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Abstract: Potassium (K) deficiency is a bottleneck for crop production. Thus, developing low K (LK)-
tolerant crop cultivars to relieve the issue is extremely urgent. Our previous studies had found that
Tibetan annual wild barley accessions showed a higher LK tolerance than the cultivated barley. In this
study, RNA-sequencing was performed on three barley genotypes, wild (XZ153, LK tolerance; XZ141,
LK sensitivity) and cultivated (ZD9, LK sensitivity) barley genotypes, to compare the transcriptome
profiles of their shoots at two time points after LK stress. In total, 4832 genes displayed differential
expression at 48 h and 15 d among three genotypes after K stress treatment, with XZ153 having
much more differentially expressed genes (DEGs) at 48 h than 15 d, but it was the opposite in ZD9.
Meanwhile, GO annotation analysis and KEGG pathway enrichment were implemented on 555
and 814 LK tolerance-associated DEGs at 48 h and 15 d after LK stress, respectively. Three barley
genotypes differed significantly in transcriptional level after LK treatment. The high tolerance in wild
genotype XZ153 could be attributed to many factors, mainly including K channels, Ca2+ signaling
pathway, ethylene biosynthesis process, TCA cycle, glycolysis, pentose phosphate pathway, and
photosynthesis. Furthermore, some candidate genes identified in this study may be used to improve
the LK tolerance of barley.

Keywords: barley; transcriptome; LK stress; LK tolerance; DEGs; genotypes

1. Introduction

Potassium (K) is crucial for plants and has important physiological functions [1];
however, available K is quite limited in most soil for plants [2]. Thus, K deficiency poses
a severe limitation for crop production in the world. The best and most effective way to
relieve K deficiency is to develop low K (LK)-tolerant crop varieties. It is well documented
that LK tolerance differs greatly among plant species and genotypes within a species [2],
so it is possible for us to improve the traits through genetic manipulation. Moreover, it is
imperative to reveal the underlying plant mechanisms responding to LK stress.

Barley (Hordeum vulgare L.) is grown around the world. In comparison with cultivated
barley, Tibetan annual wild barley has wider genetic diversity [3], particularly in abiotic
stress tolerance [4–8]. Our previous studies proved that some Tibetan wild barley geno-
types had high LK tolerance [8–10]. Moreover, we found that XZ153, an LK-tolerant wild
genotype, could remobilize more K from the older leaves into the younger ones than ZD9,
an LK-sensitive genotype [11]. Additionally, XZ153 can absorb and accumulate more K to
maintain its LK tolerance [12].

Nowadays, the RNA-Sequencing technique is widely applied to studying of gene
expression level [13,14]. For example, it has made great function in plants’ responses to
salinity [15], drought [16], heat [17], aluminum [18] and nutrient deficiency [19,20].
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The previous studies showed wild accession XZ153 had higher LK tolerance than wild
accession XZ141 and cultivar ZD9 through root and leaf (older and younger) transcriptome
analysis [11,12]. However, there are few studies on the transcriptome of barley differing in
LK tolerance. In addition, there is a lack of an overall response mechanism and regulatory
network in barley exposed to LK stress. Accordingly, we investigated transcriptome
profiling in the shoots of three barley genotypes (XZ153, XZ141, ZD9) responding to LK
using RNA-Seq, and predicted that the transcriptome of the three barley genotypes is very
different, in order to (1) identify the genotypic difference in the gene expression profiles of
three barley genotypes in responding to LK stress; (2) provide more evidence for further
improvement of the previous transcriptome study; and (3) construct the possible regulatory
networks in barley in response to LK stress.

2. Materials and Methods
2.1. Materials and Plant Growth

The materials used in the current study consisted of three barley genotypes, XZ153,
XZ141, and ZD9. XZ153 (low K tolerant) and XZ141 (low K sensitive) are Tibetan wild
barley accessions which differ in low K tolerance, and ZD9 is the main cultivar that is low K
sensitive. The experiment was performed via hydroponics, and pre-germination treatments
and germination methods were done according to Ye et al. [9]. After germination for 7 d,
the uniform seedlings were selected and transplanted into the black plastic pots. To avoid
K supply from the seed, we removed seeds when transplanted. The hydroponic solution,
aeration condition, solution renewal time, and pH were applied according to Zeng et al.
and Ye et al. [9,12]. K treatments were 0.01 mM for LK and 1.0 mM for normal (control)
treatment. There were three replicates for each treatment.

