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Abstract: High-resolution maps of soil health measurements could help farmers finetune input
resources and management practices for profit maximization. Within-field soil heath variations can
be mapped using local topography and apparent electrical conductivity (ECa) as predictors. To
address these issues, a study was conducted in Texas Blackland Prairie soils with the following
objectives: (i) to assess and map within-field soil health variations using machine learning; (ii) to
evaluate the usefulness of topography and ECa as soil health predictors; and (iii) to quantify the
relationship between ECa and soil health index and use ECa to estimate soil health spatial distribution.
We collected 218 topsoil (0–15 cm) samples following a 35 m × 35 m grid design and analyzed for
one-day CO2, organic C, organic N, and soil health index (SHI) based on the Haney Soil Health Tool.
A random forest model was applied to predict and map those properties on a 5 m × 5 m grid where
ECa, and terrain attributes were used as predictors. Furthermore, the empirical relationship between
SHI and ECa was established and mapped across the field. Results showed that the study area was
variable in terms of one-day CO2, organic C, organic N, SHI, and ECa distribution. The ECa, wetness
index, multiresolution valley bottom flatness, and topographic position index were among the top
predictors of soil health measurements. The model was sufficiently robust to predict one day CO2,
organic C, organic N (R2 between 0.24–0.90), and SHI (R2 between 0.47–0.90). Overall, we observed a
moderate to strong spatial dependency of soil health measurements which could impact within-field
yield variability. The study confirmed the applicability of easy to obtain ECa as a good predictor of
SHI, and the predicted maps at high resolution which could be useful in site-specific management
decisions within these types of soils.

Keywords: digital soil mapping; ECa; precision agriculture; random forests; soil quality; terrain
attributes

1. Introduction

Soil health is defined as, “the capacity of soil to function as a vital living system,
within an ecosystem and land-use boundaries, to sustain plant and animal productivity,
maintain or enhance water and air quality, and promote plant and animal health” [1].
Concepts of soil health are available from Doran and Safley [2], Kibblewhite, et al. [3], and
Maharjan, et al. [4], among others. Indeed, healthy soils are these soils with sufficient min-
eral nutrients, moisture, and growth-promoting microorganisms to increase productivity
and promote human health [5,6]. Soil health indicators provide a quantitative approach to
assessing soil quality and include a range of key soil properties [7]. Soil properties such as
texture, bulk density, pH, soil organic matter, water holding capacity, drainage, and soil or-
ganism’s functional relationship and diversity are the basic indicators of soil health [3]. Soil
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Health Institute [8] considers 19 soil properties as major soil health indicators. A number
of approaches are available to determine soil health status over time. These approaches
include Cornell’s Comprehensive Assessment of Soil Health [9,10], Haney Soil Health
Tool [11], and Composite Soil Health Index [12]. They use a combination of different indica-
tors of soil quality [13]. Specific to the Haney Soil Health Tool, which is also referred to as
Haney Soil Health Index (SHI), is the use of soil chemical and biological indicators of soil
fertility for soil health assessment and scoring, and fertilizer rate recommendations [11,14].

Spatial variability of soil properties within farm fields is common [15,16], and it
is the primary cause of within-field yield variability [17–20]. Knowledge of soil spatial
variability helps to apply an appropriate soil management practice [21] such as variable rate
applications [22]. Assessing and managing within-field soil variability is a key component
of an effective site-specific crop and soil management (SSCM) plan at the field level [23], and
the use of on-the-go soil sensing to measure or infer a variety of soil properties is common
in SSCM. On-the-go sensing can provide soil information without the need to collect
and analyze several soil samples, and it enhances observation resolution with minimum
cost. One of the most common forms of on-the-go sensor used in SSCM is the apparent
electrical conductivity (ECa) sensed with the electromagnetic induction technique [24].
Research showed ECa data collected on-the-go is a useful, efficient, and cost-effective
surrogate to represent and establish within-field soil spatial variability influencing crop
yield variations [25–28].

