entire growth period of Xinluzao 45 (2019-45, n = 180) and Xinluzao 53 (2019-53, n = 156) in
2019, and Xinluzao 53 (2020-53, n = 180) in 2020 (Table 6). The results showed that there
were significant differences in the correlations between each vegetation index and cotton
LNC and CND between years and varieties. By analyzing the correlations between LNC
and vegetation index during the entire growth period, there were significant differences
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between NDVI, MCARI, ARVI, PRI*CI, TTVI, sLAIDI*, NDMI, and NDTI for Xinluzao 53
between years (2019 and 2020). In particular, MCARI, TTVI, and NDMI showed extremely
significant correlations with LNC in 2020 (r > 0.5), but they did not reach significance in 2019.
The correlation coefficient r was only about 0.1, which may indicate that the correlation
between this part of the vegetation index and LNC was vulnerable to the meteorological
environment. The correlations between hyperspectral vegetation indexes MSRI, MTCI,
MCARI, NDVI705, VOG1, VOG2, VOG3, Clred-edge, and MTVI 2 and LNC differed among
varieties, and the correlations with 2019-45 were extremely significant, but the correlations
with 2019-53 were very low or even zero, and the correlations between NDVI705, VOGI1,
VOG2, VOG3, and Clred-edge and LNC did not reach 0.1. In addition, the correlations
between NDVI, OSAVI, ARVI, MTVI 1, TTVI, sLAIDI*, and CAI and LNC reached the
significant level in two varieties in 2019, but the correlation was unstable.
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Figure 5. Correlations between LNC, CND, and vegetation index in 2019 (Xinluzao 45, (a): bud
stage; (b): initial flowering stage; (c): flowering and boll stage; (d): full-boll period. * Indicates that
significant difference is achieved under p < 0.05; ** indicates that significant difference is achieved

under p < 0.01).
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Figure 6. Correlation between LNC, CND, and vegetation index in 2019 (Xinluzao 53, (a): bud
stage; (b): initial flowering stage; (c): flowering and boll stage; (d): full-boll period. * Indicates that
significant difference is achieved under p < 0.05; ** indicates that significant difference is achieved
under p < 0.01).

The correlation between CND and vegetation index was stronger. The correlations
between MCARI, TCARI, and CND were different between years, and the correlation
coefficients of the two varieties were greater than 0.40. The indexes mND705, MSRI, CCR],
and SRI-2 differed among varieties. Although the correlations reached a significant level
in 2019, the correlation coefficient with Xinluzao 45 was more than 0.3 higher than that
with Xinluzao 53. The correlations between indexes PRI and PRI*CI and CND differed
between varieties and years. The correlations between indexes OSAVI, EVI, MTVI 1,
MTVI 2, sLAIDI*, NDMI, CAI, and CND were unstable, and the correlations between the
two varieties between years showed the opposite pattern.

There was an opposite correlation between the two varieties, indicating that there
were significant differences between LNC and these hyperspectral vegetation indexes.
Among the 30 hyperspectral vegetation indexes, TCARI, PRI, CCRI, SRI-2, and LNC had
very significant correlations between years and varieties, and the correlations had a certain
stability and consistency. Therefore, these four hyperspectral vegetation indexes were
selected as the research objects with which to establish the estimation model of LNC for the
entire growth period and each individual growth period.



Agronomy 2022,12, 1319

12 of 22

Table 6. Correlation analysis between LNC, CND, and spectral index of cotton in different years.