2.2. RNA-Seq Sample Collection and Preparation

At 48 h and 15 d after LK stress treatment, shoots of seedlings in all treatments
and replicates [total 36, 3 genotypes × 2 treatments × 2 sampling times × 3 biological
replications] were sampled for RNA-Seq. Additionally, the selection of the two sampling
time points (48 h and 15 d) was in reference and summary to the team’s previous research
on the transcriptome of barley in response to LK stress [11,12]. Additionally, total RNA
was extracted from the harvested shoots using Trizol reagent (Invitrogen, Carlsbad, CA,
USA), then the kit NEBNext Poly(A) mRNA Magnetic Isolation Module, NEB#E7490 (New
England Biolabs, Inc., Ipswich, MA, USA), was used to isolate mRNA from 1 µg of total
RNA. Additionally, the cDNA library was constructed from the purified mRNA according
to the protocol provided with the NEBNext Ultra RNA Library Prep Kit for Illumina, NEB
#E7530 (New England Biolabs, Inc., Ipswich, MA, USA), and were verified by Qubit 2.0 and
Agilent 2100. Additionally, the effective concentration of the cDNA library was measured
by Quantitative PCR. The library was sequenced by using an Illumina HiSeqXten platform
with a paired-end sequencing length of 150 bp (PE150) at Biomarker Technologies (Beijing,
China). All the above steps were conducted according to Ye et al. [11]. Lastly, pure PCR
products were obtained, and library quality was further assessed.

Raw data of fasta format were firstly processed after a series of steps, including cluster
generation, library sequencing, and generation of paired-end reads. During this process,
clean data were procured by abandoning invalid reads, which was the basis of the down-
stream analyses. Additionally, the accession number of raw data was PRJNA832317 (http://
www.ncbi.nlm.nih.gov/bioproject/832317, accessed on 29 April 2022). Next, the clean reads
were mapped to a reference genome and gene set (IPK, 160517_Hv_IBSC_PGSB_r1_CDS_
HighConf_REPR_annotation.fasta). We only analyzed and annotated the perfect match
reads or mismatch reads. Then, we aligned RNA-Seq reads to the barley reference genomes
on TopHat (http://tophat.cbcb.umd.edu/, accessed on 8 April 2022) [21], and identified
splice junctions between exons [22].

http://www.ncbi.nlm.nih.gov/bioproject/832317
http://www.ncbi.nlm.nih.gov/bioproject/832317
http://tophat.cbcb.umd.edu/
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2.3. DEG Identification, GO Annotation, and KEGG Pathway Analysis

In this study, we used the FPKM to figure the library’s normalized expression data [23].
A standard of p-value ≤ 0.01 and absolute log2 (fold change) ≥ 1 through DEseq2 was
applied to identify DEGs [24]. GO and KEGG enrichment analysis were carried out on
the BMK Cloud platform (www.biocloud.net, accessed on 5 October 2021) using GOseq R
packages [25] and KOBAS software [26], respectively.

2.4. Statistical Analysis

Significance of the differences among treatments and genotypes are measured by
Duncan’s Multiple Range Test on SPSS statistical software, and the difference at p < 0.05
means it is significant.

3. Results
3.1. Evaluation of RNA-Seq Reads and Mapping Results

A total of 299.92 Gb clean reads were obtained; each sample’s clean data reached up to
6.25 Gb, and the sequence alignment efficiency ranged from 79.38% to 85.37%. The obtained
reads could be classified into two parts, multiple and unique mapped reads (Table S1).
Meanwhile, we got a total of 34,719 expressed genes from all samples, which could provide
favorable conditions for subsequent expression profiling analysis.