Field observations of soil properties at point locations are used to generate continuous
soil maps for the application of SSCM plans, and digital soil mapping (DSM) provides the
necessary tools and techniques [29,30]. Several DSM techniques are being used in mapping
field-scale soil variabilities such as ordinary kriging, regression trees, multiple linear
regression, regression kriging, and kriging with external drift. Bishop and McBratney [31]
found multiple linear regression as the best technique to map cation exchange capacity
at the field level. Zhang, et al. [32] compared generalized linear model, regression tree,
and random forest (RF) to predict and map the distribution of soil moisture, and clay
content and reported a higher performance of the RF model in their prediction. The RFs
are one of the widely used techniques in mapping soil properties in which the prediction
is performed by growing a large number of independent weak trees and averaging the
predictions of each tree, thereby reducing the prediction variance through bagging or
bootstrap aggregation. There are several advantages of RF, such as; it uses both continuous
and categorical variables as predictors, it is robust to model overfitting, variable pre-
selection is not needed, it provides a reliable error estimate, quantifies, and ranks predictor
variables based on their importance, among others [33,34].

The increasing concerns on the sustainability of agricultural and managed systems
have garnered attention towards soil health assessment, yet studies on mapping within-
field soil health variations are limited. Further, available studies have looked into individual
soil properties and thus, within-field spatial patterns of soil health are generally unknown.
Recently, Adhikari, et al. [35] mapped the spatial distribution of a few soil health indicators
using ordinary kriging and determined the interrelationships of soil health score, corn yield,
and soil types in Texas. Indeed, soil health scores are affected by within-field variations in
soil properties and processes markedly impacting soil functioning, yield variability, and
sustainability. As indicated earlier, soil health scores differ within fields and across soil
types and depths, and even within the same soil types depending on topography and land-
use management [36]. Thus, a precise assessment and mapping of within-field variability
in soil health status are necessary and can be done with a combination of soil sensing,
machine learning, and environmental variables such as terrain attributes as predictors. The
map outputs could then be used for SSCM applications to further understand and manage
within-field yield variability for economic as well as environmental benefits. Towards this
end, it is critical to determine and map some specific soil health indicators such as CO2
evolution, organic C, organic N, and electrical conductivity at a within-field scale, and their
inter-linkages with local topography, and soil and crop management decisions to better
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understand soil health and crop yield variations. The main objectives of this study were to:
(i) assess and map within-field variability of selected soil health indicators using machine
learning technique; (ii) evaluate the usefulness of local topography and ECa as predictors
of soil health; and (iii) map the correlation between ECa and soil health and estimate the
later with ECa collected on-the-go.

2. Materials and Methods
2.1. Site Description

The study site is located in the Blackland Prairies soils in Texas, USA (31◦03′29.81′′ N,
97◦21′15.08′′ W) (Figure 1A). The site is a rectangular-shaped agriculture field covering
an area of about 27 ha. The field typically grows corn and cotton in rotation and has been
under cultivation for >50 year. The field applies conservation practices, and the two most
common around the area are terracing to reduce soil erosion and minimum tillage. Soils in
the study area are >2 m deep and are developed on weathered chalk or clayey residuum
from calcareous mudstone of the Cretaceous Age. These soils are classified as fine-silty,
carbonatic, thermic Udorthentic Haplustolls (Austin silty clay series) or fine, smectitic,
thermic, Udic Haplusterts (Houston Black clay series) according to Soil Taxonomy [37].
Surface elevation changes from 185 m in the west up to 200 m to the east with a moderate
slope up to 3.5%. The climate is generally hot with an average annual high and low
temperatures of 25 ◦C and 13 ◦C, respectively, with an average precipitation of about
937 mm annually.
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Figure 1. (A) Soil sample locations with soil health measurements overlaid on elevation map, and
(B) apparent electrical conductivity (ECa) measurements in the study area. [Inset: Location of study
site in the Blackland Prairies ecological region in Texas].

2.2. Data Collection

Three sets of input data, namely, soil health indicators (one-day CO2, organic C,
organic N, and SHI), apparent electrical conductivity, and topographic data, were collected
from the field, and are described below.