LNC CND
2019-45 2019-53 2020-53 2019-45 2019-53 2020-53
NDVI —0.224 ** 0.219 ** 0.019 NDVI 0.300 ** 0.252 ** 0.190 *
DVI —0.106 0.283 ** 0.547 ** DVI 0.151 % —0.385 ** 0.066
SIPI —0.240 ** 0.197 * —0.097 SIPI 0.317 ** 0.332 ** 0.177 *
mND705 —0.388 ** —0.090 0.156 * mND705 0.581 ** 0.269 ** 0.329 **
SRI-1 —-0.134 0.248 ** 0.049 SRI-1 0.206 ** 0.255 ** 0.189 *
MSRI —0.373 ** —0.096 0.089 MSRI 0.561 ** 0.280 ** 0.345 **
MTCI —0.397 ** —0.130 0.012 MTCI 0.568 ** 0.358 ** 0.337 **
MCARI 0.322 ** 0.144 0.487 ** MCARI —0.453 ** —0.458 ** —0.138
OSAVI —0.194 ** 0.421 ** 0.463 ** OSAVI 0.269 ** —0.201 * 0.157 *
TCARI 0.387 ** 0.251 ** 0.384 ** TCARI —0.603 ** —0.434 ** —0.160 *
EVI -0.116 0.292 ** 0.564 ** EVI 0.171 % —0.408 ** 0.090
ARVI —0.198 ** 0.232 ** 0.126 ARVI 0.272 ** 0.136 0.196 **
NDVI705 —0.356 ** —0.004 0.102 NDVI705 0.529 ** 0.318 ** 0.334 **
VOG1 —0.352 ** —0.026 -0.017 VOG1 0.522 ** 0.349 ** 0.349 **
VOG2 0.383 ** 0.071 0.055 VOG2 —0.544 ** —0.450 ** —0.355 **
VOG3 0.375 ** 0.066 0.051 VOG3 —0.536 ** —0.436 ** —0.355 **
PRI —0.422 ** —0.290 ** —0.239 ** PRI 0.590 ** 0.125 0.315 **
PRI*CI —0.242 ** —0.357 ** 0.145 PRI*CI 0.258 ** 0.043 0.266 **
PSRI 0.021 0.039 —0.311 ** PSRI —0.046 —0.01 -0.177*
CCRI 0.387 ** 0.245 ** 0.328 ** CCRI —0.640 ** —0.309 ** —0.290 **
SRI-2 —0.533 ** —0.432 ** —0.357 ** SRI-2 0.626 ** 0.216 ** 0.070
Clred—edge —0.390 ** —0.099 -0.121 Clred —edge 0.554 ** 0.458 ** 0.329 **
MTVI'1 —0.181* 0.279 ** 0.504 ** MTVI1 0.257 ** —0.358 ** 0.079
MTVI 2 —0.066 0.444 ** 0.551 ** MTVI2 0.092 —0.285 ** 0.125
TTVI 0.345 ** —0.144 —0.534 ** TTVI —0.497 ** —0.231 ** —0.268 **
sLAIDI* —0.371 ** 0.159 * 0.566 ** sLAIDI* 0.437 ** —0.211 ** 0.054
REIPlinear —0.443 ** —0.192* —0.052 REIPlinear 0.619 ** 0.530 ** 0.320 **
NDMI —0.212 ** —0.156 —0.672 ** NDMI 0.381 ** 0.007 —0.025
NDTI 0.112 —0.114 —0.215 ** NDTI —0.067 0.408 ** 0.143
CAI —0.235 ** 0.202 * —0.110 CAI 0.272 ** —0.480 ** 0.037

Notes: * indicates that significant difference is achieved under p < 0.05; ** indicates that significant difference is
achieved under p < 0.01.

The correlations between mND?705, SRI-1, MSRI, MTCI, TCARI, NDVI705, VOGI,
VOG2, VOG3, CCRI, Clred-edge, REIPlinear, and CND reached significant levels between
years and varieties, and the correlations were relatively stable and consistent. Therefore,
the indexes with good stability (MTCI, NDVI705, VOG1, VOG2, VOGS3, Clred-edge, and
REIPlinear) were selected to establish the estimation model for the entire growth period
and each individual growth period of CND.

3.2.3. Correlation Analysis between Hyperspectral Vegetation Index and AGB and LAI
during the Entire Growth Period of Cotton

The correlations between LAI and AGB and vegetation index are shown in Table 7.
The correlations between DVI, OSAVI, EVI, MTVI 1, MTVI 2, sLAIDI*, and LAI differed
among varieties. The index with the largest difference was DVI. The correlation coefficient
between DVI with LAI was —0.422 in Xinluzao 53 of 2019, but the correlation coefficient
with Xinluzao 45 of 2019 was only 0.131. The correlations between NDVI, SIPI, mND705,
SRI-1, MSRI, MTCI, MCARI, TCARI, NDVI705, VOG1, VOG2, VOGS, PRI, SRI-2, Clred-
edge, and REIPlinear (16 indexes) and LAI reached significant levels (p < 0.05) between
years and varieties, and the correlations were relatively stable.
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Table 7. Correlations between spectral indexes among different years and varieties and LAI and AGB

