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Abstract: Plants have evolved a series of inducible or constitutive defense mechanisms in response to
herbivore attack. Constitutive plant defenses are morphological and biochemical traits of the plants
themselves, regardless of the presence of herbivores. We bred an alfalfa variety (Caoyuan No.4) with
high thrips resistance, but the mechanisms underlying Caoyuan No.4 resistance to thrips are not well
understood. To explore the constitutive defense of Caoyuan No.4, the morphological and biochemical
traits associated with constitutive defense to thrips in alfalfa were analyzed using a thrips-susceptible
alfalfa accession (Caoyuan No.2) as a control. The results showed that Caoyuan No.4 had thicker
palisade tissue and parenchyma tissue, wider collenchyma, phloem, cambium and lignin layer, and
smaller epidermal cells and stomatal aperture compared to Caoyuan No.2. Moreover, Caoyuan No.4
showed more non-glandular trichomes in both leaves and stems, but less glandular trichomes and
more wax in stems. In addition, the results of the widely targeted metabolomics analysis showed that
metabolites related to flavonoid, isoflavonoid, flavone and flavonol biosynthesis, as well as cysteine
and methionine metabolism, differed between CaoyuanNo.2 and Caoyuan No.4. These findings shed
new light on the constitutive insect defense of plants associated with physical or biochemical traits
and may provide convenient markers for breeding thrips-resistant alfalfa cultivars.

Keywords: Medicago sativa; thrips; constitutive defense; thrichome; wax; metabolome

1. Introduction

Alfalfa (Medicago sativa L.) has become the most widely cultivated forage in China
and is widely cultivated worldwide because of its high yield, high quality, and nitrogen
fixation ability. However, insect pests seriously affect the yield and quality of alfalfa in the
cultivation stage. To date, 297 kinds of alfalfa pests have been reported in China, belonging
to 48 families in eight orders, and thrips have become one of the main insect pests affecting
alfalfa production [1,2]. Thrips are tiny insects that are cell-content feeders, greatly affecting
crops, ornamentals and forages worldwide. Thrips can cause both direct feeding damage
by consuming sap from phloem tissue and indirect damage by vectoring tospoviruses,
resulting in decreased forage yield and quality [3,4]. Thrips are one of the common pests
on alfalfa, mainly including Odontothrips loti, Thrips vulgatissimus, Thrips major, Haplothrips
aculeatus as many as a dozen [5]. Moreover, Odontothrips loti is the dominant thrips species
of alfalfa in China, which can cause as high as 70% to 100% plant damage during the
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entire growth period of alfalfa [6–8]. It has been reported that thrips cause 10–30% grass
yield loss every year in China [9]. However, thrips control is a challenge because of their
highly polyphagous and complex lifestyle [10]. Currently, management and control of
thrips mainly relies on chemical pesticides, which are likely to induce thrips resistance to
insecticides, ecosystem damage and food safety issues [10,11]. For instance, pesticides such
as imidacloprid, acetamiprid, emamectin and spinosad all showed good control effect on
Odontothrips loti in alfalfa fields [12]. Biological control of Odontothrips loti with anthocorid
predators, Orius minutus and Orius niger showed good control effect [13]. Moreover,
integrated pest management (IPM) guidelines for crops emphasize the use of a range of
tactics to reduce thrips abundance and damage, rather than reliance on insecticides [14,15].
Thus, breeding thrips-resistant crops and forages is an important alternative strategy to
decrease losses and damage caused by thrips [16,17]. Plants have evolved a suite of defense
mechanisms to ward off herbivorous pests, including constitutive defense and inducible
defense mechanisms [18,19]. Recent investigations have focused on thrips-induced plant
defenses [20–22] as well as constitutive plant defenses [17,23]. Constitutive plant defenses
include physical or morphological and biochemical defenses. Usually, morphological traits,
such as glandular hairs, trichomes, waxy cuticles, silicon and cell walls, are the first line
of defense to deter insects from feeding [23–25], while biochemical defenses, including
the production of toxins or metabolites, regulate the second line of defenses [23,26]. Some
recent studies have investigated aspects of the relationship between alfalfa and thrips,
including the mechanisms of plant defense [26,27], and the morphology and distribution of
thrips [28].

