

Article Physiological Responses and Phytoremediation Abilities of Cucumber (*Cucumis sativus* L.) under Cesium and Strontium Contaminated Soils

Shahzaib Ali ^{1,2,3}, Dan Wang ^{1,*}, Abdul Rasheed Kaleri ¹, Sadia Babar Baloch ³, Martin Brtnicky ^{4,5}, Jiri Kucerik ⁵ and Adnan Mustafa ^{4,5,6,*}

- ¹ College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; alisha00@zf.jcu.cz (S.A.); arasheedkaleri@yahoo.com (A.R.K.)
- ² Key Defense Laboratory of the Nuclear Waste and Environmental Security, Mianyang 621010, China
- ³ Department of Agroecosystems, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; babars00@zf.jcu.cz
- ⁴ Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; martin.brtnicky@mendelu.cz
- ⁵ Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic; kucerik@fch.vut.cz
- ⁶ Institute for Environmental Studies, Faculty of Science, Charles University in Prague, 12800 Prague, Czech Republic
- * Correspondence: wangdan@swust.edu.cn (D.W.); adnanmustafa780@gmail.com (A.M.)

Abstract: Soils contaminated with radionuclides pose a long-term radiation hazard to human health through food chain exposure and other pathways. The uptake, accumulation, and distribution of ¹³³Cs, individual ⁸⁸Sr, and combined ⁸⁸Sr + ¹³³Cs, with their physiological and biochemical responses in greenhouse-potted soil-based cucumber (Cucumis sativus L.), were studied. The results from the present study revealed that the uptake, accumulation, TF, and BCF ability of cucumber for ⁸⁸Sr + ¹³³Cs were greater than for ¹³³Cs and ⁸⁸Sr while the concentration was the same in the soil (10, 20, 40, 80, and 160 mg kg⁻¹). The highest ⁸⁸Sr + ¹³³Cs accumulation was 2128.5 μ g g⁻¹dw, and the highest accumulation values of ¹³³Cs and ⁸⁸Sr were 1738.4 μ g g⁻¹dw and 1818.2 μ g g⁻¹dw (in 160 mg kg⁻¹), respectively. The lowest 88 Sr + 133 Cs, 133 Cs, and 88 Sr accumulation values were 416.37 µg g ${}^{-1}$ dw, 268.90 μ g g⁻¹dw, and 354.28 μ g g⁻¹dw (10 mg kg⁻¹), respectively. MDA content was higher under ⁸⁸Sr and ¹³³Cs stress than under ⁸⁸Sr + ¹³³Cs stress. Chlorophyll content increased at 10 and 20 mg kg⁻¹; however, it decreased with increasing concentrations (40, 80, and 160 mg kg⁻¹). Proline content and the activities of CAT, POD, and SOD were lower under ¹³³Cs and ⁸⁸Sr than ⁸⁸Sr + ¹³³Cs stress. The ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatment concentrations sequentially induced some enzymes over 60 days of exposure, suggesting that this complex of antioxidant enzymes—CAT, POD, and SOD—works in combination to reduce the impact of toxicity of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs, especially in young leaves. It is concluded that cucumber reveals considerable phytoremediation capabilities due to unique growth potential in contaminated substrate and is suitable for the bioreclamation of degraded soils. The plant is especially applicable for efficient phytoextraction of ⁸⁸Sr + ¹³³Cs contamination.

Keywords: cucumber; ¹³³Cs; ⁸⁸Sr; soil pollution; phytoextraction; bio-accumulation

1. Introduction

Soil contaminated with radionuclides due to anthropogenic activities, nuclear weapons testing, pollution of the nuclear power plants, accidents such as the Chernobyl disaster, and dumping of nuclear waste create significant challenges to the ecosystem [1,2]. The long life expectancy of radionuclides and their extensive presence instigate severe pollution of the soil, including agriculture and farmland [1,3]. Human beings are directly or indirectly

Citation: Ali, S.; Wang, D.; Kaleri, A.R.; Baloch, S.B.; Brtnicky, M.; Kucerik, J.; Mustafa, A. Physiological Responses and Phytoremediation Abilities of Cucumber (*Cucumis sativus* L.) under Cesium and Strontium Contaminated Soils. *Agronomy* 2022, *12*, 1311. https:// doi.org/10.3390/agronomy12061311

Academic Editor: Massimo Fagnano

Received: 19 April 2022 Accepted: 26 May 2022 Published: 30 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). exposed to these pollutants in soil and waste streams through different ways, such as eating contaminated food crops or drinking contaminated water, which may cause serious harms to human health. In this regard, ¹³³Cs and ⁸⁸Sr are transferred to plants due to absorption by roots from the liquid phase of the soil [4,5]. The availability of radionuclides in soil solutions is influenced by a variety of factors, including climate, soil variables (such as organic matter, pH, CEC, and soil microbes), and plant characteristics such as taxonomy, morphology, and physiology [6–8]. Although Sr and Cs do not have known functions to perform in the plant body, being chemically similar to essential Ca and K, they are believed to enter into the plant body using Ca and K transporters in the cell membrane. Therefore, they compete with K and Ca ions, causing the significant reduction in their transport to the cytoplasm and an ultimate deficiency of these essential elements in plant [9-11] where they cause potential metabolic interference and growth and productivity loss [12]. Moreover, the ability of plants to absorb stable isotopes ⁸⁸Sr and ¹³⁴Cs from the soil is similar to their ability to absorb radioactive ⁹⁰Sr and ¹³⁷Cs; according to certain research, the transport and dispersion of ¹³⁷Cs and ⁹⁰Sr in the plant soil system can be very well simulated using ¹³³Cs and ⁸⁸Sr [13,14].

In recent years, the role of phytoremediation in the restoration of contaminated areas of ⁹⁰Sr and ¹³⁷Cs has become the focus of research [15–17]. Phytoextraction is considered as an alternate to existing physical and chemical reduction methods. The amount of soil to be treated has decreased by nearly 100 times, but this process takes time and leads to the absorption of radionuclide biomass [18,19]. Phytoextraction is suitable for those hyperaccumulator plants that have huge biomass, quick growth periods, and that move toxic pollutants from the soil to harvestable parts (leaf and stem) of the plants. However, the efficiency of plants for accumulating these toxic pollutants from the soil and transporting them to their aboveground parts depends upon the plant species, growth conditions, and soil types [20]. There has been a sparse amount of literature reporting the ability of horticultural crops for the phytoextraction of ⁹⁰Sr and ¹³⁷Cs from contaminated sites.

In the past, it has been reported that leafy vegetables, e.g., komatsuna (Brassica rapa var. perviridis) and mustard (Brassica juncea), which possess large root volumes and root surface areas, had a higher 137 Cs transfer value than the root vegetables radish (*Raphanus sativus*) and turnip (Brassica rapa var. glaba) [2]. Moreover, in the phytoremediation of Cs-polluted soil, oilseed rape and New Zealand spinach were found to be promising plant species, as were pumpkin and sunflower for Sr-polluted soil [1]. However, for the phytoremediation of Cs- and Sr-polluted soil, not only the absorption ability but also the characteristics of the species used should be considered and evaluated [1]. Therefore, we assumed that cucumber plants used in the present study would have high Sr and Cs absorption and transport ability owing to their rapid growth, extensive root system, and high survival and tolerance to excessive concentrations of heavy metals. Moreover, concern may arise for its end-use, and for this purpose we would like to recommend that contaminated residual biomass can be utilized for bioenergy production in addition to its safe disposal options, e.g., in a landfill [21–23]. Thus, integrating phytoremediation with valuable material and bioenergy production can make the process economically viable. Thus, in the present study, cucumber plants were utilized to assess their efficacy to tolerate combined ⁹⁰Sr and ¹³⁷Cs stress. The specific objectives of the present study were to evaluate the bioaccumulation, transportation, and distribution of individual ¹³³Cs and ⁸⁸Sr and combined ⁸⁸Sr + ¹³³Cs and to assess the physiological and biochemical responses of cucumber (Cucumis sativus L.) grown in greenhouse-potted soil. In addition, we analyzed the phytoextraction efficiency in the plants in order to assess whether the cucumber plants can grow and remediate the 88 Sr, 133 Cs, and 88 Sr + 133 Cs in contaminated soils.