of cotton.
LAI AGB
2019-45 2019-53 2020-53 2019-45 2019-53 2020-53
NDVI 0.282 ** 0.163 * 0.234 ** NDVI 0.152 * 0.048 0.005
DVI 0.131 —0.422 ** —0.267 ** DVI —0.044 —0.413 ** —0.544 **
SIPI 0.299 ** 0.249 ** 0.299 ** SIPI 0.166 * 0.126 0.092
mND705 0.550 ** 0.293 ** 0.272 ** mND705 0.428 ** 0.214 ** 0.003
SRI-1 0.186 ** 0.163 * 0.211 ** SRI-1 0.070 0.053 —0.040
MSRI 0.530 ** 0.297 ** 0.329 ** MSRI 0.414 ** 0.235 ** 0.065
MTCI 0.552 ** 0.389 ** 0.374 ** MTCI 0.448 ** 0.324 ** 0.131
MCARI —0.439 ** —0.463 ** —0.476 ** MCARI —0.415 ** —0.391 ** —0.515 **
OSAVI 0.246 ** —0.296 ** —0.097 OSAVI 0.077 —0.373 ** —0.433 **
TCARI —0.578 ** —0.481 ** —0.414 ** TCARI —0.538 ** —0.423 ** —0.473 **
EVI 0.150 * —0.449 ** —0.251 ** EVI —0.024 —0.440 ** —0.541 **
ARVI 0.255 ** 0.048 0.166 * ARVI 0.129 —0.049 —0.075
NDVI705 0.499 ** 0.309 ** 0.320 ** NDVI705 0.369 ** 0.204 * 0.035
VOG1 0.499 ** 0.344 ** 0.403 ** VOG1 0.382 ** 0.254 ** 0.149 *
VOG2 —0.527 ** —0.459 ** —0.442 ** VOG2 —0.423 ** —0.383 ** —0.176 *
VOG3 —0.518 ** —0.443 ** —0.438 ** VOG3 —0.414 ** —0.367 ** —0.173 *
PRI 0.580 ** 0.214 ** 0.216 ** PRI 0.457 ** 0.241 ** —0.073
PRI*CI 0.280 ** 0.148 0.210 ** PRI*CI 0.272 ** 0.223 ** 0.000
PSRI —0.047 —0.034 —0.023 PSRI —0.009 —0.067 0.189 *
CCRI —0.609 ** —0.389 ** —0.118 CCRI —0.508 ** —0.365 ** 0.143
SRI-2 0.628 ** 0.348 ** 0.297 ** SRI-2 0.686 ** 0.410 ** 0.445 **
Clred—edge 0.537 ** 0.475 ** 0.455 ** ClIred—edge 0.438 ** 0.404 ** 0.236 **
MTVI1 0.234 ** —0.393 ** —0.225 ** MTVI 1 0.060 —0.392 ** —0.500 **
MTVI 2 0.073 —0.386 ** —0.192 ** MTVI 2 —0.099 —0.442 ** —0.522 **
TTVI —0.470 ** —0.225 ** 0.026 TTVI —0.314 ** —0.148 0.460 **
sLAIDI* 0.430 ** —0.210 ** —0.283 ** sLAIDI* 0.310 ** —0.154 —0.583 **
REIPlinear 0.602 ** 0.582 ** 0.404 ** REIPlinear 0.506 ** 0.530 ** 0.182*
NDMI 0.363 ** 0.015 0.362 ** NDMI 0.233 ** 0.007 0.733 **
NDTI —0.070 0.396 ** 0.316 ** NDTI —0.184 ** 0.380 ** 0.235 **
CAI 0.258 ** —0.477 ** —0.030 CAI 0.212 ** —0.484 ** 0.128

Notes: * indicates that significant difference is achieved under p < 0.05; ** indicates that significant difference is
achieved under p < 0.01.

The correlation between AGB and vegetation index showed that the correlations with
DVI and EVI index showed differences among varieties, but the correlation difference
between years was inconsistent. Compared with the correlation between LAI and hy-
perspectral vegetation indexes of the band with red-edge, such as MSRI, MTCI, VOGI,
VOG2, VOGS3, Clred-edge, and REIPlinear, the correlation between AGB and vegetation
index was weak. The hyperspectral vegetation indexes with good stability and strong
correlations were TCARI and SRI-2. The correlation between these two indexes and the
AGB of Xinluzao 45 was as high as 0.686 in 2019, showing a very significant correlation.
Relative to Xinluzao 45, the correlation coefficients between Xinluzao 53 and the indexes
were low, ranging from 0.40 to 0.45.