Since there is an increasing focus on improving crop production through safe and sus-
tainable means by reducing the reliance on pesticides [29,30], the use of resistant cultivars is
currently considered the most effective and environmentally sustainable strategy to control
insects. Alfalfa cultivars are heterogeneous populations, and recurrent selection is highly
heritable, and it is relatively easy to accumulate excellent genes through a large population.
In our previous study, an alfalfa variety (Caoyuan No.4) with high thrips resistance (hazard
point coefficient: 0.26, and pest index: 0.33) was bred through nearly 30 years of consecu-
tive field recurrent selection [7,31]. However, the mechanisms underlying Caoyuan No.4
resistance to thrips are not well understood. Thus, to better understand the mechanisms of
constitutive thrips resistance in Caoyuan No.4, morphological and biochemical traits were
analyzed using the thrips-resistant alfalfa accession (Caoyuan No.4) and compared with a
thrips-susceptible alfalfa accession (Caoyuan No.2).

2. Materials and Methods
2.1. Plant Growth and Treatments

Two alfalfa cultivars, Caoyuan No.4 (a thrips-resistant alfalfa cultivar) and Caoyuan
No.2 (a thrips-susceptible cultivar) [7], were cultivated in pots (H 21 cm × D 14 cm, one
plant per pot) containing field collected soil in a greenhouse with a relative humidity of
60 ± 5% and 70 ± 5%, at 30 ± 5 ◦C and 20 ± 5 ◦C, during day and night, respectively.
Both cultivars were bred at Inner Mongolia Agricultural University, China [21]. The variety
Caoyuan No.4 was bred through recurrent phenotypic selection among a base population
created by more than 400 different alfalfa cultivars, while the variety Caoyuan No.2 was
bred through multiple parental pollination, with one female parent and five mixed male
parents. In addition, both the varieties are drought and cold resistant cultivars, but Caoyuan
No.4 is a thrips-resistant alfalfa cultivar [7].

When the alfalfa seedling reached budding stage (about 60 days), the top 3–4 leaves or
the corresponding part of stems were collected from each cultivar for subsequent analysis,
with three biological replicates.

2.2. Thrips Resistance Evaluation

Alfalfa plants were treated as described by Zhang et al. [21] and Tu et al. [4] with some
modifications. When the alfalfa seedlings had reached budding stage (about 60 days), about
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50 alfalfa plants of each cultivar were randomly selected and arranged and covered by a
big cage with 90-mesh nylon. A number of Odontothrips loti (30 per branch) was inoculated
onto the leaves of each plant. Seven days later, 10 of the thrips feeding on alfalfa plants of
each cultivar were randomly selected for thrips resistance evaluation with five replicates.

The thrips resistance of alfalfa was evaluated by insect index and was performed as
in our previous study [7]. Insect resistance identification was carried out according to the
insect index. Insect index is a comprehensive index that comprehensively considers both
insect prevalence rate and severity (Table 1). The insect index of a highly resistant cultivar is
usually less than 0.5. Taking leaves as the unit, it was calculated with the following formula:

Insect index = ∑
Xn

n ∑ X =
X0a + X1a1 + · · · · · ·+ Xnan

nT

a0, a1 · · · · · · an, severity level;
n, highest severity level;
T, total plant number;

Table 1. Severity levels.