2. Materials and Methods

2.1. Soil Collection and Seedling Growth

The soil was collected from the nursery garden center of the Southwest University of Science and Technology, Mianyang, China. Firstly, collected soil samples were air dried

and then grinded and passed through a 2 mm sieve. The pH values of soil in water (H₂O) and potassium chloride (KCl) were determined using a pH meter, and soil organic matter (SOM) was determined according to the Walkley–Black method. Deionized water (5 mL) was mixed with 1 g of grinded and sieved soil, and the soil's electrical conductivity was measured. The primary physical and chemical characteristics of the soil were pH H₂O = 7.0, pH KCl = 6.22, soil organic matter percentage = 1.24, and electrical conductivity (mS/cm) = 1.12. Cucumber plant seeds were purchased from the Mianyang seed company, the nutritional soil was filled with small bags of polyethylene for seedlings, and seeds were planted approximately 1 cm deep in uncontaminated soil (one seed in each bag).

2.2. Treatment and Experimental Design

The pot experiment was carried out in the greenhouse of Southwest University of Science and Technology in Mianyang, China (E = $104^{\circ}41'$, N = $31^{\circ}32'$). The sieved soil was kept on a waterproof sheet and mixed with ⁸⁸Sr (NO₃)₂,¹³³CsCl, and ⁸⁸Sr (NO₃)₂ + ¹³³CsCl solutions to obtain appropriate concentrations in soil (Table 1). The soil was then allowed to stabilize for at least 30 days. Uncontaminated soil was used as a control. Each pot (25 cm in diameter, 20 cm in height) was filled with 4.5 kg of concentrated soils. Three uniform 15 day-old seedlings were transferred into each pot, and three pots of each treatment and three replicates were used in a randomized complete block design (RCBD). Plants were irrigated with tap water up to 100% for their field potential to maintain 41.9% soil moisture. Every pot was kept on the plastic dishes to collect leachates, which were applied periodically to the pot soil to minimize treatment loss. After transport of the seedlings, the pot trial lasted for 60 days.

______ Treatment Treatment

Table 1. Concentration of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs applied in soils.

Treatment (mg/kg ⁻¹)	Treatment						
	0 (ck)	1	2	3	4	5	
⁸⁸ Sr	0	10	20	40	80	160	
¹³³ Cs	0	10	20	40	80	160	
88 Sr + 133 Cs (1:1)	0	10 + 10	20 + 20	40 + 40	80 + 80	160 + 160	

Note: 0 is the control, each treatment is repeated three times.

2.3. Growth Measurements

The growth of the whole plant was measured after the harvest. Stainless steel scissors were used to cut the plant specimens into two parts, namely shoot and root, after rinsing with distilled water. Specimens were first measured using a scale to determine shoot height (cm), root length (cm), and leaf area (cm²), and after that they were air dried in a natural cool environment and well-ventilated location, and then oven-dried for 24 h at (68 °C \pm 2 °C). The dry weight (g plant⁻¹) of each part was weighed to calculate the biomass.

2.4. Assessing the ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Accumulation

Inductively coupled plasma-optical emission spectrometry (ICP-MS; version 715-ES ICP-MS; version, Palo Alto, CA, USA) with the acid digestion method was used to assess the plant concentrations of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs in shoot and root, as stated by [24]. In brief, 15 mL HNO₃ and HClO₄ (3:1 v/v) were used to acid digest 0.5 g of dried shoot tissue and 0.3 g of dry root tissue. The digestive vessels of the specimens were kept for 15 min in a microwave-assisted digestion system (MDS-6G) between 120 and 190 °C, for 15 and min at 190 °C for 30 min at 190 °C. Finally, the digested specimens were diluted with deionized water to a final volume of 50 mL for individual ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs in the plants' roots and shoots were calculated according to [25].

2.5. Phytoextraction Potential

The plant extraction capacity was determined by measuring the biological concentration factor (BCF) and transfer factor (TF) of the nuclide. BCF is the ratio of nuclide concentration in the aboveground part of the whole plant to nuclide concentration in the soil, and TF is the ratio of the nuclide concentration in the aboveground part of the plant to the root of the plant [26].

BCF and TF were calculated by these formulas:

$$BCF = C_{shoot} (\text{mg kg}^{-1} \text{ dw}) / C_{soil} (\text{mg kg}^{-1} \text{ dw})$$
$$TF = C_{shoot} (\text{mg kg}^{-1} \text{ dw}) / C_{root} (\text{mg kg}^{-1} \text{ dw})$$

where C_{shoot} , C_{root} , and C_{soil} , respectively, are concentrations of nuclides in shoot, root, and soil.

2.6. Assessing the Physiological and Biochemical Indexes

The contents of chlorophyll content, malondialdehyde (MDA), proline, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were measured from the plant leaves. Total chlorophyll content was calculated using the Li technique and quantified at 652 nm using the 95% ethanol colorimetric method [27]. The content of MDA was determined by total bile acid colorimetry, as in [27]. The content of the proline was determined by the Bates method [28]. The activity of SOD and POD was determined by Li's method, and SOD activity was assayed based on the reduction of NBT (nitroblue tetrazolium). This reaction was conducted in sodium phosphate buffer (50 mM, pH 7.8) containing 100 μ L of enzyme extract, 2 μ M riboflavin, 65 μ M NBT, 13 μ M methionine, and 1μ M ethylenediamine tetraacetic sodium. The 3 mL reaction mixture was initialed by illumination for 2 min at 25 °C, and the absorbance of blue formazan was measured with a spectrophotometer (UV-3802, Unico, Shanghai, China) at 560 nm. One unit of SOD activity (U) was defined as the amount of enzyme that caused 50% inhibition of NBT reduction. POD activity was determined by measuring the absorbance changes at 470 nm and 25 °C. The reaction was performed in a 3 mL solution. A 10 μ L volume of enzyme solution was added to 2.99 mL of sodium phosphate buffer (50 mM, pH 6.0) containing 18.2 mM guaiacol and 4.4 mM H_2O_2 as substrates. POD activity was defined as the amount of enzyme that caused an increase in absorbance at 470 nm of 0.001 per minute. CAT activity was measured by monitoring the decrease of H_2O_2 at 240 nm for 1 min at 25 °C. The 3 mL reaction mixture contained 100 µL of enzyme extract and 2.9 mL of sodium phosphate buffer (50 mM, pH 6.0) containing 10 mM H₂O₂. CAT activity was calculated as the amount of enzyme that caused a reduction in absorbance at 240 nm of 0.01 per minute [27]. The experimental results are the average of three replicates.

2.7. Statistical Analysis

The data were tested for normalities and variance homogeneity, and they were logtransformed to correct the deviations from those assumptions when necessary. Treatment means were compared using a two-way analysis of variance. All measurements were checked by Microsoft Excel 2013, IBM SPSS Statistics V22.0, and the Origin Pro 8.0 mapping software.