Through a comprehensive comparative analysis of the correlations between LNC,
CND, LAI, AGB, and 30 hyperspectral vegetation indexes of drip-irrigation cotton, the
correlation between LNC and vegetation index was the least, and the highest correlation
index was SRI-2, r = —0.533. There was also a very significant correlation between this
index and LAI and AGB between years and varieties, with the highest values being 0.628
and 0.686, respectively. The correlation of LNC as an individual index was lower than that
of the other three population canopy indexes (CND, AGB, LAI). It showed that canopy
hyperspectral is more suitable for quantitative analysis of population canopy indexes.
Secondly, the canopy indexes CND, LAI, and AGB were correlated with the hyperspectral
vegetation indexes Clred-edge and REIPlinear. These two indexes were related to the
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red-edge position, indicating that the red-edge position has a high potential value for
studying the canopy indexes of drip-irrigation cotton.

3.3. Establishment and Validation of the LNC and CND in Cotton Estimation Model Based on
Hyperspectral Vegetation Indexes

The modeling methods of this study were simple multiple linear regression (MLR),
partial least-squares regression (PLSR), and support vector machine regression (SVR). The
hyperspectral vegetation indexes obtained from the analysis in 3.2.2 were used to establish
the estimation model of each index of each growth period and for the entire growth period
of drip-irrigation cotton. The model parameters of LNC were TCARI, PRI, CCRI, and
SRI-2, and the model parameters of CND were MTCI, NDVI705, VOG1, VOG2, VOGS,
Clred-edge, and REIPlinear. The best estimation models for the entire growth period and
individual growth periods were obtained by using the coefficient of determination (R?) and
the RPD optimality principle.

3.3.1. Establishment and Verification of the Nitrogen in Cotton Entire Growth Period
Estimation Model Based on Hyperspectral Vegetation Index

The model parameters of the LNC and CND of drip-irrigation cotton are shown in
Table 8. The R? of the estimation model of leaf nitrogen concentration in 2020-53 was higher,
and the coefficient of determination of the model had the range R? = 0.442~0.797. For
2019-45, the model accuracy was less than for 2020-53, but its RMSE value was the smallest.
For the two-year model, the verification model R? of 2019-45 was the lowest. Among the
three modeling methods, the precision of the support vector machine regression method in
2020-53 was the highest; R?c = 0.797, R?v = 0.612. For the LNC of cotton in this study, SVR
could improve the accuracy of the estimation model.

Table 8. Parameters of the nitrogen estimation model for the entire growth period of drip-irrigation
cotton based on vegetation index.

Nitrogen  Model 2020-53 2019-53 2019-45
Index  Parameter MLR PLSR SVR MLR PLSR SVR MLR PLSR SVR
R2c 0.442 0.442 0.797 0.245 0.239 0.259 0.36 0.346 0.705
LNC RMSEc 5.569 5.476 3.308 3.198 3.134 3.100 3.193 3.223 2.241
R2v 0.769 0.520 0.612 0.680 0.362 0.289 0.179 0.172 0.239
RMSEv 4.988 4.988 4.929 2.871 2.851 3.026 3.535 3.552 3.417
R2c 0.207 0.113 0.197 0.590 0.565 0.708 0.600 0.574 0.770
CND RMSEc 2536 2.579 2501 2.498 2472 3.652 2.923 2912 2.144
R2v 0.586 0.090 0.118 0.742 0.403 0.406 0.555 0.562 0.642
RMSEv 2.491 2.517 2.502 2.693 2.775 3.664 0.138 1.020 1.180

For the establishment of the estimation model of cotton canopy nitrogen density under
drip irrigation, the estimation model of 2020-53 had the least effect, with the highest R?c of
0.113, but the model R%c of 2019-45 was the highest (0.770); R?>v = 0.642, and the RMSEc was
higher than the model RMSEc established by SVR for 2019-53. The overall modeling effect
of 2019-45 was better; R? = 0.574~0.770. Among the three modeling methods, SVR had the
best effect. Combined with the minimum value of CND in Table 4 (overall characteristics
of samples in the whole growth period) and the RMSE of the model, the results indicated
that the established model was not conducive to estimating the smaller value of CND.

