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Abstract: Solar radiation is the main source of energy on the Earth’s surface. It is very important for
the environment and ecology, water cycle and crop growth. Therefore, it is very important to obtain
accurate solar radiation data. In this study, we use the highest temperature Tmax, lowest temperature
Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine duration H and
maximum sunshine duration Hmax as input variables to construct a deep learning prediction model
of solar radiation in the Yellow River Basin. It is compared with the recommended and corrected
values of the widely used Å-P method. The results show that: (1) The correction results of the Å-P
equation are better in the upstream and downstream of the Yellow River Basin but worse in the
midstream. (2) The prediction result of the deep learning model in the Yellow River Basin is far better
than that of the Å-P equation using the FAO-56 recommended value. It is the best in the downstream
of the Yellow River Basin: R2 increases from 0.894 to 0.934; MSE, RMSE and MAE decrease by 43.12%,
27.73% and 25.80%, respectively. The upstream prediction result comes in second: R2 increases from
0.888 to 0.921; MSE, RMSE and MAE decrease by 33.27%, 20.02% and 19.04%, respectively. The
midstream result is the worst: R2 increases from 0.869 to 0.874; MSE, RMSE and MAE decrease by
−0.50%, 0.07% and 3.82%, respectively. (3) The prediction results of the deep learning model in the
upstream and downstream of the Yellow River Basin are far better than those of the Å-P equation
using correction. The R2 in the upstream of the Yellow River Basin increases from 0.889 to 0.921.
MSE, RMSE and MAE decrease by 22.11%, 11.84% and 8.94%, respectively. R2 in the downstream of
the Yellow River Basin increases from 0.900 to 0.934, and MSE, RMSE and MAE decrease by 13.21%,
11.40% and 5.55%, respectively. In the midstream of the Yellow River Basin, the prediction results of
the deep learning model are worse than those of the Å-P equation using correction: R2 increases from
0.870 to 0.874, but MSE, RMSE and MAE decrease by −24.93%, −10.83% and −11.56%, respectively.

Keywords: deep learning; Ångström-Prescott equation; the Yellow River Basin

1. Introduction

Solar radiation is not only the most basic energy source on Earth but is also an impor-
tant driving factor of various physical, chemical and biological processes in the natural
environment. It has a wide range of applications in many aspects, such as the infrastructure
and construction industry, atmospheric physics and the practical utilization of renewable
energy [1,2], the estimation of reference crop evapotranspiration [3], evapotranspiration
simulation in hydrology [4], photovoltaic power generation [5,6], etc. Therefore, it is
particularly important to obtain accurate solar radiation data.

Despite the wide range of applications of solar radiation data, there are few radiation
stations for the routine observation of solar radiation in our country. According to statistics,
in China, only about 4% of the national ground meteorological observation networks can
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measure solar radiation. Moreover, solar radiation is usually measured at a specific location
through a variety of instruments. The cost of these instruments, including measurement
and maintenance costs, is high, Therefore, compared with other meteorological factors such
as rainfall, sunshine and wind speed, the data of solar radiation are relatively scarce. The
scarcity of solar radiation measurement requires people to adopt corresponding methods to
estimate it and obtain more accurate solar radiation data in a finer spatial distribution. Over
the years, scholars at home and abroad have done a lot of research on the estimation of solar
radiation and have successively put forward some methods. Among them, the Ångström-
Prescott equation based on sunshine (hereinafter referred to as the Å-P equation) has been
proved to be the best in many studies [7–10]. FAO irrigation and drainage Document
No. 56 (hereinafter referred to as FAO-56) recommends the Å-P equation to estimate solar
radiation in the absence of measured solar radiation data or low-quality solar radiation
data and recommends the parameters of a = 0.25 and b = 0.50.

Although the Å-P equation performs well and is widely used, due to the influence of
climate and geographical location factors in different regions, the FAO-56 recommended
values in different regions are different. Therefore, the application of the Å-P equation
in different regions is usually limited by the lack of corrected parameters. To solve the
limitations of the Å-P equation, we need to develop more accurate methods to predict
solar radiation.

In recent years, with the rapid development of artificial intelligence and neural net-
works, many machine learning models, such as artificial neural networks, support vector
machines and random forest, have been successfully applied to the prediction of solar
radiation: Alawi et al. [11], Mohandas et al. [12], Reddy et al. [13] and Yildiz et al. [14] in
Oman, Saudi Arabia used artificial neural networks to estimate solar radiation in India and
Turkey; Chen et al. [15] used the data of three meteorological stations in Liaoning Province
to establish seven support vector machine models with different input attributes and evalu-
ate them and five empirical models based on sunshine; Ibrahim and Khatib [16] proposed
a hybrid hourly solar radiation prediction model based on random forest technology and
the firefly algorithm and compare it with the traditional artificial neural network model,
the traditional random forest model and an artificial neural network model optimized by
the firefly algorithm. The above research results show that machine learning models can
predict solar radiation.

Deep learning is similar to artificial neural networks and belongs to the field of
machine learning, but it has a deeper neural network, which means that deep learning has
a stronger learning ability and needs larger data sets to improve its prediction performance.
Nowadays, deep learning has become more and more mature in the field of computer
vision. Remarkable achievements have been MAEe in the fields of perception, speech
recognition and natural language processing. Deep learning models have been successfully
applied to predict the reference crop evapotranspiration ET0 [17,18], but there is little
literature related to the deep learning model in predicting solar radiation.

Therefore, based on the measured meteorological data of 28 stations in the Yellow
River Basin for many years, this study establishes a deep learning model for predicting
solar radiation in the Yellow River Basin in China. There are three main purposes: (1) Based
on the measured solar radiation data of 28 stations in the Yellow River Basin for many
years, we want to correct the parameters of the traditional Å-P equation and analyze the
correction results through the evaluation metrics; (2) We want to develop and establish
a DL model for accurately predicting solar radiation in the Yellow River Basin by using
widely available input variables; (3) By comparing the DL model with the recommended
and corrected values of Å-P parameters, the feasibility of the DL model replacing the Å-P
equation to predict solar radiation in the Yellow River Basin is studied.
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2. Materials and Methods
2.1. Study Location and Data

In this study, we select 28 stations with measured daily solar radiation long-term data
in 9 provinces and regions in the Yellow River Basin. All of these stations are located in
or near the Yellow River Basin. The detailed geographical information of each station is
shown in Table 1. The Yellow River Basin covers an area of 795,000 square kilometers, with
latitude ranging from 26.58◦ N to 49.22◦ N, longitude ranging from 94.68◦ E to 122.27◦ E
and altitude ranging from 32.6 m to 3719.0 m. The basin is characterized by water shortage,
serious water and soil loss and high sediment content. Since the 1990s, it has become
more frequent that river water cannot enter the sea. China attaches great importance to the
sustainable utilization of water resources in this basin. However, the information about
the coefficients of the Å-P equation in this basin is very limited. In addition, even for the
same site, the coefficients of Å-P equations given by different researchers often vary greatly,
which causes confusion and difficulties in the application of the model [19].

Table 1. Basic information of stations in the Yellow River Basin.