2.2.1. Soil Sampling and Measurement of Soil Health Indicators

The soil sampling scheme in the field was based on a 35 m × 35 m grid layout in
which one undisturbed soil sample at each grid node (218 nodes in total) was collected
with a hydraulic soil probe containing an insert. Geographical coordinates of each sample
location were recorded using a hand-held global positioning system with an accuracy of
0.76 m. Soil samples from the top 15-cm soil depth were then brought to the USDA—ARS,
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Grassland, Soil, and Water Research Laboratory to determine soil health indicators, and
SHI based on Haney Soil Health Tool [11]. Those indicators include one-day CO2 evolution,
water-extractable organic C (WEOC), and water-extractable organic N (WEON). One-day
CO2 evolution is the amount of CO2 (mg/kg) released in the 24 h time period by soil
microbes after the soil has been dried and rewetted, and it is a measure of the soil microbial
activity related to soil fertility. The WEOC is the amount of organic C that is extracted from
the soil with water, and it reflects the quantity of carbon in the soil that is readily available
to microbes. Similarly, WEON is the amount of the total water-extractable nitrogen (WEN)
minus the inorganic N that includes both nitrate and ammoniacal-nitrogen (NO3-N and
NH4-N), and it can be easily broken down and released by soil microbes to the soil in
readily plant-available inorganic N.

In the laboratory, soil samples were first oven-dried at 50 ◦C and crushed before
sieving through a 2 mm mesh. From the sieved soil, a 4 g subsample was poured into a
50-mL centrifuge tube and was extracted with 40 mL de-ionized water. The extract was
then analyzed for NO3-N and NH4-N using a Seal Analytical Rapid Flow Analyzer. The
WEOC and WEN were determined using a Teledyne-Tekmar Apollo 9000 C: N analyzer
and the WEON was derived as a difference between the total water-extractable N and
nitrate-and ammoniacal-nitrogen (i.e., WEON = WEN–NH4-N–NO3–N). To determine
one day CO2 evolution, a 40 g sieved soil sample was put into a 50 mL perforated plastic
beaker and was bought to a moisture level equivalent to field capacity solely through
capillary action and the CO2 released was determined by Licor 840 CO2 detector [38]. All
the laboratory procedures followed to determine soil health indicators can be found in
Haney, Haney, Smith, Harmel, and White [11]. From these soil indicator values; SHI was
derived as Equation (1). The SHI includes the weighted contribution of microbial activity,
water-extractable organic C, and water-extractable organic N. The SHI score represents the
overall health of the soil system and its value ranges between 0 and 50 or slightly over 50
in most agriculture systems, wherein scores > 7 are considered relatively good.

SHI =
One− day CO2
WEOC : WEON

+
WEOC

100
+

WEON
10

(1)

where one day CO2 is the amount of CO2 released in 24 h, WEOC as water-extractable
organic C, and WEON as water-extractable organic N in mg/kg, the numbers 10 and 100
are the weighting factors.

2.2.2. Field Apparent Electrical Conductivity Survey and Mapping

A field survey was conducted in 2020 to collect ECa data across the field using a
DualEM-1S sensor (DUALEM Products. Available online: https://dualem.com/products/
(accessed on 16 April 2022)). The DualEM-1S sensor works with the principles of electromag-
netic induction. It has one transmitter (vertical dipole) and two receivers (vertical and hori-
zontal dipole) separated by a distance of about 1 m. About 70% of the cumulative response
of the horizontal configuration of the receiver comes from 0.5 m soil depth, whereas it cor-
responds to a depth of 1.5 m for the vertical configuration [39]. During the field operation,
the sensor was tightly placed in a hard-core plastic sled and was dragged in the field with
an all-terrain vehicle. A global positioning system (GPS Pathfinder Pro XRS) was connected
to the sensor to record geographic coordinates in real-time. The sensor received power
from the all-terrain vehicle and was connected to a field computer Yuma 2 Rugged Tablet.
The communication between the sensor, GPS unit, and the field computer was acquired by
running a Termite Software Program (Termite: a simple RS232 terminal. Available online:
https://www.compuphase.com/software_termite.html (accessed on 16 April 2022))and its
Geographic Information System (GIS) display by using Handheld GIS Mapping Software
(HGIS GPS mapping. Available online: https://www.atsgps.com/hgis-gps-mapping.html
(accessed on 16 April 2022)). The field survey was done in a single scan, and it took about
4.5 h to complete. There was a total of 85 drive-paths each placed roughly 5 to 8 m apart
along the northeast-southwest direction of the field. ECa data were recorded every second
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that corresponded to a measuring distance of about 2.5 to 3 m along the drive path, making
a total of 14,171 observations covering the entire study area. Each ECa measurement repre-
sented a GPS-recorded electrical conductivity in dS/m acquired for horizontal as well as
the vertical configuration of the receiver; however, the present study only used the ECa
data from its horizontal configuration, as it is more responsive to surface soil depth (~0.5 m)
and properties.