3.3.2. Establishment and Verification of a Cotton Leaf Nitrogen Concentration Estimation
Model at Different Growth Stages Based on Vegetation Index

In this study, MLR, PLSR, and SVR were used to estimate the leaf nitrogen concen-
tration in four growth stages (bud stage, initial flowering stage, flowering and boll stage,
and full-boll stage) of drip-irrigation cotton. As shown in Figure 7, SVR improved the
accuracy of the model for leaf nitrogen concentration in different years, especially at the
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initial flowering stage. The accuracy R?c of the estimation model was between 0.732~1. In
the bud stage of 2019-45 and the initial flowering stage of 2019-53, the estimation model R%c
values of the LNC were 0.990 and 1, but the validation model R?v values were 0.158 and
0.017, respectively. The overfitting phenomenon of the model showed that for the applica-
tion of SVR, it was necessary to select an appropriate training set and validation set data
division method to improve the applicability of the model. Compared with the overfitting
of the SVR model, the model accuracy R%c obtained by the MLR modeling method was the
highest, occurring in the flower and boll periods in 2019-53. The modeling accuracy was
0.609, and the verified R?v was 0.25. The overfitting phenomenon also occurred.
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0.8
Flowering and bolling {SSIRGRORCERQRS IR ORI |5 S| os
Initial flowering stage TSRS NIRRT  FURENICININS J’ 0.4
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Figure 7. Estimation of model parameters of cotton leaf nitrogen concentration at different
growth stages.

By analyzing the model parameters of cotton at each growth stage, the model accuracy
at the bud stage was the lowest, and that at the flowering and boll stages was the highest
(Figure 7). Compared with other growth stages, the model R? established by the test set
and verification set in the flowering and boll stages was relatively stable, especially in
the model parameters of 2020-53. The R? of the test set and verification set model was
stable between 0.151 and 0.292, and the accuracy of the model was low. On the whole,
the modeling effect of the vegetation index screened by correlation in each growth period
of leaf nitrogen concentration of drip-irrigation cotton was lower than that for the entire
growth period.

3.3.3. Establishment and Verification of a Cotton Canopy Nitrogen Density Estimation
Model at Different Growth Stages Based on Hyperspectral Vegetation Indexes

According to the analysis in Table 7, seven hyperspectral vegetation indexes (MTCI,
NDVI705, VOG1, VOG2, VOGS3, Clred-edge, and REIPlinear) were selected to establish
the CND model for cotton in each growth period. The MLR method used to estimate
and verify the model of cotton bud stage under drip irrigation had the highest accuracy,
especially the model established in 2020-53, with R?c of 0.427 and R?v of 0.406 (Figure 8).
The model for the bud period had the highest accuracy via the MLR method, especially
the model established in 2020-53 (Figure 8). The model R2%c was 0.427, R2v was 0.406, and
the established model was relatively stable. Compared with the parameter RPD of the
model, the model R2 established by the PLSR method was about 0.19, but the RPDv was
the highest among all validation models at 0.929. The R?c values of 2019-45, 2019-53, and
2020-53 bud-stage CND estimation models established by SVR were the highest (0.476, 1,
and 0.877), but there was an overfitting phenomenon, and the prediction results could not
be achieved for higher CND values.
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Figure 8. Establishment of the CND estimation model for cotton bud stage under drip irrigation.

Compared with the bud stage, the estimation accuracy of canopy nitrogen density
in the initial flowering stage of drip-irrigation cotton was not improved (Figure 9), which
was consistent with the results for the bud stage. The model established by SVR also had a
serious overfitting phenomenon, and the canopy nitrogen density data in 2019-53 also had
serious overfitting.