Site Name Longitude Latitude Altitude Average
Temperature Province Data Period

Yushu 97.02 33.02 3681.2 3.59 Qinghai 1960–2016
Guoluo 100.25 34.47 3719 0.04 Qinghai 1993–2016

Gangcha 100.13 37.33 3301.5 0.05 Qinghai 1993–2016
Geermu 94.9 36.42 2807.7 5.75 Qinghai 1957–2016
Xining 101.77 36.62 2261.2 6.09 Qinghai 1959–2016
Ganzi 100 31.62 3393.5 5.98 Sichuan 1994–2016

Hongyuan 102.55 32.8 3491.6 1.75 Sichuan 1994–2016
Wuwei 102.67 37.92 1530.9 8.54 Gansu 1961–2016
Minqin 103.08 38.63 1367 8.78 Gansu 1957–2016

Yuzhong 104.15 35.87 1874.1 6.99 Gansu 2005–2016
Guyuan 106.27 36 1752.2 6.95 Ningxia 1985–2016

Yinchuan 106.22 38.48 1111.4 9.51 Ningxia 1959–2016
Huhehaote 111.68 40.82 1063 7.13 Neimenggu 1959–2016
Erlianhaote 111.97 43.65 964.7 4.56 Neimenggu 1957–2016

Wulatezhongqi 108.52 41.57 1288.2 5.73 Neimenggu 1992–2016
Dongsheng 109.98 39.83 1460.4 6.67 Neimenggu 1992–2016

Taiyuan 112.55 37.78 777.9 10.38 Shanxi 1959–2016
Datong 113.33 40.1 1067.2 7.21 Shanxi 1960–2016
Houma 111.37 35.65 433.7 13.04 Shanxi 1959–2016
Yanan 109.5 36.6 957.8 10.21 Shanxi 1990–2016
Jinghe 108.97 34.43 410 14.90 Shanxi 2006–2016

Ankang 109.03 32.72 290.8 15.86 Shanxi 1990–2016
Nanyang 112.58 33.03 129.2 15.22 Henan 1990–2016

Zhengzhou 113.65 34.72 110.4 14.84 Shanxi 1957–2016
Anyang 114.37 36.12 75.5 14.15 Shanxi 1960–2016
Fushan 121.25 37.5 32.6 12.77 Shandong 1992–2016
Jinan 116.98 36.68 51.6 14.77 Shandong 1959–2016

Juxian 118.83 35.58 107.4 12.66 Shandong 1990–2016

Due to various factors, such as the influence of solar radiation and sunshine time
observation data in different degrees, there are missing data and exceptions. To avoid
missing values and the effects of outliers, before the statistical analysis of data, we apply
the following preprocessing:

(1) If one or all of the measured meteorological data on a day is missing, the data of that
day shall be deleted;

(2) If Rs/Ra or n/N is greater than 1, we delete the data of that day to ensure that the
data has real physical meaning (where Rs and Ra are global and extraterrestrial solar
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radiation (MJ/(M2 · d)), respectively; n represents the actual sunshine hours in a day;
N represents the maximum sunshine hours on the same day);

(3) If there are more than 10 missing data in a month, the data of that month will
be deleted.

The corrected values of the Å-P equation of each station are fitted by the least square
error method, and the data of each station are grouped by years. The first 3/4 of the
data is used as the training data set to fit the corrected values of the Å-P equation, and the
remaining 1/4 of the data is used as the test data set to verify the corrected values of the Å-P
equation. R2, RMSE, RE, MAE and d evaluate its performance. The DL model selects the
highest temperature Tmax, lowest temperature Tmin, average temperature Tavg, wind speed
U, relative humidity RH, sunshine duration H and maximum sunshine duration Hmax as
input values and selects 70% of the data set as the training set, 15% as the verification set
and 15% as the prediction set. The training set is used to train the model. The validation set
is used to evaluate the performance of the model and calculate the evaluation metrics. The
prediction set is used to evaluate the generalization and prediction ability of the model. The
training set, validation set and prediction set are selected independently without repetition.

2.2. Ångström-Prescott Equation

The Å-P equation was originally a simple linear equation proposed by Angstrom [20]
in 1924. In essence, it is a linear function relationship between the ratio of daily total
irradiance to daily clear sky radiation on the horizontal plane and the ratio of daily average
sunshine hours to maximum possible sunshine hours. The parameters of the equation are
determined by Stockholm data. To solve the difficulty of obtaining clear sky radiation data,
Prescott [21] suggested using extraterrestrial radiation to replace it in 1940, which finally
promoted the formation of the Å-P equation.

To commemorate the great contributions MAEe by Ångström and Prescott to the
estimation of solar radiation, later generations call the relationship between the sunny
index and relative sunshine (or other meteorological parameters) the Ångström-Prescott
equation. The basic form of the equation represents the simple linear relationship between
the sunny index and relative sunshine:

Rs
Ra

= a + b
n
N

(1)

where Rs and Ra are global and extraterrestrial solar radiation (MJ/(M2 · d)), respectively;
a and b are empirical coefficients between 0 and 1 and their sum is clear sky transmittance;
n represents the actual sunshine hours in a day; N represents the maximum sunshine hours
on the same day.

2.3. Deeping Learning Model

The earliest neural network originated from the neuron model proposed by McCulloch
and Pitts in 1943. In 1986, Rumelhart and McClelland [22] invented the back-propagation
(BP) algorithm. In 2006, Hinton et al. [23] formally proposed the concept of deep learning.
In this paper, a method of using deep learning to predict solar radiation is proposed. By
considering multiple hidden layers, different numbers of neurons in hidden layers and
the modified linear function ReLU, a multi-layer DL model is established. In addition,
our model is optimized by the stochastic gradient descent method. Figure 1 shows the
framework of the deep learning model.
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The research shows that selecting appropriate input parameters is very important for
a more accurate prediction of solar radiation. In this paper, through multiple tests on the
number of prediction model layers and neurons, the optimal number of hidden layers and
the optimal number of hidden neurons are finally determined, which are 40 neurons in
the first hidden layer, 60 neurons in the second hidden layer and 40 neurons in the third
hidden layer, respectively. In addition, the modified linear function ReLU is selected as
the activation function, because its calculation is simple and fast and the convergence rate
of the stochastic gradient descent (SGD) optimization algorithm for the ReLU function is
faster than others. Therefore, this paper establishes a DL model with three hidden layers
(40 60 40) and a ReLU function as the activation function.

The ReLU function is given by the following equation:

f (x) = max(0, x) (2)

The derivative of the ReLU function is:

f ′(x) =

{
1, i f x > 0
0, otherwise

(3)

The cross-entropy loss function J is:

J(W, B) = − 1
N

N

∑
i=1

k

∑
j=1

y(i)j logŷ(i)j (4)

The learning process of the DL model consists of forward-propagation and back-
propagation. During forward-propagation, the input values go through the input layer, the
hidden layer and the output layer. If the output layer does not get the desired output, the
back-propagation is carried out. The stochastic gradient descent method back-propagates
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the error along the original channel and modifies the weight of each neuron in the hidden
layer. Thus, the output error is minimized.