Severity Level Severity Level (%)

0 0
1 0~4
2 5~9
3 10~19
4 20~29
5 30~49
6 50~100

2.3. Morphological Measurements

Morphological resistance traits were measured for the top 3–4 leaves or the corre-
sponding part of stems of each replicate. The blade structure of leaves was identified
in sections using histochemistry and microscopy. Briefly, leaf discs were fixed in FAA
(50 mL of 40% formaldehyde, 50 mL of glacial acetic acid, and 90 mL of 50% ethanol) for
24 h, dehydrated with a graded series of ethanol (30%, 50%, 70%, 80%, 90%, 95%, 100%),
after which ethanol was exchanged with acetone solution, and then embedded in paraffin.
Sections of 5 mm thickness were cut using a Leica Ultracut R (LEICA, Frankfurt, Germany,).
Photographs were taken using a Motic BA210 stereo microscope system with a Motic Im-
ages Plus 2.0 M. In addition, leaf surface scanning electron photomicrographs were taken
as described by Jia et al. [32]. Blades and stems were vacuum fixed in 3% glutaraldehyde at
4°C overnight and then washed 3–5 times with fresh PBS solution. The samples were fixed
in 1% osmic acid for 2 h, washed with fresh PBS solution (Sodium dihydrogen phosphate
38.0 g, and disodium hydrogen phosphate 5.04 g, add water to make 1000 mL) and then
dehydrated in an ethanol series and isoamyl acetate. The dried samples were installed on
aluminum stubs and then coated with gold palladium using an ion sputter coater (ISC 150,
SuPro, Shenzhen, China). Thrichome (glandular hair and non-glandular hair) and cuticular
wax were examined under a Hitachi SU-8010 Scanning Electron Microscope (HITACHI,
Tokyo, Japan).

The top 3–4 leaves were collected from each plant of each cultivar. Wax metabolites
were extracted with chloroform as described by Mirka [33]. After evaporation of the
chloroform, wax content was determined by using a gas phase hydrogen flame detector
(GC-FID) [33].

The widely targeted metabolomics analysis of leaves of both cultivars was performed
using methods described in our previous study [21]. The sample processing, extraction,
and metabolites detection were performed by Biomarker Technologies Co., Ltd. (Beijing,
China) following their standard procedures [34]. Quadrature signal correction partial least
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squares-discriminant analysis (OPLS-DA) and variable importance in projection (VIP) were
used to obtain the maximum differences between the cultivars. Metabolites with VIP > 1.0,
fold change ≥2 and fold change ≤0.5 were considered to be differential metabolites for
group discrimination. The KEGG (Kyoto Encyclopedia of Genes and Genomes) database
was used to annotate and display the differential metabolites [35].

3. Results
3.1. Thrips Resistance Identification of Caoyuan No.4 and Caoyuan No.2

Cultivating resistant cultivars with both improved agronomic traits and significant
thrips resistance could be an alternative to insecticidal control of thrips. Screening to
identify thrips-resistant accessions and revealing the thrips-resistance mechanism are very
important in this approach. Some reports are available where cultivated germplasm was
screened for breeding thrips resistant alfalfa [4,6,7,29]. In this study, thrips resistance
identification was carried out according to the insect index. As shown in Figure 1, the insect
index of Caoyuan No.2 was significantly higher than that of Caoyuan No.4 (p ≤ 0.05). The
insect indexes of Caoyuan No.2 and Caoyuan No.4 were 0.81 and 0.45, respectively. We
generally consider that the insect index of a highly resistant cultivar would be less than
0.5, while the insect index of a sensitive cultivar is often greater than 0.5 [6]. These results
confirmed that Caoyuan No.4 is a thrips resistant cultivar, while Caoyuan No.2 is a thrips
sensitive cultivar. Thus, both cultivars were suitable for the further study of constitutive
defense to thrips in alfalfa.
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3.2. Morphological Factors