3. Results

3.1. Growth Characteristics of Cucumber under ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Stress

Plant growth is a primary stress indicator, and its response to any stress can predict the level of toxicity in the environment. In this context, the measuring growth response of cucumber to ¹³³Cs, ⁸⁸Sr, and ⁸⁸Sr + ¹³³Cs was one of the primary objectives of this study. The growth in the form of shoot height, root length, and leaf area (Figure 1) was not significantly reduced by ⁸⁸Sr and ¹³³Cs individual treatments or ⁸⁸Sr + ¹³³Cs in combination. The applications of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs (at 10 mg kg⁻¹) significantly decreased shoot

height, root length, and leaf area in comparison to the control, but higher concentrations (20, 40, 80, 160 mg kg⁻¹) did not cause any further significant decrease in plant growth characteristics. ¹³³Cs and ⁸⁸Sr individually and in combination produced non-significant stress even at the lowest concentration of 10 mg kg⁻¹ and reduced shoot length, root length, and leaf area. This suggested the degree of toxicity produced by the two nuclides. Higher shoot height, root length, and leaf area of ⁸⁸Sr (99.93 cm, 13.23 cm, 93.62 cm², respectively), ¹³³Cs (80.40 cm, 16.46 cm, 76.82 cm², respectively), and ⁸⁸Sr + ¹³³Cs (105.36 cm, 17.5 cm, 99.09 cm², respectively) were recorded at 10 mg kg⁻¹ concentrations. However, lower shoot height, root length, and leaf area of ⁸⁸Sr (78.3 cm, 11.56 cm, 48.28 cm², respectively), ¹³³Cs (62.23 cm, 12.43 cm, 27.80 cm², respectively), and ⁸⁸Sr + ¹³³Cs (83.33 cm, 12.83 cm, 52.52 cm², respectively) were recorded at 160 mg kg⁻¹ concentrations. The individual ¹³³Cs, at its highest concentration, showed the significantly highest shoot height, root length, and leaf area reduction compared to ⁸⁸Sr and ⁸⁸Sr + ¹³³Cs, proving itself to be more toxic.

Figure 1. Shoot height, root length, and leaf area responses of cucumber to various concentrations (0 to 160 mg kg⁻¹) of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr +¹³³Cs treatments. The columns sharing different letters are significantly different at p < 0.05. The error bars indicate standard deviation.

3.2. Effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs on the Biomass Distribution of Cucumber

The effects of ⁸⁸Sr and ¹³³Cs individually and ⁸⁸Sr + ¹³³Cs combined on the shoot and root dry biomass showed (Table 2) that the shoot and root biomass in ⁸⁸Sr-, ¹³³Cs-, and ⁸⁸Sr + ¹³³Cs-treated plants were significantly lower compared to their controls. It was observed that the ⁸⁸Sr + ¹³³Cs treatment had lower effects and produced higher shoot biomass of 6.297 \pm 0.18 g dw plant⁻¹ at the 10 mg kg⁻¹ level than did the ⁸⁸Sr + ¹³³Cs treatments, while minimum shoot biomass was recorded at the 160 mg kg⁻¹ level of ¹³³Cs (2.054 \pm 0.18 g dw plant⁻¹). The maximum root biomass (1.499 \pm 0.06 g dw plant⁻¹) produced by ⁸⁸Sr + ¹³³Cs at a 10 mg kg⁻¹ concentration was significantly the highest biomass value among all treatments except for the control (Table 2). It was interesting that this treatment showed non-significant variation in root biomass up to 40 mg kg⁻¹ levels and declined significantly at 80 and 160 mg kg⁻¹ levels.

	Concentration	Plant Biomass (g dw Plant ⁻¹)			
	(mg kg $^{-1}$)	Shoot	Root	Total	
⁸⁸ Sr	0	9.443a	2.362a	11.80a	
	10	4.848bc	1.133cd	5.981bcd	
	20	4.431bc	1.040de	5.472bcd	
	40	4.321bc	0.995de	5.316bcd	
	80	4.193bc	0.966de	5.160bcd	
	160	3.501bc	0.815ef	4.317bcd	
Treatmen	nt mean for ⁸⁸ Sr	5.122AB	1.218AB	6.341AB	
¹³³ Cs	0	9.443a	2.362a	11.80a	
	10	3.373bc	0.815ef	4.188bcd	
	20	3.266bc	0.787ef	4.054bcd	
	40	3.217bc	0.610fg	3.828cd	
	80	2.838bc	0.592fg	3.431cd	
	160	2.054c	0.470g	2.525d	
Treatmen	nt mean for ⁸⁸ Sr	4.031B	0.939B	4.971B	
88 Sr + 133 Cs	0	9.443a	2.362a	11.80a	
	10	6.297ab	1.499b	7.797b	
	20	5.709bc	1.378bc	7.087bc	
	40	5.083bc	1.209bcd	6.293bcd	
	80	4.392bc	1.068de	5.460bcd	
	160	3.836bc	0.925de	4.762bc	
Treatment r	nean for ⁸⁸ Sr ¹³³ Cs	5.793A	1.406A	7.199A	
Treatment $ imes$ concentration interaction		NS	NS	NS	

Table 2. Effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs on the biomass distribution of cucumber.

Note. Different lowercase letters, in a single column, show significant differences among concentration means at p < 0.05, while different upper case letters, in a single column, show significant differences among the treatment means at p < 0.05. NS = non-significant.

3.3. ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Bio-Accumulation in Plant and Phytoextraction Potential

The ⁸⁸Sr +¹³³Cs accumulation in total plants was shown to be significantly higher than that of ⁸⁸Sr and ¹³³Cs among all treatment concentrations (Table 3); however, accumulation in shoot and root was significant with ⁸⁸Sr and ¹³³Cs at the 160 mg kg⁻¹ level. Similarly, at treatment concentrations of 10, 20, and 40 mg kg⁻¹, the ⁸⁸Sr + ¹³³Cs accumulation in both root and shoot were non-significant; the highest accumulation in the shoot part was 1514.4 \pm 240.1 µg g⁻¹dw detected in ⁸⁸Sr + ¹³³Cs followed by 1196.8 \pm 47.78 µg g⁻¹dw in ⁸⁸Sr at 160 mg kg⁻¹ treatment concentrations. However, the ⁸⁸Sr and ¹³³Cs, individually and combined, showed significant accumulation in root, namely 621.37 \pm 65.5^a µg g⁻¹ dw for ⁸⁸Sr, 606.16 \pm 95.6 µg g⁻¹ dw for ¹³³Cs, and 614.12 \pm 37.3 µg g⁻¹ dw for ⁸⁸Sr + ¹³³Cs. The highest total plant accumulation was observed (1738.4 \pm 178.9 µg g⁻¹dw) at ¹³³Cs (160 mg kg⁻¹) treatment concentrations. This revealed that the most important factor affecting the content of ⁸⁸Sr + ¹³³Cs in cucumber plants was the concentration of ⁸⁸Sr + ¹³³Cs in the soil.

The total plant BCF of 88 Sr + 133 Cs was significantly higher than that of 88 Sr and Cs. However, shoot BCF was significantly the highest in 88 Sr + 133 Cs among all treatments (Table 3). The highest total plant values of BCF for 88 Sr (35.42), 133 Cs (26.89), and 88 Sr + 133 Cs (41.63) were recorded at 10 mg kg⁻¹ treatment concentrations. Moreover, the 88 Sr + 133 Cs was found to have the highest TF values (2.78 and 2.51 at 80 and 160 mg kg⁻¹ concentrations, respectively), while values of 88 Sr and 133 Cs were found to be significant (1.97, 1.93) at 160 mg kg⁻¹ treatment concentrations.