Z[1] = Relu

(
n

∑
i=1

(xi ∗ w1) + b1

)
(5)

Z[2] = Relu

(
n

∑
j=1

(
hj ∗ w2

)
+ b2

)
(6)

Z[3] = Relu

(
n

∑
k=1

(hk ∗ w3) + b3

)
(7)

Z[4] = So f tmax

(
n

∑
L=1

(hL ∗ w4) + b4

)
(8)

Y = So f tmax(xk) =
exp(xk)

∑n
k=1 exp(xk)

(9)

w1 = w1 − α
∂J

∂W1
(10)

b1 = b1 − α
∂J
∂b1

(11)

Figure 1 presents a DL structure composed of an input layer, three hidden layers and
a final output layer; Y is the output of the output layer; xi is the input layer input; w1, w2,
w3 and w4 are the weight matrices connecting layers; b1, b2, b3 and b4 are the bias terms
of hidden neurons for each hidden layer. Equations (10) and (11) denote the stochastic
gradient descent method in back-propagation, w1 ∈ w, b1 ∈ b.

2.4. Model Evaluation Metrics

The metrics to evaluate the performance of the model include the determination
coefficient R2, mean square error MSE, rooted mean square error RMSE, mean absolute
error MAE, relative error RE and consistency index d. Their calculation equations are
as follows:

R2 =
[∑m

i=1(pi − p)(oi − o)]2

∑m
i=1(pi − p)2 ∑n

i=1
(
0i − 0

)2 (12)

MSE =
1
m

m

∑
1
(yi − yi)

2 (13)

RE =

√
1
m

m

∑
1
(yi − yi)

2 (14)

MAE =
1
m

m

∑
1
|yi − yi| (15)

RE =
RMSE

o
(16)

d = 1− ∑n
i=1 (pi − oi)

2

∑n
i=1(| pi − o|+ | oi − o| )2 (17)

where Oi is the i-th observation data (MJ/(M2·d); Pi is the i-th prediction data (MJ/(M2·d);
O is the average value of the observation data group (MJ/(M2·d); P is the average value
of the prediction data group (MJ/(M2·d); yi − yi is the difference between the i-th pre-
diction values and the measured values (MJ/(M2·d), i = 1, 2, . . . , m; m is the number of
statistical samples.
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Among them, the lower the values of MSE, RMSE and MAE, the better the performance
of the model. The determination coefficient R2 reflects the fitting degree between the
measured and predicted solar radiation values of the station. When the determination
coefficient R2 > 0.80, RE < 0.20 and d ≥ 0.95, the prediction effect of the model is better.

3. Results

3.1. Corrected Å-P Parameters and Performance Evaluation

The corrected values of the Å-P equation of each station are fitted by the least square
error method, and the data of each station are grouped by years. The first 3/4 of the data
is used as the training data set to fit the corrected values of the Å-P equation, and the
remaining 1/4 of the data is used as the test data set to verify the corrected values of the
Å-P equation. R2, RMSE, RE, MAE and d evaluate its performance. Table 2 shows the
corrected values of the Å-P parameters and their performance evaluation of each station.

Table 2. Å-P parameter calibration and performance evaluation of each station.

Watershed Distribution Site Name Province a b R2 RMSE RE MAE d

Upstream Yushu Qinghai 0.20 0.61 0.74 3.309 0.20 2.265 0.93
Upstream Guoluo Qinghai 0.25 0.58 0.87 2.451 0.14 1.835 0.96
Upstream Gangcha Qinghai 0.20 0.62 0.93 1.705 0.10 1.269 0.98
Upstream Geermu Qinghai 0.26 0.57 0.96 1.518 0.08 1.106 0.99
Upstream Xining Qinghai 0.18 0.61 0.92 1.896 0.12 1.399 0.98
Upstream Ganzi Sichuan 0.29 0.54 0.88 2.127 0.11 1.630 0.96
Upstream Hongyuan Sichuan 0.18 0.68 0.81 3.766 0.24 2.763 0.93
Upstream Wuwei Gansu 0.13 0.69 0.89 2.960 0.16 2.290 0.97
Upstream Minqin Gansu 0.20 0.53 0.95 1.595 0.09 1.168 0.99
Upstream Yuzhong Gansu 0.17 0.58 0.95 2.027 0.13 1.692 0.98
Upstream Guyuan Ningxia 0.16 0.61 0.93 2.028 0.14 1.528 0.98
Upstream Yinchuan Ningxia 0.20 0.57 0.93 2.023 0.13 1.435 0.98
Upstream Huhehaote Neimenggu 0.18 0.61 0.91 2.142 0.13 1.522 0.98
Upstream Erlianhaote Neimenggu 0.20 0.60 0.93 2.236 0.13 1.658 0.98
Upstream Wulatezhongqi Neimenggu 0.23 0.55 0.94 2.011 0.12 1.459 0.98
Upstream Dongsheng Neimenggu 0.16 0.58 0.93 2.542 0.17 1.707 0.97
Midstream Taiyuan Shanxi 0.16 0.59 0.86 2.823 0.20 2.122 0.96
Midstream Datong Shanxi 0.17 0.60 0.92 2.119 0.14 1.610 0.98
Midstream Houma Shanxi 0.16 0.58 0.86 2.664 0.22 1.981 0.96
Midstream Yanan Shanxi 0.14 0.58 0.82 3.296 0.24 2.340 0.95
Midstream Jinghe Shanxi 0.19 0.50 0.87 3.739 0.29 2.988 0.94
Midstream Ankang Shanxi 0.16 0.54 0.88 2.621 0.23 1.883 0.97
Midstream Nanyang Henan 0.19 0.53 0.86 2.748 0.23 2.070 0.96

Downstream Zhengzhou Shanxi 0.17 0.55 0.89 2.594 0.22 1.983 0.96
Downstream Anyang Shanxi 0.16 0.52 0.85 2.657 0.21 2.025 0.96
Downstream Fushan Shandong 0.16 0.56 0.95 1.736 0.12 1.323 0.98
Downstream Jinan Shandong 0.11 0.60 0.88 2.759 0.23 2.039 0.96
Downstream Juxian Shandong 0.21 0.53 0.94 1.715 0.12 1.289 0.98

It can be seen from Table 2 that the values of a range from 0.11 to 0.29 and the values
of b range from 0.50 to 0.69. The trend of coefficient a is that the average altitudes and
longitudes of the upstream, midstream and downstream of the Yellow River Basin are
(2191.73 m, 103.82◦), (656.23 m, 111.37◦) and (75.5 m, 117.02◦), respectively. The maximum
value of coefficient a is 0.29, which appears in Ganzi, Sichuan Province, with altitude and
longitude of 3393.5 m and 100◦, respectively. The minimum value is 0.11. It appears in
Jinan, Shandong Province, with altitude and longitude of 51.6 m and 116.98◦, respectively.
The trend of coefficient b is opposite to that of coefficient a. In the upstream of the Yellow
River Basin, the values of coefficient b are higher, with an average value of 0.60, and in
the midstream and downstream of the Yellow River Basin, the values of coefficient b are
lower, with average values of 0.56 and 0.55. The relationship between coefficient b and
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altitude is similar to that of coefficient a and tends to increase with the increase in altitude,
but the relationship between coefficient b and longitude is opposite to that of coefficient
a and tends to increase with the increase in longitude. The maximum value of b is 0.69,
which appears in Wuwei, Gansu Province, with altitude and longitude of 1530.9 m and
102.67◦, respectively. The minimum value of b is 0.50, which appears in Jinghe River, Shanxi
Province, with altitude and longitude of 410 m and 108.97◦, respectively.