For the validity of RNA-Seq data, eight DEGs identified in the two sampling times
were selected for qRT-PCR analysis (Table S2). They included WD repeat-containing protein
(MLOC_60578), Pentatricopeptide repeat-containing protein (MLOC_75411), 40S ribosomal
protein (Hordeum_vulgare_newGene_10508), Dihydrolipoyl dehydrogenase 1 (MLOC_10877),
ATP synthase subunit beta (EPlHVUG00000010007), S-adenosylmethionine decarboxy-
lase (MLOC_69795), Photosystem II reaction center protein Z (EPlHVUG00000010036),
BTB/POZ and TAZ domain-containing protein 2 (MLOC_14183) (Table S2). The gene ex-
pression patterns obtained from qRT-PCR were highly consistent with those from RNA-Seq
analysis (Figure 1). Hence, the data obtained from RNA-seq were reliable.
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Figure 1. The qRT-PCR validation of eight differentially expressed genes. The bars represent SD
(n = 3). The columns indicate relative expression by the qRT-PCR and solid lines by the RNA-seq.
From left to right: XZ153, XZ141, and ZD9.

3.2. DEGs Identification, GO Function, and KEGG Analysis

A total of 4832 genes had differential expression at 48 h and 15 d after LK stress in
three genotypes (Tables S3 and S4, Figure 2). In detail, 2628 and 3246 DEGs were identified
at 48 h and 15 d, respectively. XZ153 had more DEGs at 48 h than 15 d, but it was the
opposite in ZD9 (Figure 2). Nearly the same amount of DEGs was identified at two time
points in XZ141 (Figure 2). Thus, the gene expression pattern of XZ153 differed from the

www.biocloud.net
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other two genotypes (XZ141 and ZD9), and it is necessary to conduct a further analysis
among these three genotypes in response to LK stress.
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Figure 2. A Venn diagram describing overlaps among differentially expressed genes (DEGs) in XZ153,
XZ141, and ZD9. (A) Up-regulated genes at 48 h after low-K treatment. (B) Down-regulated genes at
48 h after low-K treatment. (C) Total-regulated genes at 48 h after low-K treatment. (D) Up-regulated
genes at 15 d after low-K treatment. (E) Down-regulated genes at 15 d after low-K treatment. (F) Total-
regulated genes at 15 d after low-K treatment. Pink, purple, and green represents genotype XZ153,
XZ141, and ZD9, respectively.

Then, we focused on these DEGs, which were up-regulated (unchanged) in XZ153,
but down-regulated/unchanged (down-regulated) in XZ141 and ZD9. Consequently, 555
and 814 DEGs met the screening criteria for further study at 48 h and 15 d after LK stress,
respectively (Tables S5 and S6).

Through GO annotation analysis, these DEGs were divided into 39 and 43 groups at
two time points, which were attached to three main classifications: cellular component
(43.6% at 48 h and 46.5% at 15 d), molecular function (28.2% at 48 h and 27.9% at 15 d),
and biological process (28.2% at 48 h and 25.6% at 15 d) (Figure 3, Tables S7 and S8).
For KEGG pathway analysis, 101 and 221 enzymes were matched to 53 and 57 KEGG
pathways at 48 h and 15 d after LK stress, respectively, including DNA replication, ribosome,
RNA transport, ribosome biogenesis in eukaryotes, purine metabolism, mismatch repair,
ubiquitin-mediated proteolysis, plant hormone signal transduction, nucleotide excision
repair, homologous recombination, and so on (Figure 4, Tables S9 and S10).
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Figure 3. Functional classification of LK-tolerance-related DEGs identified in three barley accessions
after 48 h (A) and 15 d (B) of LK stress by Gene Ontology (GO) categorization. The bold color
indicates the representation in the whole genome; the light color indicates representation in the DEGs.
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and 15 d (B) of LK stress. The X-axis indicates the pathways; the Y-axis indicates the numbers of
annotated genes.
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3.3. DEGs Associated with Transcription Factors (TFs), Transporters, and Kinases

In the current study, 42 DEGs involved in TFs were confirmed, including 32 and
14 DEGs at 48 h and 15 d, respectively. Moreover, they could be classified into Zinc
finger (9), MYB (9), AP2/EREBP (9), bHLH (8), WRKY (2), HMG (2), MADS-box (1),
Homeodomain (1), and HSF (1) (Table S11). Additionally, 33 DEGs related to protein
transporters and kinases were identified, including 15 and 22 DEGs at 48 h and 15 d,
respectively (Table S12). Moreover, they could be classified into LRR (26), CRK (2), Yellow-
strike (2), MATE (1), ammonium (1), and nitrate (1), with LRR being the largest class, which
occupied 78.8% of the total DEGs (Table S12).