		Accumulation (μg. g dw ⁻¹)			TF	BCF	BCF
Treatments	Concentrations	Shoot	Root	Total Plant	Shoot	Shoot	Total Plant
	0	-	-	-	-	-	-
	10	156.23fg	198.05f	354.28	0.79e	15.62bcd	35.42ab
88 0	20	226.95fg	341.52cde	568.46de	0.67de	11.34cd	28.42bc
^{oo} Sr	40	448.64efg	457.91abc	906.55cd	0.98d	11.21cd	22.66bcd
	80	962.44bcd	579.07ab	1541.51bc	1.65c	12.03bcd	19.26cde
	160	1196.84abc	621.38a	1818.22	1.97b	7.48d	11.36ed
Treatment	Treatment mean for ⁸⁸ Sr		439.58A	1037.80AB	1.212B	11.53	23.42AB
	0	-	-	-	-	-	-
	10	125.79g	143.12f	268.90f	0.88e	12.57bcd	26.89bcd
133 0	20	204.27fg	217.48ef	421.74ef	0.94d	10.21cd	21.08bcd
¹³⁵ Cs	40	449.02efg	240.05def	689.06d	1.87c	11.22cd	17.22cde
	80	838.6cde	426.96abc	1265.5c	1.97b	10.48cd	15.81def
	160	1132.27abc	606.16a	1738.4b	1.93b	7.07d	10.86ef
Treatment mean for ¹³³ Cs		549.99B	326.75B	876.72B	1.518B		18.37B
	0	-	-	-	-	-	-
	10	257.65fg	158.72f	416.37ef	1.61c	25.76a	41.63a
⁸⁸ Sr + ¹³³ Cs	20	422.69efg	241.39def	664.08de	1.73b	21.13ab	33.20ab
	40	648.1def	401.38bcd	1049.4cd	1.59c	16.20bcd	26.23cde
	80	1365.01ab	488.59abc	1853.5ab	2.78a	17.06bc	23.16cde
	160	1514.45a	614.13a	2128.5a	2.51ab	9.46cd	13.30ef
Treatment mea	Treatment mean for ⁸⁸ Sr + ¹³³ Cs		380.84AB	1222.37A	2.044A	22.45A	27.505A
Treatment × concentration interaction		NS	NS	NS	NS	NS	NS

Table 3. The effect of 88 Sr, 133 Cs, and 88 Sr + 133 Cs on the bio-accumulation of plants and phytoextraction potential.

Note. Different lowercase letters, in a single column, show significant differences among concentration means at p < 0.05, while different upper case letters, in a single column, show significant differences among the treatment means at p < 0.05. NS = non-significant.

3.4. The Effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Extraction Efficiency on Cucumber

The extraction productivity of cucumber in ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs was determined, and the findings are summarized in Table 4. The results showed that the concentrations of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs in the soil; plant attentiveness; and the amount of plants and pots in the soil steadily rose as the concentration in the soil increased. However, the total plant biomass and the ratio of plant/content in the pot (%) decreased gradually. In the 10 mg kg⁻¹ treatments, the contents of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs were highest among plants with contents in pots, which was 7.06, 3.74, and 10.80% for ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs, respectively. In the 160 mg kg⁻¹ treatment, the ratio was lowest, i.e., 1.63%, 0.91%, and 2.11% for ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs, respectively.

Table 4. The effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs extraction efficiency of cucumber.

⁸⁸ Sr Treatment						
Concentration in Soil (mg/kg)	Concentration in Plant (mg kg $^{-1}$ DW)	Biomass of Total Plant (g /Plant)	Contents in Plant (mg/Plant)	Contents in Pot (mg/Pot)	Ratio b/w Contents in the plant\Contents in a Pot (%)	
0	-	11.80	-	-		
10	177.14	5.98	1.059	45	7.06	
20	284.23	5.47	1.554	90	5.18	
40	453.27	5.31	2.406	180	4.01	
80	770.75	5.16	3.977	360	3.31	

⁸⁸ Sr Treatment									
Concentration in Soil (mg/kg)	Concentration in Plant (mg kg ⁻¹ DW)	Biomass of Total Plant (g /Plant)	Contents in Plant (mg/Plant)	Contents in Pot (mg/Pot)	Ratio b/w Contents in the plant\Contents in a Pot (%)				
160	909.10	4.31	3.918	720	1.63				
	¹³³ Cs treatment								
0	-	11.80	-	-					
10	134.45	4.18	0.562001	45	3.74				
20	210.87	4.05	0.854024	90	2.84				
40	344.53	3.82	1.316105	180	2.19				
80	632.77	3.43	2.170401	360	1.80				
160	869.21	2.52	2.190409	720	0.91				
⁸⁸ Sr + ¹³³ Cs treatment									
0	-	11.80	-	-					
10	208.18	7.79	1.621	45	10.80				
20	332.04	7.08	2.350	90	7.83				
40	524.74	6.29	3.300	180	5.5				
80	926.79	5.46	5.060	360	4.21				
160	1064.2	4.76	5.065	720	2.11				

Table 4. Cont.

3.5. Physiological and Biochemical Response of Cucumber to ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Stress

The chlorophyll, MDA, and proline contents of cucumber are shown in Figure 2. The results reveal that the chlorophyll content of ⁸⁸Sr + ¹³³Cs was observed to be high at each concentration as compared to ⁸⁸Sr and ¹³³Cs. There were non-significant differences detected at 10, 40, and 80 mg kg⁻¹ concentrations of ⁸⁸Sr and ¹³³Cs. The chlorophyll content was observed to be high at low concentrations; however, it decreased as the concentration of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs increased in the soil. The chlorophyll content was detected to be higher in the control (80.30) followed by 70.84, 64.97, and 75.34 mg $g^{-1}FW$ at 10 mg kg⁻¹ of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs, respectively. Similarly, the lowest chlorophyll content was detected (35.25, 34.23 mg $g^{-1}FW$) at (160 mg kg⁻¹) of ⁸⁸Sr and ¹³³Cs, respectively. It was also observed, as seen in Figure 2, that the MDA content of the cucumber plant was increased by increasing the ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs concentrations in soil. The maximum MDA content was detected for ⁸⁸Sr at all concentrations; compared with ¹³³Cs and 88 Sr + 133 Cs, the highest MDA content (0.333 µmol g⁻¹FW, 0.301 µmol g⁻¹FW, and $0.256 \ \mu mol \ g^{-1}FW$) were observed at 160 mg kg⁻¹ treatment concentrations of ⁸⁸Sr, ¹³³Cs, and 88 Sr + 133 Cs, respectively. Similarly, the lowest MDA were observed at 10 mg kg⁻¹ of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs. The MDA content of the cucumber plant was increased at different concentrations of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs compared with the control. Figure 2 demonstrate that the proline content of cucumber leaves under ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs stress was increased as the concentration increased in the soil. Similarly, variable proline contents were detected in the ⁸⁸Sr and ⁸⁸Sr + ¹³³Cs at concentrations of 10, 40, and 80 mg kg⁻¹ compared to ¹³³Cs. The highest proline content of 39.81 μ g g⁻¹FW 88 Sr was observed at the 40 mg kg⁻¹ treatment, and 39.54 μ g g⁻¹FW and 41.10 μ g g⁻¹FW were detected with treatment of 160 mg kg⁻¹ of ¹³³Cs and ⁸⁸Sr + ¹³³Cs, respectively, with significant values (p < 0.001). Under the stress of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs, the rapid accumulation of proline was observed in cucumber as compared to their controls.