Thrips resistance in many plants has been attributed to plant morphological character-
istics such as leaf position [36], toughness or structure [37,38], stomatal characteristics [39],
trichomes (glandular hair and non-glandular hair) [40–43] and epicuticular wax [23,33,44],
which could restrict insect attack or oviposition. Many studies have been correlative and
there is little consensus concerning the role of epidermal wax and trichomes in thrips
defense. For example, increased leaf wax was associated with resistance against thrips in
cabbage [45], while cultivars with less wax provided more protection against thrips than
those with more wax in onion [46]. It is apparent from Figure 2 that the leaf structure of
Caoyuan No.2 and Caoyuan No.4 were different. The collenchyma and phloem width,
cambium and the lignin layer thickness of leaves (main vein) in Caoyuan No.4 were larger
than those of Caoyuan No.2. Compared with Caoyuan No.2, the thickness of leaf palisade
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tissue in Caoyuan No.4 was also larger. In addition, the leaves of Caoyuan No.2 showed
long club-shaped palisade cells with big air-chambers under the epidermal cells (Figure 2),
and Caoyuan No.4 had smaller epidermal cells which were more densely packed than in
Caoyuan No.2 (Figure 3A,B). These results were similar to those of Dinar et al. [23], who
also found that the resistant varieties showed shorter mesophylls and thicker palisade
tissue and parenchyma tissue.
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Figure 2. Structural comparison of Caoyuan No.2 and Caoyuan No.4. (A) Leaf cross section of
Caoyuan No.2. (B) Leaf cross section of Caoyuan No.4. a, collenchyma; b, phloem; c, cambium;
d, lignin layer; e, palisade tissue; f, air-chamber.

An ultrastructural examination of leaves found that Caoyuan No.4 showed fewer and
smaller stomata than Caoyuan No.2, and the stomatal aperture of Caoyuan No.4 was also
smaller than that of Caoyuan No.2 (Figure 3A,B). These findings are consistent with those
of other investigators who observed that resistant cultivars showed the highest but smallest
stomata than sensitive cultivars [39].

The cuticular wax layer of plants is a physical barrier for the feeding or oviposition
of insects on the plant surface [47]. Several studies have documented that cuticular wax
or wax metabolites can be used for host plant recognition and as feeding stimulants by
insects, such as flea beetles, sawflies and thrips [33,48,49]. As shown in Figure 3A–D, the
results of leaf surface scanning electron photomicrographs showed that there was more
cuticular wax of stems in Caoyuan No.4 than Caoyuan No.2, while there was no significant
difference in cuticular wax on leaves between the two cultivars. In accordance with these
results, the wax content of stems determined by a gas phase hydrogen flame detector in
Caoyuan No.4 was 2.48-fold that of Caoyuan No.4, while the wax content of leaves between
the cultivars was not significantly different (p ≤ 0.05) (Figure 4). In accordance with our
results, previous studies have demonstrated that stalk surface wax components contribute
towards resistance to insects in sugarcane [50].

The role of trichomes in thrips defense is also controversial in different plant species.
Soybean genotypes with low densities of trichomes showed reduced thrips damage [37],
while cultivars with high trichomes displayed lower thrips infestations in strawberry [51].
Moreover, experiments conducted with tomato cultivars suggested that its resistance to
western flower thrips was independent from trichome [42]. In this study, we found that
both the leaves and stems of Caoyuan No.4 showed higher densities of non-glandular
trichome than those of Caoyuan No.2 (Figure 3E–H). In particular, the non-glandular
trichomes of leaves in Caoyuan No.4 were shorter and more erect than those of Caoyuan
No.2 (Figure 3E,F). However, the stems of Caoyuan No.2 showed more glandular trichome
than Caoyuan No.4 (Figure 3G,H). These results suggested that both glandular and non-
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glandular trichome may play important roles in constitutive defense to thrips in alfalfa.
The short, erect and high density non-glandular trichome in Caoyuan No.4 might prevent
thrips from feeding or oviposition. However, we suggest that the negative correlation
of glandular trichome in stems with thrips resistance in alfalfa might be due to derived
volatile compounds, such as sucrose and malonylated flavone glycosides, which have been
related to susceptibility [52]. In summary, these results clearly indicated that morphological
factors, including leaf structure, cuticular wax of stems, and trichomes may all be involved
constitutive defense to thrips in alfalfa.
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No.4. (A) Epidermal cells and stomatal features of Caoyuan No. 2. (B) Epidermal cells and stomatal
features of Caoyuan No.4. (C) Epidermal wax of stem in Caoyuan No. 2. (D) Epidermal wax of
stem in Caoyuan No.4. (E) Trichomes of leaf in Caoyuan No. 2. (F) Trichomes of leaf in Caoyuan
No. 4. (G) Trichomes of stem in Caoyuan No. 2. (H) Trichomes of stem in Caoyuan No. 4. a, wax;
b, non-glandular trichomes; c, non-glandular trichomes; d, glandular trichomes; s, stomata.
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Figure 4. Wax content of Caoyuan No.2 and Caoyuan No.4 determined using a gas phase hydrogen
flame detector. C2, Caoyuan No.2; C4, Caoyuan No.4. Bars represent the mean ± SE (n = 3), double
asterisks indicate p ≤ 0.01.