3.4. DEGs Involved in K Transposition and Ca2+ Signaling Pathway

Here, we paid attention to these DEGs participating in K transposition in response to
LK stress and identified two important K channels (Table 1). These two channels belong
to shaker-type channels, one being the outward-rectifying K channel GORK, controlling
K release from the guard cell, and the other being the inward-rectifying K channel KAT.
Meanwhile, three Ca2+ sensors involved in the Ca2+ signaling pathway were found (Table 1),
including two calmodulin-like proteins (CML1 and CML29) and one calcium-dependent
protein kinase (CDPK1). More importantly, their expression differed greatly among the
three genotypes, with XZ153 having higher expression level (Table 1).

Table 1. The DEGs involved in K+ channels and Ca2+ signaling pathway at 48 h and 15 d after
LK stress.

Time Groups Gene Id
Log2 (Fold Change)

Seq Description
XZ153 XZ141 ZD9

48 h K channel MLOC_56043 1.08 up 1.01 normal 0.84 normal Potassium channel
GORK

Ca2+ signaling
pathway

MLOC_13902 1.09 up 0.90 normal 0.19 normal
Probable
calcium-binding
protein CML29

15 d K channel MLOC_60763 1.47 up – – −0.99 normal Potassium channel
KAT3

Ca2+ signaling
pathway

MLOC_75452 2.08 up 0.29 normal 0.58 normal Calmodulin-like
protein 1 CML1

MLOC_6391 −0.21 normal −0.17 normal −1.13 down
Calcium-dependent
protein kinase 1
CDPK1

‘–’ and ‘normal’ presented in the table means no detection and without significant gene expression in this study,
respectively.

3.5. DEGs Involved in the Ethylene Biosynthesis Process

In addition to the K transport system and Ca2+ signaling pathway, the DEGs par-
ticipating in the SAM cycle of the ethylene biosynthesis process were also identified
after LK stress. Four DEGs encoded three enzymes: S-adenosylmethionine decarboxy-
lase, 1-aminocyclopropane-1-carboxylate oxidase, and DNA (cytosine-5)-methyltransferase
(Table 2, Figure 5). Moreover, four AP2-like ethylene-responsive transcription factors were
identified after LK stress, including two DEGs expressed at both time points (Table 3).
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Table 2. The DEGs involved in SAM cycle and ethylene biosynthesis process at 15 d after LK stress.

Gene Id
Log2 (Fold Change)

Seq Description
XZ153 XZ141 ZD9

MLOC_70078 −1.00 normal −2.05 down −0.91 normal 1-aminocyclopropane-1-carboxylate oxidase 1
MLOC_69795 0.51 normal −3.21 down −1.38 down S-adenosylmethionine decarboxylase beta chain
MLOC_61904 0.31 normal −0.87 normal −1.04 down DNA (cytosine-5)-methyltransferase 1B
MLOC_11952 0.09 normal −0.63 normal −1.14 down DNA (cytosine-5)-methyltransferase 3