Figure 2. The effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs stress on the chlorophyll, MDA, and proline content of cucumber to various concentrations (0 to 160 mg kg⁻¹) of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatments. The columns sharing different letters are significantly different at p < 0.05.

The effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs stress on the CAT, POD, and SOD activity of cucumber plants are presented in Figure 3. The results demonstrated that the CAT activity increased with increases in the ⁸⁸Sr and ⁸⁸Sr + ¹³³Cs concentrations in soil. The highest CAT activities were 72.47 μ g min⁻¹), 62.64 μ g min⁻¹, and 102.49 μ g min⁻¹ detected at 160 mg kg⁻¹ concentration of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatments, respectively, with significant values (p < 0.001). The activity of CAT in the ⁸⁸Sr + ¹³³Cs treatment was higher than the activity of CAT in the treatments of ⁸⁸Sr and ¹³³Cs. It could be concluded from the results that ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs had positive influences on the activity of CAT at high concentrations. The results from Figure 3 demonstrated that the POD activity was increased as ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatment concentrations increased. The maximum POD activity was observed (109.78 μ g min⁻¹) for the ⁸⁸Sr + ¹³³Cs treatment at 160 mg kg⁻¹ concentration. However, the lower POD activity was observed at 10 mg kg⁻¹ of ⁸⁸Sr, 133 Cs, and 88 Sr + 133 Cs treatments. The results of SOD activity significantly increased as the concentration of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs increased compared with the control. The highest SOD activities (136.79 μ g min⁻¹, 93.66 μ g min⁻¹, and 158.49 μ g min⁻¹) were recorded at the 160 mg kg⁻¹ concentration of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatments, while, the lowest SOD activity was 58.40 μ g min⁻¹, 45.90 μ g min⁻¹, and 114.45 μ g min⁻¹ for ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs, respectively.

Figure 3. The effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs stress on the activity of antioxidant enzymes of CAT, POD, and SOD of cucumber to various concentrations (0 to 160 mg kg⁻¹) of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatments. The columns sharing different letters are significantly different at p < 0.05. The error bars indicate standard deviation.

4. Discussion

4.1. Growth Characteristics of Cucumber under ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Stress

The role of ⁸⁸Sr and ¹³³Cs in plant nutrition is unclear. According to several scientists, low concentrations of heavy metal ions in the soil solution can enhance plant growth, while a high concentration of metals such as cesium and chromium in the soil can be toxic to plants and restrict plant growth [29,30]. Plants have different abilities to absorb, transfer, and isolate radionuclides, and it is a well-known fact that Cs does not have any important role in plant growth and metabolism, and hence its higher accumulation in plant biomass may create toxic effects. ¹³³Cs also reduced root length at lower and higher concentrations as compared to ⁸⁸Sr alone and ⁸⁸Sr + ¹³³Cs. Our findings confirm the observations of [5], who found the same growth effects of Cs on *Plantago major*. The reduction in growth is a result of physiological and metabolic impairment caused by metal stress. Since metal stress triggers oxidative stress in plant cells [31], which is obvious from the hyper-regulation of anti-oxidative defense genes against Cs stress [32], a reduction in growth could therefore be the result of such metabolism. Another possible cause of growth reduction can be traced to Cs competitiveness with K. The authors in [33] concluded that Cs uses K channels during its uptake, which causes K deficiencies in the cells. The authors in [32] also showed that Cs enhances oxidative stress when applied in a K-deficient medium. Due to such metabolic and physiologically adverse effects, Cs causes significant losses to growth in many sensitive plants.

Different concentrations of ⁸⁸Sr, when applied individually, also significantly reduced cucumber growth (Figure 1), but as described earlier, its effects were less than those of ¹³³Cs. Like Cs, Sr also does not have important functions in the plant body. Therefore, Sr has also been reported as a toxic heavy metal with its stable isotopes. The Sr toxicity effects on growth from hydroponic experiments have been reported in other plants such as *Oryza sativa* [34], *Brassica juncea* [35], *Arabidopsis thaliana* [36], *Solanum tuberosum* [37], and *Plantago major* [5]. Such findings confirm the toxic effects of ⁸⁸Sr on plant growth. The results of ⁸⁸Sr + ¹³³Cs combined application, at all concentrations, were statistically similar with Sr, although it produced the lowest reduction in shoot length, root length, and leaf area. This suggests that both nuclides when combined masked much of the toxic effects of each other.

4.2. Effect of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs on the Biomass Distribution of Cucumber

Since shoot and root biomass are directly proportional to each other, shoot length and root length results thus coincide with them and prove ¹³³Cs to be more toxic than all other treatments, particularly at higher concentration levels. It is reported that heavy metal ions, even at low concentrations in a soil solution, may decrease plant growth, while their excessive or higher concentrations can be toxic to plants and therefore limit plant growth dangerously [38,39]. This pattern shows that the nuclides when combined can reduce the toxic effects on the growth of plants. Although the mechanism behind this is yet not understood, but can nevertheless open new insights of research, it is documented [40] that plants show cross-protection, a reaction against stress in which one stress may protect the plant against others. ¹³³Cs alone showed significantly high deleterious effects on root biomass from its lowest to highest concentrations compared to all other treatments. However, its effects were non-significant from 10 to 40 mg kg⁻¹ applied concentrations in soil. The ⁸⁸Sr showed non-significant effects to those of 133 Cs on root biomass at 10 and 20 mg kg $^{-1}$, while it produced significantly higher root biomass at concentrations of 20 mg kg⁻¹ an onward than did 133 Cs. The findings of [5,34,41] suggest that root growth was not decreased in Triticum aestivum, Glycine max, and Plantago major at low concentrations; however, our results vary from these findings and suggest that even at lowest concentrations (10 mg kg⁻¹), the reduction effects were significant. The authors in [42], while studying the effects on Amaranthus mangostanus, found that lower concentrations of ¹³³Cs and ⁸⁸Sr did not affect the above ground and below ground biomass. They also found that $^{88}\mathrm{Sr}$ was a more hazardous to reduce crop biomass than ¹³³Cs. These results are antagonistic to our findings. The effects of ⁸⁸Sr and ⁸⁸Sr + ¹³³Cs treatments were statistically similar on the shoot and root biomass of cucumber as compared to 133 Cs; statistically, it was shown that 88 Sr + 133 Cs treatment had a lower impact on the biomass of cucumber than did ⁸⁸Sr and ¹³³Cs alone. This suggests that ⁸⁸Sr, when applied in combination with ¹³³Cs, has some mitigation properties to the adverse effects of ¹³³Cs, which resembles a phenomenon of cross-protection in plants.