3.3. Biochemical Factors

Plants have evolved both direct and indirect defense mechanisms to herbivores [18].
Both direct and indirect defenses can be displayed through constitutive plant defense
mechanisms. Several reports have shown that plant biochemical factors, including primary
and secondary metabolites, play important roles in both constitutive and induced defense
to herbivores [53–55]. It is known that widely targeted metabolomics analysis provides
an effective qualitative and quantitative method to determine the metabolites in plant
responses to abiotic or biotic stress [21,56,57]. In this study, widely targeted metabolome
was used to analyze the metabolites related to constitutive thrips defense in alfalfa. As
shown in Tables 2 and S1, a total of 776 metabolites were divided into 23 classes, including
102 organic acids and derivatives, 97 flavones, 93 amino acid and derivatives, 72 lipids,
64 phenylpropanoids, 54 nucleotide and derivates, 36 alkaloids, 30 flavonols, 27 flavonoid,
26 phenolamides, 26 flavanones, 23 terpene, 21 vitamins and derivatives, 19 alcohols,
17 carbohydrates, 14 isoflavone, 11 anthocyanins, six polyphenol, six indole derivatives,
five sterides, three quinones, one proanthocyanidins and 31 others (Table S1).

Moreover, there were 28 and 14 metabolites belonging to 14 and seven classes de-
termined either in Caoyuan No.2 or in Caoyuan No.4, respectively (Figure 5A, Table S2).
These results suggest that Caoyuan No.2 and Caoyuan No.4 have different metabolic
profiles. What stands out here is that several different phenolamides metabolites were
detected in either Caoyuan No.2 or Caoyuan No.4. In particular, N-Caffeoyl agmatine, N-p-
Coumaroyl agmatine, N-hexosyl-p-coumaroyl putrescine, N-(4’-O-glycosyl)-p-coumaroyl
agmatine and N-Feruloyl agmatine were only detected in Caoyuan No.2, while N’, N”-di-p-
coumaroylspermine, N-p-coumaroylspermine, N’-p-coumaroylspermine, N-p-Coumaroyl
spermidine and N-Acetyl tryptamine were only detected in Caoyuan No.4 (Table S2). This
finding is consistent with that of other investigators who found that a different diversity
of phenolamides showed exactly the opposite effect in plant defense to thrips [58,59].
Furthermore, four phenylpropanoids, including resveratrol, phenethyl caffeate, isoacteo-
side and O-feruloyl coumarin were only detected in Caoyuan No.2, suggesting that these
phenylpropanoids might be negatively correlated with thrips constitutive defense in plants.
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Table 2. Overview of annotated metabolites in Caoyuan No.2 and Caoyuan No.4.