‘normal’ presented in the table means without significant gene expression in this study.
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lene biosynthesis process. SAM: S-Adenosyl-L methionine; SAMS: S-Adenosyl-L-methionine syn-
thase; DNMT: DNA (cytosine-5-)-methyltransferase; SAM-D-MT: S-Adenosyl-L-methionine de-
pendent methyltransferase; SAMDC: S-Adenosyl-L-methionine decarboxylase; SAH: S-Adenosyl-
L-homocysteine; SAHH: S-Adenosyl-L-homocysteine hydrolase; Hcy: Homocysteine; HMT: Ho-
mocysteine S-methyltransferase; Met: methionine; MTA: S-Methyl-59-thioadenosine; MTAN: 59-
Methylthioadenosine Nucleosidase; MTK: S-methyl-5-thioribose kinase; MTR: S-methyl-5-thio-D-
ribose; MTR-1-P: S-methyl-5-thio-D-ribose 1-phosphate; ACC: S-Aminocyclopropane-1- carboxylate;
ACS: S-Aminocyclopropane-1-carboxylate synthase; ACO: S-Aminocyclopropane-1-carboxylate oxi-
dase. The three differentially expressed enzymes (DEGs) colored in red were detected in this study.
The seven differentially expressed enzymes (DEGs) colored in purple were detected from Ye et al.
(2021a). The two differentially expressed enzymes (miRNAs) colored in blue were detected from Ye
et al. (2021b). The four enzymes identified by GWAS colored in green were detected from Ye et al.
(2020). The three differentially expressed enzymes (DEGs) colored in brown were detected from Zeng
et al. (2014).
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Table 3. Summary of AP2-like ethylene-responsive transcription factors participated in ethylene
biosynthesis.

Time Gene Id
Log2 (Fold Change)

Seq Description
XZ153 XZ141 ZD9

48 h NewGene_28417 1.61 up 0.74 normal 2.10 normal AP2-like ethylene-responsive transcription factor ANT
NewGene_2076 1.38 up 0.44 normal 0.95 normal AP2-like ethylene-responsive transcription factor AIL5

15 d NewGene_2076 0.30 normal −0.54 normal −1.02 down AP2-like ethylene-responsive transcription factor AIL5
MLOC_10221 0.34 normal −0.86 normal −1.82 down AP2-like ethylene-responsive transcription factor ANT
MLOC_63425 −0.29 normal −0.26 normal −1.14 down AP2-like ethylene-responsive transcription factor ANT
NewGene_28417 −0.37 normal −0.93 normal −1.35 down AP2-like ethylene-responsive transcription factor ANT

‘normal’ presented in the table means without significant gene expression in this study. NewGene_ presented in
the table stands for Hordeum_vulgare_newGene_.

3.6. The DEGs Involved in the Four Interrelated Metabolic Pathways

In this study, we identified DEGs encoding some enzymes participating in four inter-
related metabolic pathways, named the TCA cycle, pentose phosphate pathway (PPP), gly-
colysis, and gluconeogenesis (Table 4). In detail, ATP-citrate synthase (CS), dihydrolipoyl
dehydrogenase 1(DLD), and pyruvate decarboxylase 2 (PDC) were involved in the TCA
cycle; phosphogluconate dehydrogenase (PGDH) participated in the PPP; pyruvate ki-
nase (PK), phosphoglycerate kinase (PGK), and phosphoenolpyruvate carboxylase kinase
(PPCK) participated in the glycolysis pathway; and 6-phosphofructokinase was associated
with the gluconeogenesis pathway (Table 4, Figure 6).

Table 4. The DEGs involved in four metabolic pathways at 48 h and 15 d after being exposed to
LK stress.

Time Groups Gene Id
Log2 (Fold Change)

Seq Description
XZ153 XZ141 ZD9

48 h TCA cycle newGene_13796 1.01 up 0.15 normal −0.24 normal ATP-citrate synthase
MLOC_10877 6.93 up −0.30 normal 0.13 normal Dihydrolipoyl dehydrogenase 1
MLOC_7202 – – – – -inf down Pyruvate decarboxylase 2 PDC2

The PPP newGene_20892 1.20 up 0.17 normal 0.44 normal Phosphogluconate dehydrogenase

15 d Glycolysis newGene_1192 1.31 normal −0.21 normal −3.64 down Pyruvate kinase isozyme A
newGene_9744 0.52 normal −0.35 normal −1.10 down Phosphoglycerate kinase
MLOC_65676 0.23 normal −0.09 normal −1.29 down 6-phosphofructokinase complex

Gluconeogenesis MLOC_13152 −0.41 normal −0.95 normal −1.07 down Phosphoenolpyruvate carboxylase
kinase 1 PPCK1