4.3. Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Bio-Accumulation in Plant and Phytoextraction Potential

It can be seen from Table 3 that a slight increase in ⁸⁸Sr + ¹³³Cs concentration in the soil does not affect its bioaccumulation in the root and shoot of cucumber. Similar results have been reported in *Arabidopsis thaliana* [32], *Pennisetum purpureum* (up to 3 mM; [43]), *Calla palustris* (0.5 and 1 mM; [44]), and *Ocimum basilicum* (up to 0.4 mM; [33]). Earlier findings suggest that the uptake and distribution of nuclides in plants are dependent on nutrient metabolism, especially K and Ca [29]. The lower accumulation of ¹³³Cs can be attributed to the levels of K uptake and regulation. The authors in [5] suggested that K uptake was not affected by low concentrations of Cs in the external medium in *Plantago major*. However, increasing concentrations decreased the uptake of K significantly [5], which may influence the higher accumulation of Cs in shoots and roots. The bioaccumulation of nuclides in the root at the highest (160 mg_ concentration was non-significant among all treatments, suggesting statistically similar effects. The increased bioaccumulation of ⁸⁸Sr has been suggested in many previous studies [5,32,45,46], but they suggested its hyper-accumulation

over ¹³³Cs. In contrast, our results suggest that bioaccumulation of ⁸⁸Sr + ¹³³Cs was higher in shoot, while in root the ⁸⁸Sr accumulation was higher than the ¹³³Cs. Since the results of ⁸⁸Sr + ¹³³Cs were non-significant to those of ⁸⁸Sr in root, it can therefore be concluded that both produced similar results in their root bioaccumulation (Table 2). The authors in [45] suggested that total (in the whole plant) bioaccumulation of Cs is higher than that of Sr in *Amaranthus mangostanus*. They also concluded that *A. mangostanus* has more Cs absorption and accumulation ability. This suggests that there are some selective mechanisms in different plants for the uptake and accumulation of Sr and Cs.

The values of BCF > 1 indicate that the plant is an accumulator, while the values of BCF > 10 indicate that the plant has the potential to be a hyper-accumulator, while the value of TF of each nuclide is used to evaluate the capacity of a plant to transfer a nuclide from the root to the shoot. This value is defined as the ratio of the metal concentration in the shoot to that in the root of plants. The value of TF > 1 indicates that the plant is effective in the translocation of metal from its root to shoot. The TF values increased with an increase in concentration levels in all treatments [47,48]. Notably, BCF and TF of ⁸⁸Sr and ¹³³Cs found in our study were high compared to those reported for other species such as Amaranthus mangostanus L. [45], Raphanus sativus L. [42], and Gypsophila paniculata [49]. Table 4 indicates that when the intensity of 88 Sr, 133 Cs, and 88 Sr + 133 Cs in the soil was high, it was more difficult to uptake⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs from the soil, and it would take additional time to apply cucumber to remediate the high concentrations of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs from contaminated soil. In this test, when the concentration in the soil of ⁸⁸Sr, ¹³³Cs, and 88 Sr + 133 Cs was 10 mg kg⁻¹, it needed to grow cucumber plants two seasons in a year for ⁸⁸Sr approximately 14 times, which needed 7 years, followed by ¹³³Cs 26 times, which needed 13 years, and ⁸⁸Sr + ¹³³Cs 10 times, which needed 5 years, theoretically, to uptake all the ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs from the soil, respectively; when the ⁸⁸Sr, ¹³³Cs, and 88 Sr + 133 Cs, concentration in the soil was 160 mg kg⁻¹, it needed to grow cucumber plants two seasons in a year for ⁸⁸Sr approximately 62 times, which needed 31 years, followed by 133 Cs 110 times, which needed 55 years, and 88 Sr + 133 Cs 48 times, which need 24 years, theoretically, to uptake all the ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs from the soil. Similar results were recorded in [45].

4.4. Physiological and Biochemical Response of Cucumber to ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs Stress

These results corroborate those reported by other studies [42,50]. Decreased chlorophyll contents with heavy metal stress may be due to the inhibition of enzymes responsible for chlorophyll biosynthesis and a strong production of reactive oxygen species [50]. Chlorophyll content was increased at 10 and 20 mg (Figure 2); however, it was reduced by increasing the concentrations of treatments. This phenomenon is due to excessive ⁸⁸Sr and ¹³³Cs, which significantly reduced the chlorophyll content compared to ⁸⁸Sr + ¹³³Cs. Similar results were obtained by other researchers who studied the impact of Sr on oilseed rape [46], Amaranthus caudatus Linn [51], maize [6], Amaranthus mangostanus L. [45], and Raphanus sativus L [42]; and the impact of Cs on Nitella pseudoflabellata [52], Salix paraplesia [53], Spinacia oleracea [54], Amaranthus mangostanus L. [45], and Raphanus sativus L. [42]. MDA is an important product of membrane lipid peroxidation, and it can indirectly reflect the degree of damage to the plant membrane system. In this experiment, MDA content slightly decreased at low ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs concentrations (10 and 20 mg kg⁻¹) and then increased at high concentrations (40, 80, and 160 mg kg⁻¹); this change trend indicated that low concentrations of ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs had little destructive effects on cucumber membrane function, while the high ⁸⁸Sr concentration treatments led to impairment of cucumber membrane function. These MDA changes were similar to those found by [42,45]. The increased activity of antioxidant enzyme activities (CAT, POD, and SOD) indicated the activation of defense mechanisms against the ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs that induced oxidative stress in cucumber. In the present study, the activity of CAT, POD, and SOD increased gradually with increasing ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs concentrations from (10 to 160 mg) (Figure 3). Similarly, the Sr and Cs application resulted

in the increased activity of CAT, POD, and SOD in *Amaranthus mangostanus* L. [45,51], the activities of CAT and POD in *Amaranthus caudatus* L. [45], and CAT, POD, and SOD in *Raphanus sativus* L. [42].

5. Conclusions

The Sr and Cs contamination threats to the soil environment hence are liable to be removed. Phytoremediation is an effective tool to combat the hyper-accumulation of radionuclides and heavy metals in soil. The cucumber plant showed significantly lower growth under various concentrations of individual ⁸⁸Sr and ¹³³Cs treatments than did ⁸⁸Sr + ¹³³Cs combined. ¹³³Cs produced more loss in terms of growth and biomass production. The ⁸⁸Sr + ¹³³Cs when applied in combination showed significantly better results, indicating some mitigating effects. Shoot accumulation was high for ⁸⁸Sr + ¹³³Cs, while root accumulation was higher for ⁸⁸Sr than for ¹³³Cs. Similarly, the bioaccumulation and translocation of ⁸⁸Sr + ¹³³Cs was higher than of ⁸⁸Sr and ¹³³Cs treatments. This shows that ⁸⁸Sr + ¹³³Cs combined are absorbed and translocated at high levels and at the same concentrations and enhance growth and biomass production. It is well known that radionuclides and heavy metals will directly or indirectly cause molecular damage to plant cells through the outbreak of reactive oxygen species (ROS), and ROS will react with fatty acids, leading to lipid peroxidation and damage to biofilms [55,56]. One of the responses of plants to ROS is an increase in antioxidant enzyme activity, thereby protecting them from oxidative damage induced by various stresses [55]. Some plants' tolerance to heavy metal stress is related to the higher activity of antioxidant enzymes [57-59]. The ⁸⁸Sr, ¹³³Cs, and ⁸⁸Sr + ¹³³Cs treatment concentrations sequentially induced some enzymes over 60 days of exposure, suggesting that this complex of antioxidant enzymes (CAT, POD, and SOD) work in combination to reduce the impact of toxicity of ⁸⁸Sr, ¹³³Cs, and 88 Sr + 133 Cs, especially in young leaves. It is concluded that cucumber reveals considerable phytoremediation capabilities due to the unique growth potential in contaminated substrate and is suitable for bioreclamation of degraded soils. The plant is especially applicable for efficient phytoextraction of ⁸⁸Sr + ¹³³Cs-contamination.

Author Contributions: Conceptualization, D.W., A.M. and S.A.; methodology, D.W. and S.A.; software, A.M., S.A. and S.B.B.; validation, A.R.K., S.B.B. and S.A.; formal analysis, S.A. and S.B.B.; investigation, S.A. and S.B.B.; resources, D.W.; data curation, S.A. and D.W.; writing—original draft preparation, S.A.; writing—review and editing, D.W., J.K., M.B. and S.B.B.; visualization, S.A., A.M. and S.B.B.; supervision, D.W.; project administration, D.W.; funding acquisition, D.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by National Defense Foundation of China (Grant No. 16ZG6101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there is no conflict of interest either financially or otherwise.