It can be seen from the evaluation metrics that the corrected Å-P parameters have a
good prediction effect. The average value of R2 of 28 stations in the Yellow River Basin
is 0.89, the maximum value is 0.96 at Golmud station and the minimum value is 0.74 at
Yushu station. Except for Yushu station in Qinghai Province, the R2 values of the other
27 stations are greater than 0.80, and the R2 values of 14 stations are greater than 0.90. The
average values of RMSE, MAE, RE and d of all stations are 2.422, 0.17, 1.799 and 0.97, the
maximum values are 3.739, 0.29, 2 and 0.94 and the minimum values are 1.518, 0.08, 1.106
and 0.99, respectively. The RMSE values of 6 stations are less than 2.00, those of 18 stations
are between 2.00 and 3.00 and those of 4 stations are greater than 3.00. The maximum
value is 3.739 at Shanxi Jinghe station. The MAE values of 19 stations are within 2.00, those
of 9 stations are between 2.00 and 3.00 and the maximum value is 2.988 at Jinghe River
in Shanxi Province. The RE values of 2 stations are less than 0.1, those of 17 stations are
between 0.1 and 0.2 and those of 9 stations are between 0.2 and 0.3. The maximum value is
0.29 at Jinghe River station, Shanxi Province. In terms of the d values, only 3 stations are
between 0.91 and 0.95 and the remaining 25 stations’ d values are between 0.95 and 0.99,
with the maximum values of 0.99 at Golmud in Qinghai Province. In general, the Golmud
station in Qinghai Province has the best correction effect, and the Jinghe station in Shanxi
Province has the worst correction effect.

From the results of the upstream, midstream and downstream of the Yellow River
Basin, the correction effect of the Å-P parameter is the best in the upstream of the Yellow
River Basin, and its average R2, RMSE, RE, MAE and d are 0.90, 2.271, 0.14, 1.670 and 0.97,
respectively. Among them, the Golmud site has the best performance, with R2, RMSE,
RE, MAE and d of 0.96, 1.518, 0.08, 1.106 and 0.99, respectively. The Yushu site has the
worst performance, with R2, RMSE, RE, MAE and d of 0.74, 3.309, 0.20, 2.265 and 0.93,
respectively. The average R2, RMSE, RE, MAE and d are 0.90, 2.292, 0.18, 1.732 and 0.97,
respectively. Fushan station has the best performance, with R2, RMSE, RE, MAE and d
being 0.95, 1.736, 0.12, 1.323 and 0.98, respectively. Jinan station has the worst performance,
with R2, RMSE, RE, MAE and d being 0.88, 2.759, 0.23, 2.039 and 0.96, respectively. The
average R2, RMSE, RE, MAE and d are 0.87, 2.859, 0.22, 2.142 and 0.96, respectively. Datong
station has the best performance, with R2, RMSE, RE, MAE and d being 0.92, 2.119, 0.14,
1.610 and 0.98, respectively. The R2, RMSE, RE, MAE and d of Jinghe station are 0.87, 3.739,
0.29, 2.988 and 0.94, respectively.

From the results of the provinces, the overall correction effect of the Å-P parameters in
the Qinghai, Sichuan, Gansu, Ningxia Autonomous Region, Inner Mongolia Autonomous
Region, Shanxi and Shandong provinces is better, and the correction effect of Ningxia
Autonomous Region is the best. Its R2, RMSE, RE, MAE and d are 0.93, 2.025, 0.13, 1.482
and 0.98, respectively. Shanxi Province has the worst correction effect, with its R2, RMSE,
RE, MAE and d being 0.88, 2.535, 0.19, 1.904 and 0.97, respectively. The R2, RMSE, RE, MAE
and d in Qinghai, Sichuan, Gansu, Inner Mongolia and Shandong are 0.88, 0.88, 0.93, 0.93
and 0.92; 2.176, 2.127, 2.194, 2.233 and 2.070; 0.13, 0.11, 0.13, 0.14 and 0.16; 1.575, 1.630, 1.717,
1.587 and 1.550; and 0.97, 0.96, 0.98, 0.98 and 0.98, respectively. In the Shanxi and Henan
provinces, the overall correction effect is poor. Shanxi Province has the worst correction
effect, with R2, RMSE, RE, MAE and d being 0.86, 3.219, 0.25, 2.403 and 0.95, respectively.
Henan province has a better correction effect. Its R2, RMSE, RE, MAE and d are 0.87, 2.666,
0.22, 2.026 and 0.96, respectively.
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3.2. Comparison between the Recommended Values of Å-P Parameters and the Prediction Results of
the DL Model

Solar radiation is comprehensively affected by temperature, wind speed, relative
humidity, sunshine duration and other meteorological factors. On the basis of previous
studies, this study selected maximum temperature Tmax, minimum temperature Tmin,
average temperature Tavg, wind speed U, relative humidity RH, sunshine duration H
and maximum sunshine duration Hmax as input values to establish the DL model. The
prediction results of each station in the Yellow River Basin by the Å-P parameter values
recommended by FAO were compared with those of the DL model, and R2, MSE, RMSE
and MAE were used for evaluation. The comparison results are shown in Table 3.

Table 3. Performance comparison between the prediction results of the recommended values of
station Å-P parameters and the prediction results of the DL model.

Site Model R2 MSE RMSE MAE Site Model R2 MSE RMSE MAE

Yushu
Recommended 0.77 9.347 3.057 2.335 Wulatezhongqi Recommended 0.92 5.090 2.256 1.590
DL prediction 0.90 5.018 2.240 1.728 DL prediction 0.95 3.273 1.809 1.435

Guoluo
Recommended 0.87 7.383 2.717 2.111 Dongsheng Recommended 0.92 4.324 2.079 1.456
DL prediction 0.88 7.343 2.710 2.207 DL prediction 0.91 6.990 2.644 1.685

Gangcha Recommended 0.91 4.698 2.167 1.735 Taiyuan Recommended 0.87 6.333 2.516 1.878
DL prediction 0.94 2.647 1.627 1.243 DL prediction 0.89 9.559 3.092 2.216

Geermu
Recommended 0.93 5.999 2.449 1.984 Datong Recommended 0.90 5.086 2.255 1.708
DL prediction 0.96 2.033 1.426 1.029 DL prediction 0.93 3.686 1.920 1.485

Xining Recommended 0.88 5.605 2.368 1.728
Houma

Recommended 0.89 5.979 2.445 1.835
DL prediction 0.93 4.017 2.004 1.519 DL prediction 0.89 6.495 2.549 2.070

Ganzi
Recommended 0.89 6.954 2.637 2.172

Yanan
Recommended 0.87 8.986 2.998 2.235

DL prediction 0.85 4.559 2.135 1.704 DL prediction 0.87 7.068 2.659 1.855

Hongyuan Recommended 0.83 10.373 3.221 2.559 Jinghe Recommended 0.84 8.333 2.887 2.283
DL prediction 0.88 6.340 2.518 1.836 DL prediction 0.89 9.502 3.083 2.518

Wuwei
Recommended 0.84 9.619 3.101 2.311 Ankang Recommended 0.84 10.803 3.287 2.489
DL prediction 0.91 5.849 2.418 1.757 DL prediction 0.81 9.493 3.081 1.880