‘–’ and ‘normal’ presented in the table means no detection and without significant gene expression in this study,
respectively. Additionally, ‘NewGene_’ presented in the table stands for ‘Hordeum_vulgare_newGene_’.
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Figure 6. Brief schematic summary of the connections among TCA cycle, glycolysis and pentose
phosphate pathway. TCA cycle (blue), tricarboxylic acid cycle: NAD+ is converted to NADH by the
2-OGDH and MDH reactions; CS, citrate synthase; ACO, aconitase; IDH, isocitrate dehydrogenase;
2-OGDH, 2-oxoglutarate dehydrogenase complex; SCoA L, succinyl CoA ligase; SDH, succinate
dehydrogenase; FUM, fumarase; MDH, malate dehydrogenase; PDC, pyruvate dehydrogenase com-
plex; DC, dicarboxylate carrier. Glycolysis (purple): ADP is converted to ATP by the PK reaction;
GK: glucokinase; PGI: phosphoglucose isomerase; PFK: phosphofructokinase-1; AD: aldolase; PK:
pyruvate kinase. Pentose phosphate pathway (green): NADP+ is converted to NADPH by the 6PGDH
reaction; G6PDH: glucose 6-phosphate dehydrogenase; 6PGDH, 6-phosphogluconate dehydrogenase;
RPI: ribose-5-phophate isomerase; TK, transketolase; TA, transaldolase. Pyruvate carboxylation
branch (brown): In gluconeogenesis, PC and PPCK catalyze the conversion of pyruvate from oxaloac-
etate to phosphoenolpyruvate is known as the pyruvate carboxylation branch. ATP consumption
by pyruvate carboxylation pathway is the pathway through which pyruvate bypasses the “energy
barrier” to produce phosphoenolpyruvate into gluconeogenesis; PC: pyruvate carboxylase; PPCK:
phosphoenolpyruvate carboxylase kinase; The enzymes (DEGs) colored in red were detected in this
study. The enzymes (miRNAs) colored in blue were detected from Ye et al. (2021). The black bold
substances represent the same metabolites which can enter into other metabolic pathways.

3.7. DEGs Associated with Photosynthesis

Except for the above DEGs, the DEGs involved in photosynthesis were also identified
at 48 h and 15d after LK stress (Table 5, Figure 7), including ATP synthase, photosystem
II reaction center protein, light-harvesting complex II chlorophyll a/b binding protein,
NAD(P)H dehydrogenase (quinone) FQR1-like, and NADH-plastoquinone oxidoreductase
(Table 5). Moreover, three photosystem II reaction center proteins, i.e., Psb K, Psb I, and Psb
Z, were detected at 15 d, and highly expressed in XZ153. LHC II chlorophyll a/b binding
protein also showed the highest expression in XZ153 at 48 h after LK stress (Table 5).
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Table 5. The DEGs involved in four metabolic pathways at 48 h and 15 d after being exposed to
LK stress.

Time Gene Id
Log2 (Fold Change)

Seq Description
XZ153 XZ141 ZD9

48 h MLOC_58581 −0.03 normal −7.59 down 0.77 normal ATP synthase subunit

MLOC_38677 – – −1.60 down – – Probable NAD(P)H dehydrogenase(quinone)
FQR1-like 1

MLOC_27318 2.42 up – – 0.21 normal Probable NAD(P)H dehydrogenase(quinone)
FQR1-like 2

MLOC_9033 0.03 normal −3.10 down −0.43 normal Light-harvesting complex II chlorophyll a/b
binding protein 1

15 d EPlHVUG00000010007 2.21 normal −0.48 normal −1.32 down ATP synthase CF1 beta subunit
EPlHVUG00000010006 1.29 up 0.01 normal 0.13 normal NADH-plastoquinone oxidoreductase subunit 5
EPlHVUG00000010045 1.51 up −0.10 normal −0.33 normal Photosystem II reaction center protein K
EPlHVUG00000010046 1.13 up 0.19 normal −0.29 normal Photosystem II reaction center protein I
EPlHVUG00000010036 2.06 up −0.15 normal −0.69 normal Photosystem II reaction center protein Z

‘–’ and ‘normal’ presented in the table means no detection and without significant gene expression in this
study, respectively.
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4. Discussion