References

- 1. Baba, T.; Makino, Y.; Yamada, M.; Fujiyama, H.J.E.-E. Evaluation of the Cs-and Sr-absorption ability of plant species for phytoremediation. *Eco-Engineering* **2016**, *28*, 112368.
- Aung, H.P.; Mensah, A.D.; Aye, Y.S.; Djedidi, S.; Oikawa, Y.; Yokoyama, T.; Suzuki, S.; Bellingrath-Kimura, S.D. Transfer of radiocesium from rhizosphere soil to four cruciferous vegetables in association with a Bacillus pumilus strain and root exudation. *J. Environ. Radioact.* 2016, 164, 209–219. [CrossRef]
- 3. Eapen, S.; Suseelan, K.N.; Tivarekar, S.; Kotwal, S.A.; Mitra, R. Potential for rhizofiltration of uranium using hairy root cultures of *Brassica juncea* and Chenopodium amaranticolor. *Environ. Res.* **2003**, *91*, 127–133. [CrossRef]
- 4. Malek, M.A.; Hinton, T.G.; Webb, S.B. A comparison of 90Sr and 137Cs uptake in plants via three pathways at two Chernobylcontaminated sites. *J. Environ. Radioact.* **2002**, *58*, 129–141. [CrossRef]

- Burger, A.; Weidinger, M.; Adlassnig, W.; Puschenreiter, M.; Lichtscheidl, I. Response of Plantago major to cesium and strontium in hydroponics: Absorption and effects on morphology, physiology and photosynthesis. *Environ. Pollut.* 2019, 254, 113084. [CrossRef]
- Moyen, C.; Roblin, G. Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: Comparison with Ca effects. *Environ. Exp. Bot.* 2010, 68, 247–257. [CrossRef]
- 7. Margon, A.; Mondini, C.; Valentini, M.; Ritota, M.; Leita, L. Bioavailability. Soil microbial biomass influence on strontium availability in mine soil. *Chem. Speciat. Bioavailab.* **2013**, *25*, 119–124. [CrossRef]
- 8. El-Shazly, A.A.; Farid, I.M.; Rezk, M.A.; Abbas, M.H.H.; Abdel-Sabour, M.; Mousa, E.; Mostafa, M.A.Z.; Lotfy, S. Effect of calcium levels on strontium uptake by canola plants grown on different texture soils. *J. Nucl. Technol. Appl. Sci.* **2016**, *4*, 1–10.
- Bystrzejewska-Piotrowska, G.Y.; Urban, P.Ł. Accumulation of cesium in leaves of Lepidium sativum. *Acta Biol. Crac. Ser. Bot.* 2003, 45, 131–137.
- 10. Dasch, A.A.; Blum, J.D.; Eagar, C.; Fahey, T.J.; Driscoll, C.T.; Siccama, T.G. The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition. *Biogeochemistry* **2006**, *80*, 21–41. [CrossRef]
- 11. Rosen, C.J.; Bierman, P.M.; Telias, A.; Hoover, E.E. Foliar-and fruit-applied strontium as a tracer for calcium transport in apple trees. *HortScience* **2006**, *41*, 220–224. [CrossRef]
- Chou, F.I.; Chung, H.P.; Teng, S.P.; Sheu, S.T. Screening plant species native to Taiwan for remediation of 137Cs-contaminated soil and the effects of K addition and soil amendment on the transfer of 137Cs from soil to plants. *J. Environ. Radioact.* 2005, 80, 175–181. [CrossRef]
- Tsukada, H.; Takeda, A.; Takahashi, T.; Hasegawa, H.; Hisamatsu, S.I.; Inaba, J. Uptake and distribution of 90Sr and stable Sr in rice plants. J. Environ. Radioact. 2005, 81, 221–231. [CrossRef]
- 14. Soudek, P.; Valenová, Š.; Vavříková, Z.; Vaněk, T. 137Cs and 90Sr uptake by sunflower cultivated under hydroponic conditions. *J. Environ. Radioact.* **2006**, *88*, 236–250. [CrossRef]
- 15. Moogouei, R.; Borghei, M.; Arjmandi, R. Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys and Chenopodium album. *Ecotoxicol. Environ. Saf.* **2011**, *74*, 2036–2039. [CrossRef]
- Fu, Q.; Lai, J.L.; Tao, Z.Y.; Han, N.; Wu, G. Characterizations of bio-accumulations, subcellular distribution and chemical forms of cesium in *Brassica juncea*, and Vicia faba. J. Environ. Radioact. 2016, 154, 52–59. [CrossRef]
- 17. Singh, S.; Eapen, S.; Thorat, V.; Kaushik, C.P.; Raj, K.; D'souza, S.F. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. *Ecotoxicol. Environ. Saf.* **2008**, *69*, 306–311. [CrossRef]
- Fuhrmann, M.; Lasat, M.M.; Ebbs, S.D.; Kochian, L.V.; Cornish, J. Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation. *J. Environ. Qual.* 2002, *31*, 904–909. [CrossRef]
- 19. Vandenhove, H.; Van Hees, M. Phytoextraction for clean-up of low-level uranium contaminated soil evaluated. *J. Environ. Radioact.* 2004, 72, 41–45. [CrossRef]
- 20. Ehlken, S.; Kirchner, G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: A review. *J. Environ. Radioact.* 2002, *58*, 97–112. [CrossRef]
- 21. Sami, M.; Reyhani, H. Environmental assessment of cucumber farming using energy and greenhouse gas emission indexes. J. Inst. Integr. Omics Appl. Biotechnol. 2015, 6, 15–21.
- Akca, M.S.; Agus, E.; Altınbaş, M. ITU Sustainable Bioenergy Production Plant: Preliminary Results from Container-type Digester Utilizing Food Waste Produced at ITU Campus. In Proceedings of the 5th Euro Asia Waste Management Symposium, Online, 26–28 October 2020.
- 23. Oleszek, M.; Tys, J.; Wiącek, D.; Król, A.; Kuna, J. The possibility of meeting greenhouse energy and CO2 demands through utilisation of cucumber and tomato residues. *BioEnergy Res.* 2016, *9*, 624–632. [CrossRef]
- 24. Diwan, H.; Ahmad, A.; Iqbal, M. Chromium-induced alterations in photosynthesis and associated attributes in Indian mustard. *J. Environ. Biol.* **2012**, *33*, 239.
- Farid, M.; Ali, S.; Rizwan, M.; Ali, Q.; Abbas, F.; Bukhari, S.A.H.; Saeed, R.; Wu, L.J.E.; Safety, E. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. *Ecotoxicol. Environ. Saf.* 2017, 145, 90–102. [CrossRef]
- Amin, H.; Ahmed Arain, B.; Abbasi, M.S.; Amin, F.; Jahangir, T.M.; Soomro, N.U.A. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. *Int. J. Phytoremediat.* 2019, 21, 352–363. [CrossRef]
- 27. Hs, L.; Sun, Q.; Zhao, S.J.; Zhang, W.H. *Experimental Principle and Technique for Plant Physiology and Biochemistry*; Higher Education Press: Beijing, China, 2000.
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. *Plant Soil* 1973, 39, 205–207. [CrossRef]
- White, P.J.; Broadley, M.R. Tansley Review No. 113 Mechanisms of caesium uptake by plants. New Phytol. 2000, 147, 241–256. [CrossRef]
- 30. Wang, X.; Chen, C.; Wang, J. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. *Int. J. Phytormediat.* **2017**, *19*, 402–412. [CrossRef]
- 31. Heidenreich, B.; Mayer, K.; Sandermann, H., Jr.; Ernst, D. Environment. Mercury-induced genes in Arabidopsis thaliana: Identification of induced genes upon long-term mercuric ion exposure. *Plant Cell Environ*. **2001**, *24*, 1227–1234. [CrossRef]