Minqin Recommended 0.90 4.983 2.232 1.597 Nanyang Recommended 0.87 5.009 2.238 1.729
DL prediction 0.96 2.165 1.471 1.036 DL prediction 0.85 4.979 2.231 1.592

Yuzhong Recommended 0.91 3.708 2.418 1.403 Zhengzhou Recommended 0.88 5.487 2.342 1.736
DL prediction 0.95 2.224 1.491 1.131 DL prediction 0.95 2.148 1.466 1.136

Guyuan Recommended 0.91 4.270 2.066 1.486 Anyang Recommended 0.87 9.739 3.121 2.481
DL prediction 0.93 3.430 1.852 1.368 DL prediction 0.89 9.722 3.118 2.644

Yinchuan
Recommended 0.91 4.232 2.057 1.407

Fushan
Recommended 0.94 4.574 2.139 1.640

DL prediction 0.94 2.629 1.621 1.163 DL prediction 0.96 1.973 1.405 1.043

Huhehaote
Recommended 0.90 5.497 2.345 1.733 Jinan Recommended 0.86 9.697 3.114 2.368
DL prediction 0.90 3.645 1.909 1.346 DL prediction 0.92 3.064 1.750 1.320

Erlianhaote
Recommended 0.91 6.024 2.454 1.866 Juxian Recommended 0.92 3.105 1.762 1.344
DL prediction 0.94 3.308 1.819 1.671 DL prediction 0.95 1.636 1.279 0.957

It can be seen from Table 3 that the overall prediction accuracy of the DL model in
the Yellow River Basin is significantly better than the recommended values of the Å-P
parameters. From the results of R2, except Ganzi, Dongsheng, Ankang and Nanyang
stations, the R2 of other stations increases to varying degrees. The average values of R2

increase from 0.88 to 0.91. The R2 predicted by the Yushu station increases the most, from
0.77 to 0.90, and the R2 predicted by the Ganzi station is the worst, decreasing from 0.89
to 0.85. The MSE decreases by 25.93% on average. The MSE values of the DL models of
the Dongsheng, Taiyuan, Houma and Jinghe stations are greater than the recommended
values of the Å-P parameters, and the MSE values of other stations decrease. The best
performing station is Jinan Station. The MSE decreases from 9.697 to 3.064, which is 68.40%
lower than the recommended values of the Å-P parameters. The worst performing station
is Dongsheng station. Its MSE increases from 4.324 to 6.990, which is −61.55% worse
than the recommended values of the Å-P parameters. RMSE has the same pattern as
MSE. The RMSE of Jinan station, with the best performance, decreases from 3.114 to 1.750,
which is 43.79% lower than the recommended values of the Å-P parameters. The RMSE
of Dongsheng station, with the worst performance, increases from 2.079 to 2.644, which
is −27.14% worse than the recommended values of the Å-P parameters. The MAE is
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reduced by 16.04% on average compared with the Å-P equation. Except that the DL model
prediction results of the Guoluo, Dongsheng, Taiyuan, Houma, Jinghe and Anyang stations
are greater than the recommended values of the Å-P parameters, the MAE values of other
stations are reduced. Golmud is the best performing station, and its MAE is reduced from
0.984 to 1.029, which is 48.13% better than the recommended values of the Å-P parameters.
The worst performing station is Taiyuan station, whose MAE value increases from 1.878 to
2.216, which is −18.03% worse than the recommended values of the Å-P parameters.

In general, the DL model has the best prediction results in Golmud. Compared with
the recommended values of the Å-P parameters, R2 is improved from 0.93 to 0.96. MSE,
RMSE and MAE are reduced by 66.11%, 41.79% and 48.13%, respectively. The prediction
results of Dongsheng station are the worst. Compared with the recommended values of
the Å-P parameters, R2 decreases from 0.92 to 0.91, and the recommended values of MSE,
RMSE and MAE decrease by −61.65%, −27.14% and −15.77%, respectively, compared with
the Å-P equation.

Figure 2 shows the performance comparison between the predicted results of the
recommended values of the Å-P parameters and the predicted results of the DL model in
the upstream, midstream and downstream of the Yellow River Basin. From Figure 2a, it
can be seen that, in the upstream, midstream and downstream of the Yellow River Basin,
the R2 predicted by the DL model is better than the recommended values of the Å-P
parameters. Among the prediction results of the upstream, midstream and downstream
of the Yellow River Basin, the prediction results of the downstream are the best. Its R2

increases from 0.894 to 0.934, followed by the prediction results of the upstream, whose
R2 increases from 0.888 to 0.921. The prediction results of the midstream are the worst. Its
R2 increases from 0.869 to 0.874. From Figure 2b, it can be seen that the MSE of the DL
model in the upstream and downstream of the Yellow River Basin is significantly better
than the recommended values of the Å-P parameters, and there is little difference between
the MSE in the midstream of the Yellow River Basin and the recommended values of the
Å-P parameters. Among them, the MSE in the downstream of the Yellow River Basin
decreases the most, from 6.520 to 3.709, and in the upstream of the Yellow River Basin, the
MSE decreases from 6.13 to 4.092. From Figure 2c, it can be seen that RMSE and MSE have
the same trend in the upstream, midstream and downstream of the Yellow River Basin.
RMSE decreases the most in the downstream of the Yellow River Basin, from 2.496 to 1.804,
followed by the upstream of the Yellow River Basin, from 2.477 to 1.981. The worst is in the
midstream of the Yellow River Basin, from 2.661 to 2.659. From Figure 2d, it can be seen
that MAE decreases in different degrees in the upstream, midstream and downstream of
the Yellow River Basin. Similar to the changes of other indicators, MAE decreases the most
in the downstream of the Yellow River Basin, from 1.914 to 1.420. It decreases from 1.842 to
1.491 in the upstream of the Yellow River Basin and from 2.022 to 1.945 in the midstream of
the Yellow River Basin.

In general, the evaluation metrics of the DL model are significantly better than the
recommended values of the Å-P parameters in the upstream, midstream and downstream
of the Yellow River Basin. Among them, the overall prediction results of the downstream
are the best. R2 increases from 0.894 to 0.934. MSE, RMSE and MAE are reduced by 43.12%,
27.73% and 25.80% respectively, followed by the overall prediction effect of the upstream:
R2 increases from 0.888 to 0.921; MSE, RMSE and MAE are reduced by 33.27%, 20.02% and
19.04%, respectively. The overall prediction results of the midstream are the worst. The
prediction accuracy of the DL model is not different from the recommended values of the
Å-P parameters. R2 increases from 0.869 to 0.874, and MSE, RMSE and MAE are reduced
by −0.50%, 0.07% and 3.82%, respectively.
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Figure 2. (a) The determination coefficient R2 values of the prediction results of the recommended
Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River
Basin; (b) The mean square error MSE values of the prediction results of the recommended Å-P
parameters and the DL model in the upstream, midstream and downstream of the Yellow River
Basin; (c) The rooted mean square error RMSE values of the prediction results of the recommended
Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River
Basin; (d) The mean absolute error MAE values of the prediction results of the recommended Å-P
parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin.