Type Number Percentage

Organic acids and derivatives 102 13.01%
Flavone 97 12.37%

Amino acid and derivatives 93 11.86%
Lipids 72 9.18%

Phenylpropanoids 64 8.16%
Nucleotide and derivates 54 6.89%

Alkaloids 36 4.59%
Flavonol 30 3.83%

Flavonoid 27 3.44%
Phenolamides 26 3.32%

Flavanone 26 3.32%
Terpene 23 2.93%

Vitamins and derivatives 21 2.68%
Alcohols 19 2.42%

Carbohydrates 17 2.17%
Isoflavone 14 1.79%

Anthocyanins 11 1.40%
Polyphenol 6 0.77%

Indole derivatives 6 0.77%
Sterides 5 0.64%

Quinones 3 0.38%
Proanthocyanidins 1 0.13%

Others 31 3.95%
Total 776 100%
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Figure 5. Differentially accumulating metabolites between Caoyuan No.2 and Caoyuan No.4. (A) Dif-
ferentially accumulating metabolites determined in either Caoyuan No. 2 or Caoyuan No. 4. (B) The
score plots of orthogonal partial least-squares discriminant analysis (OPLS-DA); S_CK, Caoyuan No.2;
R_CK, Caoyuan No.4. (C) Upregulated and downregulated metabolites detected in Caoyuan No.2
compared with Caoyuan No.4 (D) Pie chart depicting the biochemical categories of the differential
metabolites identified between Caoyuan No.2 and Caoyuan No.4.
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Orthogonal partial least-squares discriminant analysis (OPLS-DA) is a multivariate
statistical analysis method with supervised pattern recognition that can effectively eliminate
factors that are not related and can be used to screen differential metabolites [60]. The
score plots from OPLS-DA showed that in the two cultivars, the chestnuts with different
thrips-resistance were separated, indicating that the metabolic differences were significant
(Figure 5B).

The fold change value and VIP value were combined to screen the differential accumu-
lated metabolites (DAMs). As described previously [21], metabolites with |log2FC| ≥ 1
and VIP ≥ 1 were considered as DAMs for group discrimination. As shown in Figure 5C,
a total of 92 upregulated and 34 downregulated metabolites were detected in Caoyuan
No.2 compared with Caoyuan No.4 (VIP > 1 and |log2FC| ≥ 1). The 140 DAMs were cate-
gorized into 19 different classes, but the majority were phenolamides, phenylpropanoids,
amino acid and derivatives, organic acids and derivatives, flavonoids, flavone and flavonol
(Figure 5D, Table S3). These findings would seem to suggest that both primary metabolites,
such as amino acid and organic acids, and secondary metabolites, including flavonoids,
alkaloids and terpenoids, may be involved in thrips constitutive defense in alfalfa. In accor-
dance with our results, previous studies have demonstrated that the majority of specialized
metabolites were involved in constitutive defense against thrips in various plants [61–63].