- 32. Sahr, T.; Voigt, G.; Schimmack, W.; Paretzke, H.G.; Ernst, D. Low-level radiocaesium exposure alters gene expression in roots of Arabidopsis. *New Phytol.* 2005, *168*, 141–148. [CrossRef]
- Tagami, K.; Tsukada, H.; Uchida, S.; Howard, B.J. Changes in the soil to brown rice concentration ratio of radiocaesium before and after the Fukushima Daiichi Nuclear Power Plant accident in 2011. *Environ. Sci. Technol.* 2018, 52, 8339–8345. [CrossRef] [PubMed]
- Watanabe, T.; Okada, K. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. *Ann. Bot.* 2005, *95*, 379–385. [CrossRef] [PubMed]
- Su, Y.; Maruthi Sridhar, B.B.; Han, F.X.; Diehl, S.V.; Monts, D.L. Effect of bioaccumulation of Cs and Sr natural isotopes on foliar structure and plant spectral reflectance of Indian mustard (*Brassica juncea*). Water Air Soil Pollut. 2007, 180, 65–74. [CrossRef]
- 36. Kanter, U.; Hauser, A.; Michalke, B.; Dräxl, S.; Schäffner, A.R. Caesium and strontium accumulation in shoots of Arabidopsis thaliana: Genetic and physiological aspects. *J. Exp. Bot.* **2010**, *61*, 3995–4009. [CrossRef] [PubMed]
- Ozgen, S.; Busse, J.S.; Palta, J.P. Influence of root zone calcium on shoot tip necrosis and apical dominance of potato shoot: Simulation of this disorder by ethylene glycol tetra acetic acid and prevention by strontium. *HortScience* 2011, 46, 1358–1362. [CrossRef]
- Cheng, X.; Chen, C.; Wang, J. Response of Amaranthus Tricolor to Cesium Stress in Hydroponic System: Growth, Photosynthesis and Cesium Accumulation. Available online: https://ssrn.com/abstract=4085206 (accessed on 25 May 2022).
- Lasat, M.M.; Fuhrmann, M.; Ebbs, S.D.; Cornish, J.E.; Kochian, L.V. Phytoremediation of a Radiocesium-Contaminated Soil: Evaluation of Cesium-137 Bioaccumulation in the Shoots of Three Plant Species; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1998; Volume 27, pp. 165–169.
- 40. Schulze, E.-D.; Beck, E.; Buchmann, N.; Clemens, S.; Müller-Hohenstein, K.; Scherer-Lorenzen, M. *Plant Ecology*, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2019; p. 926.
- Dresler, S.; Wójciak-Kosior, M.; Sowa, I.; Strzemski, M.; Sawicki, J.; Kováčik, J.; Blicharski, T. Effect of long-term strontium exposure on the content of phytoestrogens and allantoin in soybean. *Int. J. Mol. Sci.* 2018, 19, 3864. [CrossRef]
- 42. Wang, D.; Wen, F.; Xu, C.; Tang, Y.; Luo, X. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)-potential for phytoextraction and remediation of contaminated soils. *J. Environ. Radioact.* **2012**, *110*, 78–83. [CrossRef]
- 43. Kang, D.J.; Seo, Y.J.; Saito, T.; Suzuki, H.; Ishii, Y. Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions. *Ecotoxicol. Environ. Saf.* **2012**, *82*, 122–126. [CrossRef]
- Komínková, D.; Berchová-Bímová, K.; Součková, L. Influence of potassium concentration gradient on stable caesium uptake by Calla palustris. *Ecotoxicol. Environ. Saf.* 2018, 165, 582–588. [CrossRef]
- 45. Wang, D.; Zhang, X.; Luo, X.; Tang, Y. Phytoextraction ability of *Amaranthus mangostanus* L. from contaminated soils with Cs or Sr. *Bioremediat. Biodegrad.* **2015**, *6*, 277.
- Chen, M.; Tang, Y.L.; Ao, J.; Wang, D. Effects of strontium on photosynthetic characteristics of oilseed rape seedlings. *Russ. J. Plant Physiol.* 2012, 59, 772–780. [CrossRef]
- 47. Chamba-Eras, I.; Griffith, D.M.; Kalinhoff, C.; Ramírez, J.; Gázquez, M.J. Native Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon. *Plants* **2022**, *11*, 1186. [CrossRef] [PubMed]
- Favas, P.J.; Pratas, J.; Varun, M.; D'Souza, R.; Paul, M.S. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flore. In *Envormental Risk Assessment of Soil Contamination'nun Içinde*; Hernandez-Soriano, M.C., Ed.; Intechopen: London, UK, 2014.
- 49. Zhang, Y.; Liu, G.J. Uptake, accumulation and phytoextraction efficiency of cesium in Gypsophila paniculata. *Int. J. Phytoremediation* **2019**, *21*, 1290–1295. [CrossRef] [PubMed]
- 50. Ghnaya, A.B.; Charles, G.; Hourmant, A.; Hamida, J.B.; Branchard, M. Physiological behaviour of four rapeseed cultivar (*Brassica napus* L.) submitted to metal stress. *Comptes Rendus Biol.* **2009**, *332*, 363–370. [CrossRef]
- 51. Kalingan, M.; Rajagopal, S.; Venkatachalam, R. Effect of metal stress due to strontium and the mechanisms of tolerating it by Amaranthus caudatus Linn. *Biochem. Physiol.* **2016**, *5*, 2.
- 52. Atapaththu, K.S.S.; Rashid, M.H.; Asaeda, T. Growth and oxidative stress of Brittlewort (Nitella pseudoflabellata) in response to cesium exposure. *Bull. Environ. Contam. Toxicol.* **2016**, *96*, 347–353. [CrossRef]
- 53. Jing, Z.; Ke, C.; Yuan, Z.; Ye, Y. Accumulation and physio-biochemical responses of Salix paraplesia to caesium stress. *Chin. J. Environ. Eng.* **2016**, *10*, 1515–1520.
- 54. Jing, X.U.; Yunlai, T.A.N.G.; Jianbao, W.A.N.G.; Dan, W.A.N.G. Study on the effects of cesium on photosynthesis of spinach. *J. Nucl. Agric. Sci.* **2015**, *29*, 986.
- 55. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. *Annu. Rev. Plant Biol.* **2004**, *55*, 373–399. [CrossRef]
- 56. Fodor, F. Physiological responses of vascular plants to heavy metals. In *Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants;* Springer: Berlin/Heidelberg, Germany, 2002; pp. 149–177.
- 57. Dixit, V.; Pandey, V.; Shyam, R. Differential antioxidative responses to cadmium in roots and leaves of pea (*Pisum sativum* L. cv. Azad). *J. Exp. Bot.* **2001**, *52*, 1101–1109. [CrossRef]

59. Zhang, H.; Jiang, Y.; He, Z.; Ma, M. Cadmium accumulation and oxidative burst in garlic (*Allium sativum*). J. Plant Physiol. 2005, 162, 977–984. [CrossRef] [PubMed]