3.3. Comparison between the Prediction Results of Corrected Values of Å-P Parameters and Those
of the DL Model

The Å-P parameter values recommended are proposed by FAO based on the average
regional climate of foreign countries for many years; the prediction accuracy in China is
poor. We will compare the prediction results of the Å-P parameter values corrected based
on the measured data of stations in the Yellow River Basin with those of the DL model. R2,
MSE, RMSE and MAE were also used to evaluate the prediction results of the two indexes,
and the evaluation results are shown in Table 4.
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Table 4. Performance comparison between the prediction results of the corrected values of the Å-P
parameters and the prediction results of the DL model.

Site Model R2 MSE RMSE MAE Site Model R2 MSE RMSE MAE

Yushu
Corrected 0.78 8.926 2.988 2.209 Wulatezhongqi Corrected 0.92 4.556 2.135 1.448

DLprediction 0.90 5.018 2.240 1.728 DLprediction 0.95 3.273 1.809 1.435

Guoluo
Corrected 0.87 5.085 2.255 1.608 Dongsheng Corrected 0.92 3.831 1.957 1.391

DLprediction 0.88 7.343 2.710 2.207 DLprediction 0.91 6.990 2.644 1.685

Gangcha Corrected 0.92 3.285 1.812 1.314 Taiyuan Corrected 0.88 5.476 2.340 1.750
DLprediction 0.94 2.647 1.627 1.243 DLprediction 0.89 9.559 3.092 2.216

Geermu
Corrected 0.94 3.226 1.796 1.290 Datong Corrected 0.90 4.989 2.234 1.698

DLprediction 0.96 2.033 1.426 1.029 DLprediction 0.93 3.686 1.920 1.485

Xining Corrected 0.88 5.449 2.334 1.687
Houma

Corrected 0.89 5.040 2.245 1.654
DLprediction 0.93 4.017 2.004 1.519 DLprediction 0.89 6.495 2.549 2.070

Ganzi
Corrected 0.89 3.467 1.862 1.408

Yanan
Corrected 0.88 5.871 2.423 1.718

DLprediction 0.85 4.559 2.135 1.704 DLprediction 0.86 7.068 2.659 1.855

Hongyuan Corrected 0.84 7.648 2.765 1.994 Jinghe Corrected 0.83 7.641 2.764 2.007
DLprediction 0.88 6.340 2.518 1.836 DLprediction 0.89 9.502 3.083 2.518

Wuwei
Corrected 0.81 12.101 2.960 2.760 Ankang Corrected 0.83 7.185 2.680 1.871

DLprediction 0.91 5.849 2.418 1.757 DLprediction 0.81 9.493 3.081 1.880

Minqin Corrected 0.90 4.684 2.164 1.614 Nanyang Corrected 0.88 4.448 2.109 1.506
DLprediction 0.96 2.165 1.471 1.036 DLprediction 0.85 4.979 2.231 1.592

Yuzhong Corrected 0.91 3.661 2.418 1.485 Zhengzhou Corrected 0.89 4.685 2.165 1.615
DLprediction 0.95 2.224 1.491 1.131 DLprediction 0.95 2.148 1.466 1.136

Guyuan Corrected 0.92 3.859 1.964 1.427 Anyang Corrected 0.88 4.657 2.158 1.597
DLprediction 0.93 3.430 1.852 1.368 DLprediction 0.89 9.722 3.118 2.644

Yinchuan
Corrected 0.92 4.201 2.050 1.381

Fushan
Corrected 0.94 2.528 1.590 1.205

DLprediction 0.94 2.629 1.621 1.163 DLprediction 0.96 1.973 1.405 1.043

Huhehaote
Corrected 0.90 4.967 2.229 1.595 Jinan Corrected 0.86 6.647 2.578 1.835

DLprediction 0.90 3.645 1.909 1.346 DLprediction 0.92 3.064 1.750 1.320

Erlianhaote
Corrected 0.91 5.108 2.260 1.584 Juxian Corrected 0.93 2.848 1.688 1.266

DLprediction 0.94 3.308 1.819 1.671 DLprediction 0.95 1.636 1.279 0.957

It can be seen from Table 4 that the prediction accuracy of the DL model is significantly
better than the corrected values of the Å-P parameters at most stations in the Yellow River
Basin. From the results of R2, the prediction accuracy of the DL model is greatly improved
compared with the corrected values of the Å-P parameters, and the average value of R2

increases from 0.89 to 0.91. Among them, the R2 values of the Ganzi, Dongsheng, Taiyuan,
Yan’an, Ankang and Nanyang stations decrease, and the prediction results of the DL model
of Ankang station are the worst. Compared with the corrected values of the Å-P parameters,
R2 decreases from 0.83 to 0.81. Compared with the corrected values of the Å-P parameters,
the R2 values of other stations increase to varying degrees. The prediction results of the
Golmud, Minqin and Fushan stations are the best, with R2 reaching 0.96. Compared with
the Å-P parameters, the corrected values of the Yushu station increase the most, and R2

increases from 0.78 to 0.90. The MSE decreases by 5.93% on average. Except for Datong, the
MSE values of the DL model in the midstream of the Yellow River Basin are higher than
the corrected values of the Å-P parameters. In addition, the MSE values of the Guoluo,
Ganzi and Anyang stations are also greater than the corrected values of the Å-P parameters.
The MSE value of the DL model in Anyang station is the largest, 9.722, which is −108.75%
lower than the corrected values of the Å-P parameters. The MSE values of other stations
are lower than the corrected values of the Å-P parameters. The MSE value of Zhengzhou
station is reduced from 4.685 to 2.148, a decrease of 54.15%. The values of RMSE have the
same trend as MSE, with an average decrease of 5.56%. Anyang station is the worst station,
and the value of RMSE increases from 2.158 to 3.118, a decrease of −44.48% compared with
the Å-P equation. The best station is Zhengzhou station. The value of RMSE is reduced to
1.466 from 2.165, which is 32.29% lower than that of the Å-P equation. The average decrease
of MAE is 2.28%, and the pattern of MAE is similar to that of MSE and RMSE. Anyang
station has the worst performance, and its MAE value has increased from 1.597 to 2.644,
an increase of 65.59%. Wuwei station has the best performance, and its MAE value has
decreased from 2.760 to 1.757, a decrease of 36.34% compared with the corrected values of
the Å-P parameters.
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In general, the DL model has the best prediction results in Zhengzhou station. Com-
pared with the corrected values of the Å-P parameters, R2 is improved from 0.89 to 0.95,
and MSE, RMSE and MAE are reduced by 54.15%, 32.29% and 29.64%, respectively. The
prediction results of Anyang station are the worst. R2 is improved from 0.88 to 0.99 com-
pared with the corrected values of the Å-P parameters, but the prediction error is large and
the corrected values of MSE, RMSE and MAE are decreased by −108.75%, −44.48% and
−65.59% compared with the Å-P parameters, respectively.