Compared with the bud stage and initial flowering stage, the accuracy of CND estima-
tion models for the flowering and boll stages and full-boll stage was improved. The model
parameters established by MLR in the flowering and boll stages showed that the R%c and
R2?v of the CNID of cotton estimation models in 2019 and 2020 were stable at 0.544~0.658.
Among these, 2020-53 had the best modeling effect; R%c and R2v were 0.658 and 0.601,
respectively, and RPD values were 1.558 and 1.131 (Figure 10). However, the RMSEv value
of the 2020-53 model validation set was higher than those of the two varieties in 2019,
which were 2.127, 1.045, and 1.947, respectively. Among the two varieties in 2019 and 2020,
the parameters RPDc and RPDv established by MLR were 1.131~1.840. The RPD value of
the model established based on the data of 2019-53 was the highest, and the RMSE value
was the lowest. The RPD of the test set and the verification set were 1.840 and 1.774, and the
RMSE values were 1.123 and 1.045. In this study, the precision of the model established by
the PLSR method for the flowering and boll stages was better than those for the bud stage
and initial flowering stage. The R?c values of the model constructed by PLSR in 2019-45
and 2020-53 were 0.568 and 0.658, respectively. In general, the three modeling methods
were applicable to the establishment of a cotton CND model in 2019-45; R?c = 0.568~0.764,
RPDv =1.155~1.284. The MLR modeling method was suitable for the estimation of cotton
CND between different years and varieties.
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Figure 9. Vegetation index estimation and validation model parameters of canopy nitrogen density
of drip-irrigation cotton at the initial flowering stage.

According to the establishment of the CND estimation model in the full-boll period of
drip-irrigation cotton (Figure 11), the R? value of the estimation and verification model was
the highest and the most stable. The R%c and R?v values were 0.558 and 0.600, and RPDc
and RPDv were 1.348 and 1.284, respectively. In the full-boll period, the modeling effects of
PLSR and SVR did not show advantages, and overfitting occurred in the CND estimation
by SVR in four growth stages.

To summarize, when using multiple hyperspectral vegetation indexes to estimate LNC
and CND of cotton in individual growth periods, the MLR method was the most stable,
the estimation established by SVR was prone to overfitting, and the estimation accuracy of
the CND model was better than that of the LNC model. The results of this study showed
that in the four different growth periods, the estimation effect of CND in the later growth
period (flowering and boll period and full-boll period) was the best. The vegetation index
calculated by the original canopy spectrum was used in this study. The planting density of
drip-irrigation cotton in Northern Xinjiang was relatively high. In the later growth period
of cotton, the ridge of cotton is closed, reducing the impact of soil and plastic film on the
canopy spectrum. The hyperspectral vegetation indexes could better reflect the nutritional
status of cotton.
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Figure 10. Parameters of CND estimation and verification model of drip-irrigation cotton at flowering

and boll stage based on vegetation index.
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Figure 11. Parameters of CND for the estimation and verification of the model of drip-irrigation
cotton at full-boll period based on vegetation index.
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4. Discussion

This study explored the application of hyperspectral vegetation indexes in nitrogen
estimation in cotton by examining the correlations between 30 published hyperspectral
vegetation indexes and the LNC and CND of cotton. Some researchers believe that leaf
nitrogen accumulation is affected by many factors, such as leaf nitrogen content, specific
leaf weight, leaf area index, variety, and canopy structure, making it more difficult to
estimate than the LNC. Therefore, the LNC estimation model is better than the leaf nitro-
gen accumulation estimation model [10,15]. The research of Xue et al. [41] showed that
compared with the nitrogen content of rice leaves, the correlation between leaf nitrogen
accumulation and canopy reflectance was consistent during the entire growth period, and
the prediction ability of the leaf nitrogen accumulation estimation model was better. It has
been considered that the effect of estimating the light layer index using original canopy
spectral data is better than using the individual indexes. Zhao et al. [42] suggested that
CND was a more sensitive parameter than LNC. The correlation coefficients between
LNC, CND, and spectral index changed with the growth stage of winter wheat. A single
spectral parameter was not dominant as the best variable, and the red-edge position was a
good index for the estimation of winter wheat LNC. The same research showed that the
red-edge chlorophyll index Clred-edge and REIPlinear were more sensitive to the canopy
and nitrogen [10,11], consistent with the results of this study. Both LNC and CND screened
indexes in this study included these two indexes. In addition, some studies have found
that while there was no significant difference in leaf nitrogen content N% between different
growth periods [10], the vegetation index would show large differences among nitrogen
application levels and growth periods of crops [43]; this may also be the reason for the
differences in cotton LNC and CND estimation based on hyperspectral vegetation indexes.