4.1. K Channels and Ca2+ Signaling Pathway Contribute to LK Stress Response in XZ153

Previous research had found many K transporters and channels in plants participated
in K uptake and mobilization [27]. Most of them could be induced or up-regulated by
LK stress [28]. In the current study, two kinds of shaker-type channels, GORK and KAT,
were up-regulated after LK stress only in XZ153 (Table 1). Moreover, functional analysis
showed that KAT1, KAT2, and GORK were basically expressed in the guard cells, and
synergistically mediated the inward or outward potassium ion flow [29–32]. This result
was consistent with our recent finding that GORK was up-regulated in the XZ153′ leaves
under LK stress [11]. Moreover, Ca2+ is an important second messenger responding to
various biotic and abiotic stresses in plants, including nutrient deficiency [33–35]. Calcium
signals are sensed, decoded, and conducted by calcium sensors. Additionally, Ca2+ sensors
mainly include CBLs, CDPKs, CaMs, and CML [36,37]. In this study, two CML (CML1 and
CML29) and one CDPK (CDPK1) were identified, being only up-regulated in XZ153 after
LK treatment (Table 1). In short, the tolerant genotype XZ153 could better respond to LK
stress than XZ141 and ZD9 by K channels and calcium signaling pathways.

4.2. Ethylene Biosynthesis Process May Benefit to LK Stress Response

Ethylene is the first plant hormone in response to K deficiency [38,39]. In this study,
1-aminocyclopropane-1-carboxylate synthase oxidase (ACO), S-adenosylmethionine de-
carboxylase, and DNA (cytosine-5)-methyltransferase encoded by four DEGs involved
in ethylene biosynthesis process were identified (Table 2, Figure 5). Additionally, 90% of
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SAM is used for transmethylation [40]. Interestingly, the expression of two MTs [DNA
(cytosine-5)-methyltransferase] was down-regulated in XZ141 and ZD9, but unchanged
in XZ153 (Table 2). Additionally, the AP2 transcription factor was a factor responding
to LK stress [41]. Coincidently, many AP2-like ethylene-responsive transcription factors
were up-regulated/unchanged in XZ153, while down-regulated in the other two barley
genotypes in this study (Table 3). The expression was consistent with previous studies in
the roots and leaves of barley after LK stress [11,12]. Therefore, the DEGs identified in this
study contribute to the high LK tolerance in XZ153, and importantly complemented the
ethylene biosynthesis pathway response to LK stress in barley constructed by predeces-
sors [11,12,42,43].

4.3. The TCA Cycle, Glycolysis, and PPP Are Closely Related to LK Tolerant Stress

The TCA cycle is a vital pathway of respiration in plants [44]. Here, we identified
three kinds of DEGs involved in the TCA cycle: dihydrolipoyl dehydrogenase (DLD),
citrate synthase (CS), and pyruvate decarboxylase (Table 4). In plants, dihydrolipoyl
dehydrogenase (DLD) is an important component of multi-enzyme complexes of pyruvate
dehydrogenase complex [45]. DLD catalyzes the irreversible reaction of pyruvate to acetyl
CoA. In this study, dihydrolipoyl dehydrogenase 1 was highly up-regulated only in XZ153
(Table 4). Interestingly, a previous study found that over-expression of DLD improved
photosynthesis, and as a result, biomass was increased [46]. Thus, the activity of DLD
in TCA cycle may have a great influence on plant photosynthesis. Additionally, citrate
synthase (CS) is a pivotal and rate-limiting enzyme catalyzing oxaloacetate and acetyl-CoA
to produce citrate [47–49]. Here, CS was up-regulated in XZ153 under LK stress (Table 4).
Furthermore, a study found some miRNAs and their targets could mutually corroborate
other enzymes in TCA cycle after LK stress in barley [42], and the DEGs identified in this
study just encoded some of these enzymes. Therefore, it may be assumed that DLD and CS
activity in the TCA cycle has a positive effect on the plants when exposed to LK stress.