Figure 3 shows the performance comparison between the predicted results of the
corrected values of the Å-P parameters in the upstream, midstream and downstream of
the Yellow River Basin and the predicted results of the DL model. From Figure 3a, it can
be seen that, in the upstream, midstream and downstream of the Yellow River Basin, the
R2 predicted by the DL model is better than the corrected values of the Å-P parameters.
Among the prediction results of the upstream, midstream and downstream of the Yellow
River Basin, the prediction results of the downstream are the best. Its R2 increases from
0.900 to 0.934, followed by the prediction results of the upstream, whose R2 increases from
0.889 to 0.921. The prediction results of the midstream are the worst. Its R2 increases
from 0.870 to 0.874. From Figure 3b, it can be seen that the MSE values of the DL model
in the upstream and downstream of the Yellow River Basin are significantly better than
the corrected values of the Å-P parameters, and the MSE values in the midstream of the
Yellow River Basin are significantly worse than the corrected values of the Å-P parameters.
The MSE value decreases the most in the upstream of the Yellow River Basin, from 5.253
to 4.092. In the downstream of the Yellow River Basin, the MSE decreases from 4.273 to
3.709, and in the midstream of the Yellow River Basin, the MSE value increases from 5.807
to 7.255. It can be seen from Figure 3c that RMSE and MSE have the same trend in the
upstream, midstream and downstream of the Yellow River Basin. The value of RMSE
decreases the most in the upstream of the Yellow River Basin, from 2.247 to 1.981, followed
by the downstream of the Yellow River Basin, from 2.036 to 1.804. In the midstream of the
Yellow River Basin, the value of RMSE increases from 2.399 to 2.659. From Figure 3d, it can
be seen that MAE has the same trend as MSE and RMSE in the upstream, midstream and
downstream of the Yellow River Basin. It decreases the most in the upstream of the Yellow
River Basin, from 1.637 to 1.491. It decreases from 1.503 to 1.420 in the downstream of the
Yellow River Basin and from 1.744 to 1.945 in the midstream of the Yellow River Basin.
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mean square error RMSE values of the prediction results of the corrected Å-P parameters and the DL
model in the upstream, midstream and downstream of the Yellow River Basin; (d) The mean absolute
error MAE values of the prediction results of the corrected Å-P parameters and the DL model in the
upstream, midstream and downstream of the Yellow River Basin.

In general, the evaluation metrics of the DL model are significantly better than the
corrected values of the Å-P parameters in the upstream and downstream of the Yellow
River Basin. Among them, the overall prediction results of the upstream are the best. R2

increases from 0.889 to 0.921. MSE, RMSE and MAE are reduced by 22.11%, 11.84% and
8.94%, respectively, followed by the overall prediction effect of the downstream, whose
R2 increases from 0.900 to 0.934 and whose MSE, RMSE and MAE are reduced by 13.21%,
11.40% and 5.55%, respectively. Compared with the corrected values of the Å-P parameters,
the overall prediction results in the midstream of the Yellow River Basin are poor. R2

increases from 0.870 to 0.874, but MSE, RMSE and MAE are reduced by −24.93%, −10.83%
and −11.56%, respectively.

4. Discussion

4.1. Calibration of Å-P Parameters

Using an empirical model to estimate solar radiation is relatively simple, and it is easy
to obtain input data with. At present, the most commonly used empirical model is the Å-P
equation based on sunshine [24]. However, the application of this model is often limited by
parameter correction. How to select the appropriate Å-P parameters is the focus of using
this model [25].

Due to little research on the correction of the a and b parameters of the Å-P equation in
various regions of China and the lack of necessary research on and understanding of how
the selection of these parameters affects the estimation of solar radiation and other related
variables in the past, it is still quite common to directly use the recommended values of
FAO-56 in China, especially in the calculation of reference crop evapotranspiration ET0.
The a and b parameter values recommended by FAO-56 are proposed by FAO based on the
multi-year average regional climate abroad. Due to the influence of clouds, geographical
location, altitude and climate in different regions of China, the prediction accuracy of the
FAO-56 recommended values are affected to varying degrees. In addition, Liu et al. [26]
point out that correction is the best method to obtain accurate Å-P parameters. Therefore,
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how to reasonably correct the values of the a and b parameters according to different regions
of China is the key to accurately estimating solar radiation using the Å-P equation. Based
on the measured solar radiation data of 28 stations in the Yellow River Basin for many
years, the parameters of the Å-P equation of each station are fitted by the least square
method, and the corrected values of the Å-P parameters of each station are obtained. The
calibration values of the Å-P parameters are evaluated by five evaluation metrics, namely,
the determination coefficient R2, rooted mean square error RMSE, relative error RE, mean
absolute error MAE and consistency index d.

The Å-P parameter correction and evaluation metrics of each station in the Yellow
River Basin are shown in Table 2. The value of a varies from 0.11 to 0.29, with an average of
0.18, and the value of b varies from 0.50 to 0.69, with an average of 0.58. After comparing
with the corrected values of the parameters a and b obtained by Chen et al. [27] and
Liu et al. [25,26] in the Yellow River basin, it can be found that the corrected values of each
station are the same, with only minor differences, which may be caused by the different
lengths of data records used by each station. The data record we use is much longer than
that used by Chen et al. and Liu et al. The values of R2 range from 0.74 to 0.96. Except
for Yushu station in Qinghai Province, the R2 of all other stations is above 0.80, and the
average R2 is 0.89. Compared with previous research results [9,25–28], our results show
that our data have better quality control.

In addition, it can be seen from the evaluation metrics in Table 2 that the correction ef-
fect of the Å-P equation at the upstream and downstream stations of the Yellow River Basin
is good, with R2 reaching 0.90, and the correction effect at the stations in the midstream is
poor, with R2 at only 0.87. In general, the correction effect of the Å-P equation at the stations
in the upstream of the Yellow River Basin is the best. RMSE, RE, MAE and d are 2.271, 0.14,
1.670 and 0.97, respectively, The correction effect of stations in the downstream is second,
with RMSE, RE, MAE and d of 2.292, 0.18, 1.732 and 0.97, respectively. The correction
effect of stations in the midstream of the Yellow River Basin is the worst, with RMSE, RE,
MAE and d of 2.859, 0.22, 2.142 and 0.96, respectively. However, there is no particularly
satisfactory explanation for why the correction effect of the Å-P equation is better in the
upstream and downstream of the Yellow River Basin and worse in the midstream of the
Yellow River Basin. A possible reason is that the parameters of the Å-P equation have a
great impact on solar radiation in high altitude and high radiation areas and in low altitude
and low radiation areas [19].

4.2. Comparison between DL Model and Å-P Model

The lack of measured solar radiation data has also led to the development of other
indirect methods, including the method based on random weather model [29], the satellite
remote sensing method [30], the linear interpolation method [31], the empirical relation-
ship method using other meteorological variables [32] and the physical transmission
method [33,34]. In recent years, with the rapid development of artificial intelligence and
neural networks, the prediction of solar radiation by artificial neural networks has become
more and more mature. Many researchers [11–14] estimate solar radiation by establishing
an artificial neural network model and prove the feasibility of predicting solar radiation
by artificial neural networks but do not compare the artificial neural network with other
methods regarding prediction performance, so the superiority of artificial neural networks
is not shown in predicting solar radiation. Some studies [2,35] compare the artificial neural
network model with the most widely used Å-P equation and the empirical regression
model proposed by other researchers [36], but the results are different. The research re-
sults of Tymvios et al. show that the prediction accuracy of artificial neural networks is
similar to that of the Å-P equation, while Jiang et al. compare the artificial divine power
network model with the empirical regression model proposed by other researchers [36].
It is confirmed that the artificial neural network is more suitable for the prediction of
solar radiation.
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In this study, the neural networks with three hidden layers (40 60 40) take the highest
temperature Tmax, the lowest temperature Tmin, the average temperature Tavg, the wind
speed U, the relative humidity RH, the sunshine hours H and the maximum sunshine hours
Hmax as input variables. We compare the solar radiation predicted by the DL model with
the solar radiation predicted by the FAO-56 recommended values and the solar radiation
predicted by the corrected values fitted by the measured data of stations in the Yellow
River Basin and evaluate by four evaluation metrics: the determination coefficient R2, mean
square error MSE, rooted mean square error RMSE and mean absolute error MAE. The Å-P
equation has higher prediction accuracy and a wider application range.