Differential accumulated metabolites interact in organisms to form different path-
ways. According to the KEGG annotation and enrichment results, the relative metabolic
pathways are shown in Figure 6. It was shown that the DAMs were most significantly
enriched to flavonoid biosynthesis (ko00941), isoflavonoid biosynthesis (ko00943), flavone
and flavonol biosynthesis (ko00944), and cysteine and methionine metabolism (ko00270).
Interestingly, this accorded with our previous observations on thrips-induced defense
in alfalfa [19]. These results suggested that the pathways, such as flavonoid biosynthe-
sis (ko00941), isoflavonoid biosynthesis (ko00943) and flavone and flavonol biosynthesis
(ko00944), contributed to both constitutive and thrips-inducible plant defense in alfalfa.
The roles of flavonoids or isoflavonoids in plants thrips defense have also been reported by
other investigators [4,17,64].
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In particular, the DAMs of Caoyuan No.4 in cysteine and methionine metabolism, in-
cluding 5’-Deoxy-5’-(methylthio) adenosine (pme1473), DL-Homocysteine (pme0057), L-
Homoserine (pme0161), L-Cysteine (pme0195) and S-(5’-Adenosyl)-L-methionine (pme2735),
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were all significantly higher than those in Caoyuan No.2, increasing in the former by up to 3.29,
3.74, 2.22, 3.73 and 2.55-fold compared to Caoyuan No. 2, respectively (Figures 7A and S1).
This indicated that metabolites related to cysteine and methionine metabolism may be
positively correlated with thrips defense in alfalfa. By contrast, the DAMs of Caoyuan No.4
involved in isoflavonoid biosynthesis, including vestitol (pmf0113), maackiain (pmf0112),
biochanin A (pme3250), coumestrol (pmf0117), medicarpin (pmf3245), sissotrin (pmf3400)
and prunetin (pmf3292), were all significantly lower than those in Caoyuan No.2, decreas-
ing to 0.26, 0, 0, 0.06, 0.37 and 0.31-fold of Caoyuan No.2, respectively (Figures 7B and S2).
This indicated that these metabolites related to isoflavonoid biosynthesis may be positively
correlated with thrips defense in plants. For flavonoid biosynthesis, the contents of differ-
ent DAMs behaved differently in the two cultivars. DAMs including dihydromyricetin
(pme2898), naringin (pme0331), garbanzol (pmf0108) and tricetin (pme3303) in Caoyuan
No.2 were significantly higher than those in Caoyuan No.4, while phloridzin (pmf0583),
kaempferol (pme0200), hesperetin 7-O-neohesperidoside (pme0001) and epigallocatechin
(pme1514) were significantly lower or absent (Figures 7C and S3). Except for kaempferol
(pme0200), the content of DAMs (such as kaempferide, rhoifolin, apiin and cosmosiin)
involved in flavone and flavonol biosynthesis in Caoyuan No.4 were significantly higher
than those in Caoyuan No.2 (Figures 7D and S4). In accordance with our results, the major-
ity of previous studies have demonstrated that metabolites including flavonoid and other
secondary metabolites contributed to thrips resistance, either in the presence or absence of
morphological traits [65–67]. However, the correlative roles of most compounds in thrips
resistance have not been functionally characterized and identified.
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Figure 7. The relative content of differential accumulated metabolites between Caoyuan No.2 and
Caoyuan No.4 in KEGG enrichment pathways. (A) The relative content of differential accumulated
metabolites in cysteine and methionine metabolism (ko00270); (B) The relative content of differ-
ential accumulated metabolites in isoflavonoid biosynthesis (ko00943); (C) The relative content of
differential accumulated metabolites in flavonoid biosynthesis (ko00941); (D) The relative content of
differential accumulated metabolites in flavone and flavonol biosynthesis biosynthesis (ko00941).

Together, these results provide important insights into an association between bio-
chemical factors, including primary and secondary metabolites and constitutive thrips
defense in alfalfa. Biochemical factors involved in flavonoid, isoflavonoid, flavone and
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flavonol biosynthesis, as well as cysteine and methionine metabolism, may play important
roles in constitutive thrips defense in alfalfa.

4. Conclusions

The present study was designed to determine the morphological and biochemical
factors associated with constitutive defense to thrips in alfalfa. Our findings clearly indicate
that both morphological and biochemical factors contributed to constitutive defense to
thrips in alfalfa. Among morphological factors, we found that the leaf structure including
the thickness of palisade tissue and parenchyma tissue, the width of collenchyma, phloem,
cambium and the lignin layer, the size of epidermal cells, stomatal aperture, and the
densities and characteristics of glandular and non-glandular trichomes, as well as stem
surface wax components, were all involved in constitutive defense to thrips in alfalfa. The
second major finding was that metabolites related to flavonoid, isoflavonoid, flavone and
flavonol biosynthesis, as well as cysteine and methionine metabolism, may be the most
important biochemical factors in constitutive thrips defense in alfalfa. These findings have
shed new light on constitutive insect defense of plants through physical or biochemical
traits. We further suggest that the morphological traits of plants, such as wax, trichomes
and leaf structure, may provide convenient markers for breeding thrips-resistant alfalfa
cultivars. However, the correlative roles of the morphological and biochemical traits in
thrips resistance should be further functionally characterized by conducting bioassays
with thrips.
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