In this study, the nitrogen in each growth stage and in the entire growth stage of cotton
was estimated by using the same selected group of hyperspectral vegetation indexes. The
results showed that there was no extremely significant correlation between cotton leaf
nitrogen concentration and canopy nitrogen density and each vegetation index at bud stage
and initial flowering stage (Figures 5 and 6). There were weak correlations between the
indexes of drip-irrigation cotton and vegetation index in each growth period. This study
assumed that the use of hyperspectral vegetation indexes to estimate nitrogen during a
single growth period is limited by the content difference. Previous studies had shown that
a strong statistical relationship between spectral information and crop nitrogen status was
not possible anywhere or at any time, suggesting that nitrogen inversion of a single spectral
index should expand the sample size and coefficient of variation of samples and require
more in-depth studies [19,44,45]. This result was also shown in the study of Li et al. [43]
and Li et al. [46], where the correlation coefficients between 384 samples of winter wheat
leaf nitrogen concentration and individual vegetation index were not ideal (r = 0.48 to 0.06).
When using the entire growth period data and vegetation index input, there were strong
correlations, indicating that the greater the sample difference, the better the correlation
with vegetation index. The correlation between canopy nitrogen density and hyperspectral
vegetation indexes increased in the full-boll period (Figure 6) and the R? of the model
established by using multivariate vegetation index were higher in the flowering and boll
period (R%. = 0.544~0.658) and full-boll period (R?. = 0.532~0.665). It may be that the
planting density of drip-irrigation cotton in Xinjiang is high and reached the highest at
full-boll period. However, this study used the hyperspectral vegetation indexes selected by
correlation to estimate the same group of hyperspectral vegetation indexes, especially when
the modeling method of MLR showed obvious modeling advantages. This demonstrated
that the interaction between multiple hyperspectral vegetation indexes could improve the
accuracy of the model and facilitate the application in agricultural production of remote
sensing technology.

Existing research results have shown that the relationship between a single vegetation
index and nitrogen in cotton is not a simple linear relationship. The relationship between the
two is better fitted by a power function or exponential function, and the parameters of this
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relationship are uncertain [43,44]. In this study, MLR, PLSR, and SVR modeling methods
were used to estimate nitrogen during the entire growth period of drip-irrigation cotton.
SVR showed strong advantages, consistent with the results of Yao et al. [20]. However,
for the nitrogen estimation during individual growth periods, the model was prone to
overfitting (Figures 7-10). For the estimation of nitrogen in cotton in the single growth
periods, the research showed that the CND estimation model established by MLR was
relatively stable and had strong applicability between years and varieties (Figures 8-11),
especially for the later stages (flowering and boll stages and full-boll stage).

5. Conclusions

In this study, by analyzing the correlation between the canopy spectral index of
two drip-irrigation cotton varieties and the main nitrogen indexes of cotton in 2019 and
2020, estimation models of cotton LNC and CND based on MLR, PLSR, and SVR were
established. The main conclusions are as follows:

(1) The correlations between nitrogen indexes (LNC, CND) and 30 hyperspectral vegeta-
tion indexes in each growth stage of cotton were low in the early growth stages, and
the growth stages with a strong correlation were in the late growth stage (i.e., flower-
ing and boll stages and full-boll stage).

(2) TCARI, PRI, CCRI, SRI-2, and LNC had significant correlations between years and
varieties. mND705, SRI-1, MSRI, MTCI, TCARI, NDVI705, VOG1, VOG2, VOGS3,
CCRI, CIred-edge, and REIPlinear had good and relatively stable correlation with
cotton canopy nitrogen density between varieties and years. For the application of
different modeling methods, when establishing the estimation models of cotton LNC
and CND for the entire growth period, SVR showed a good modeling effect and could
significantly improve the R?c of the model validation set, but the model established
by SVR was prone to serious overfitting. For the establishment of a nitrogen in
cotton estimation model for individual growth periods, SVR and PLSR were prone to
overfitting, while the estimation model established by MLR had strong applicability
between years and varieties.

(3) Based on multi-temporal nitrogen in cotton data and canopy spectral data, the model-
ing effect of canopy nitrogen density (population index) was better than leaf nitrogen
concentration (individual index), and the estimation accuracy of the model in the later
stages of cotton growth (flowering and boll stages and full-boll stage) was better than
that in the early stages of cotton growth (bud stage and initial flowering stage).
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