The performance comparison of the recommended values of the Å-P parameters at
each station, the recommended values of the Å-P parameters at the upstream, midstream
and downstream of the Yellow River Basin and the prediction results of the DL model are
shown in Table 3 and Figure 2, respectively. From Table 3 and Figure 2, it can be seen that
the overall prediction accuracy of the DL model in the Yellow River Basin is significantly
better than the recommended values of the Å-P parameters. R2 increases from 0.88 to
0.91, and MSE, RMSE and MAE are reduced by 25.93% 16.25% and 16.04% on average,
respectively, which is consistent with the conclusion of Jiang et al. However, the difference
is that, according to the analysis of the results of each station, the predicted solar radiation
of the DL model is not better than the recommended values of the Å-P parameters at all
stations. For example, the solar radiation predicted by the DL model at the Dongsheng,
Taiyuan, Houma and Jinghe stations is poor, among which Dongsheng station has the
worst prediction result, and its R2 (0.92) is worse than the recommended values of the Å-P
parameters (0.91). MSE, RMSE and MAE decrease by −61.65%, −27.14% and −15.77%,
respectively. From the above results, it can be seen that the stations with poor prediction
results of the DL model are distributed in the midstream of the Yellow River Basin.

Table 4 and Figure 3 show the performance comparison between the predicted results
of the Å-P parameter corrected values of each station, the corrected values of the Å-P
parameters in the upstream, midstream and downstream of the Yellow River Basin and the
predicted results of the DL model, respectively. From Table 4 and Figure 3, it can be seen
that the overall prediction accuracy of the DL model in the Yellow River Basin is slightly
better than the corrected values of the Å-P parameters. R2 increases from 0.89 to 0.91, and
MSE, RMSE and MAE are reduced by 5.93%, 5.56% and 2.28%, respectively. The results
show that using the DL model to predict solar radiation in the Yellow River Basin is an
effective alternative method. From the results of the upstream, midstream and downstream
of the Yellow River basin, compared with the recommended and corrected values of the
Å-P parameters, the DL model has the same pattern, that is, the prediction results are better
in the upstream and downstream of the Yellow River Basin but worse in the midstream
of the Yellow River Basin. This result is also consistent with the trend of the correction
results of the Å-P equation. Therefore, we speculate that the prediction results of the DL
model in the midstream of the Yellow River basin may be related to the low accuracy of the
input variables.

4.3. Comparison between DL Model and Other Machine Learning Models

With the rise of machine learning algorithms, building a solar radiation prediction
model by machine learning algorithms has become a hot research direction at present. A
large number of researchers have applied different machine learning algorithms into solar
radiation prediction models and have achieved good prediction results. Chen et al. [15]
used the meteorological data of three stations in Liaoning Province to establish seven
support vector machine models with different inputs. The average RMSE values of the
three stations are 2.325 MJ/m2, 1.915 MJ/m2 and 2.040 MJ/m2. Zeng et al. [37] used
random forest (RF) to build a model for predicting China’s daily solar radiation. The
overall correlation coefficient R of the model is 0.95, and the root mean square error RMSE
value is 2.34 MJ/m2. Huang et al. [38] predicted and compared the daily and monthly
solar radiation values of Ganzhou City by building 12 machine learning models. The
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R2 values of the 12 machine learning models predicting the daily solar radiation values
were between 0.838–0.925, and the RMSE values of the 12 machine learning models were
between 1.987–2.999 MJ/m2. The best machine learning model was the GBRT (gradient
enhanced regression tree) model, with R2 values of 0.925 and RMSE values of 1.987 MJ/m2.
The R2 value of the DL model constructed in this paper is 0.910, and the RMSE value is
2.148 MJ/m2 in the Yellow River Basin. Among them, the prediction accuracy in the lower
reaches of the Yellow River Basin is the highest, with an R2 value of 0.934 and an RMSE
value of 1.804 MJ/m2. Compared with the DL model constructed in this paper, it can be
found that the prediction accuracy of the DL model constructed in this paper is better than
that of most machine learning models.

From a solar radiation prediction point of view, the machine learning models can learn
the complex nonlinear characteristics from different inputs so as to improve their prediction
accuracy, but only for smaller datasets. In practice, the machine learning models cannot
accurately predict relatively large datasets [39]. In addition, compared with traditional
machine learning models, deep learning models such as recurrent neural networks (RNN),
long-term and short-term memory neural networks (LSTM) and convolutional neural
networks (CNN) have shown the potential to further improve the accuracy of solar radiation
prediction. Zhu et al. [40] proposed a Siamese convolutional neural network-long short-
term memory (SCNN-LSTM) model to predict the inter-hour DNI by combining the time-
dependent spatial features of total sky images and historical meteorological observations,
which can predict the solar radiation ten minutes in advance, and the performance is better
than the published methods. Mishra et al. [41] proposed a new short-term solar radiation
prediction model based on the concepts of long-term and short-term memory network
(LSTM) and wavelet transform (WT), and it showed superior performance compared with
other machine learning models. The above research results show that deep learning models
not only have a wider application range and higher prediction accuracy but also can realize
the ultra short-term solar radiation prediction with the rapid development of the deep
learning architecture. Therefore, deep learning models are more suitable for predicting
long-term and short-term changes of solar radiation.

5. Conclusions

Taking the measured meteorological data of the highest temperature Tmax, lowest
temperature Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine
hours H and maximum sunshine hours Hmax as input variables, this study establishes a
DL model for predicting solar radiation in the Yellow River Basin of China and compares it
with the recommended and corrected values of the Å-P equation parameters widely used
at present. The determination coefficient R2, mean square error MSE, root mean square
error RMSE and mean absolute error MAE are evaluated.

Compared with the Å-P equation using the recommended values of FAO-56, the
prediction accuracy of the DL model in the Yellow River Basin is significantly improved.
R2 is increased from 0.883 to 0.910, and MSE, RMSE and MAE are reduced by 25.30%,
15.94% and 16.22%, respectively. Among them, the prediction accuracy in the downstream
of the Yellow River Basin is the best, followed by the upstream. Compared with the Å-P
equation using corrected values, the R2 of the DL model is increased from 0.887 to 0.910,
and the MSE, RMSE and MAE are reduced by 1.82%, 3.57% and 0.57%, respectively. Among
them, the prediction accuracy of the DL model in the upstream and downstream of the
Yellow River Basin is much better than that of the Å-P equation using corrected values. The
prediction accuracy of the DL model in the midstream of the Yellow River Basin is worse
than that of the Å-P equation using corrected values.

In general, the ability of the DL model to accurately predict solar radiation in the
upstream and downstream of the Yellow River Basin in China is significantly better than
that of the Å-P empirical model. However, the application of the DL model in the midstream
of the Yellow River Basin does not perform well in predicting solar radiation, which may
be related to the low accuracy of input variables.
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