Glycolysis is a process of glucose breaking down to form pyruvate [50]. Additionally,
three enzymes, pyruvate kinase (PK), phosphofructokinase (PFK), and phosphoglycerate
kinase (PGK) were identified after LK stress (Table 4, Figure 6). PK irreversibly catalyzes
PEP into pyruvate in glycolysis and is a key rate-limiting enzyme [51]. The effect of PK
also was proved in one research on miRNAs responding to LK stress [42]. Additionally,
PFK and PGK catalyze a reversible reaction in glycolysis. Thus, these enzymes can regulate
the glycolysis pathway [52,53]. The expression level of these three enzymes was higher
in XZ153 than XZ141 and ZD9 (Table 4). Furthermore, phosphoenolpyruvate carboxy-
lase kinase (PPCK) is an enzyme in the pyruvate carboxylation branch (gluconeogenesis),
together with pyruvate carboxylase (PC), catalyzes pyruvate from oxaloacetate to phos-
phoenolpyruvate bypassing the “energy barrier” [54]. Coincidently, the expression patter
of PPCK1 was similar with that of the above three enzymes (Table 4). All these reactions
resulted in the pyruvate accumulation in XZ153. Therefore, the high expression of these
enzymes in glycolysis may be a vital factor for XZ153 in response to LK stress.

The expression of 6-phosphogluconate dehydrogenase (6PGDH) was higher in XZ153
but unchanged in XZ141 and ZD9 after LK stress in this study (Table 4). Additionally,
6PGDH is a rate-limiting enzyme at the oxidation stage in PPP [55]. Interestingly, a study of
miRNAs found that bdi-miR164c negatively regulated 6PGDH in PPP after LK stress [42],
and this finding was confirmed by the current study. Therefor we speculated that XZ153
could maintain relatively normal condition in the pentose phosphate pathway under
LK stress.

On the whole, a brief schematic diagram characterizing each pathway and relevant
enzymes can be developed (Figure 6). In short, these results complemented the previous
study on miRNAs responding to LK stress [42], and three pathways might account for LK
stress tolerance in XZ153.
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4.4. The DEGs Involved in Photosynthesis Contribute to LK Tolerance

Photosynthesis is important for plant growth and biomass formation [56,57]. Here,
the DEGs associated with ATP synthases, photosystem II reaction center proteins, NADH-
plastoquinone oxidoreductase, NAD(P)H dehydrogenase (quinone), and light-harvesting
complex II chlorophyll a/b binding protein were identified after LK stress (Table 5, Figure 7).
Additionally, the expression of these protein was mostly up-regulated in XZ153 (Table 5).
Previous studies showed LK-tolerant crops could keep relatively normal chlorophyll con-
tent and photosynthetic rate when suffered from potassium deficiency [9,58]. Furthermore,
four miRNAs, negatively regulating three proteins (OEEP1, PSII Q(B) protein, and PSI
RC), were involved in photosynthesis and improved the photosynthesis of XZ153 after
LK stress [42]. Therefore, better performance in photosynthesis may be attributed to LK
tolerance in XZ153.

5. Conclusions

In this study, the transcriptome profiling of XZ153, XZ141, and ZD9 differing in LK
tolerance were investigated under LK stress. According to the results, XZ153 had stronger
LK tolerance, which could be attributed to many factors, mainly including K channels,
Ca2+ signaling pathway, ethylene biosynthesis process, TCA cycle, glycolysis, PPP, and
photosynthesis. A brief diagram was developed to explain the LK-tolerant mechanism
in XZ153 (Figure 8). The research was an integrated study on LK responses at the whole
transcriptome level in the leaves of wild and cultivated barleys, and further supplemented
the previous studies on LK response in barley. Based on the results, we constructed and
improved the possible regulatory networks of LK response in barley. Furthermore, some
candidate genes identified in this study may be used for the genetic improvement of LK
tolerance in barley, but further study is needed. Therefore, based on the obtained results,
we will make functional assumptions about the candidate gene. For example, when the
target gene is a transporter, we will focus on its transport capacity with the help of yeast.
In brief, we will next carry out the overexpression and gene editing of target genes in
barley for gene function analysis, and it will eventually lay the foundation for LK tolerance
breeding of barley and other crops.
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