Once the field scan was complete, recorded data in txt format were downloaded and
imported to Microsoft Excel and to ArcGIS [40] for data cleaning and subsequent analysis.
Data cleaning included removing data points falling outside the field boundary, overlap-
ping points, out-of-drive-track points, negative points, and possible outliers determined
as values falling outside this range [ECa value < (mean − 3 × standard deviations (SD));
> (mean + 3 × SD)]. A continuous ECa map at a grid size of 5 m × 5 m was generated
by ordinary kriging as it outperformed inverse distance weighting, radial bias functions,
and empirical Bayesian kriging methods in terms of prediction error (root mean squared
error) based on leave-one-out cross-validation. A grid size of 5 m was selected for mapping
to make the dimensions of the smallest spatial unit (the grid) compatible with the swath
length of most farm equipment used in the field. Before the kriging operation, spatial
autocorrelation of ECa observations (n = 14,171) was modelled with a variogram (nugget:
0.0, partial sill: 0.07, range: 320 m, model: spherical) considering 12 lags with a lag distance
of 30 m in VESPER program [41].

2.2.3. Topographic Information

A digital elevation model (DEM) was compiled from light detection and ranging
technology and the terrain attributes derived from the DEM were used as a source of
topographic information in the study area. The DEM was downloaded from the USDA-
Natural Resources Conservation Services, Geospatial Data Gateway website (Geospatial
data gateway. Available online: ( https://gdg.sc.egov.usda.gov/GDGHome.aspx (accessed
on 5 December 2021)). The DEM was originally compiled at a grid resolution of 1 m × 1 m,
but it was resampled to a 5 m × 5 m grid for this study by applying the bilinear interpola-
tion technique. Before deriving terrain attributes, the DEM was pre-processed by filling
unnecessary sinks which would otherwise disrupt regular water flow and distribution
on the soil surface. A total of 15 terrain attributes were derived from the DEM in SAGA
GIS [42] platform and were used as predictors of soil health indicators, and SHI in the
study area. The terrain attributes used were aspect (Aspect), elevation (Elevation), flow
accumulation (FlowAccu), landscape position (Landforms), mid-slope position (Midslp),
minimum curvature (Curvmin), multiresolution ridge top flatness (MRRTF), multiresolu-
tion valley bottom flatness (MRVBF), overland flow distance (Overlflw), wetness index
(SAGAWI), slope gradient (Slope), slope height (Slopeht), slope-length factor (LSFactor),
topographic position index (TPI), and valley depth (Valdep). More detail on these terrain
attributes and their derivation can be found in Guo, et al. [43]. Table 1 lists all the terrain
attributes and ECa and their correlation with one-day CO2, organic C, organic N, and SHI
from the study area.

Table 1. Pearson’s correlation coefficient between measured soil properties, apparent electrical
conductivity, and terrain attributes.

Name of Predictor Variable Abbreviation Used One Day CO2 Organic C Organic N Soil Health Index

Aspect Aspect −0.13 ** 0.05 −0.04 −0.10
Apparent electrical conductivity ECa 0.47 *** 0.07 −0.11 0.37 ***

Elevation Elevation −0.24 *** −0.22 *** −0.19 ** −0.27 ***
Flow accumulation FlowAccu −0.17 ** −0.07 −0.14 ** −0.16 **
Landscape position Landforms −0.36 *** −0.31 *** −0.28 *** −0.40 ***
Mid-slope position Midslp 0.28 *** 0.09 0.02 0.24 ***

https://gdg.sc.egov.usda.gov/GDGHome.aspx
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Table 1. Cont.

Name of Predictor Variable Abbreviation Used One Day CO2 Organic C Organic N Soil Health Index

Minimum curvature Curvmin 0.16 ** 0.11 0.11 0.16 **
Multiresolution ridge top flatness MRRTF −0.06 −0.20 *** −0.24 *** −0.12

Multiresolution valley
bottom flatness MRVBF 0.50 *** 0.31 *** 0.23 *** 0.49 ***

Overland flow distance Overlflw 0.11 −0.10 −0.03 0.07
Wetness index SAGAWI 0.52 *** 0.44 *** 0.44 *** 0.57 ***
Slope gradient Slope −0.36 *** −0.20 *** −0.12 −0.33 ***
Slope height Slopeht −0.15 ** −0.21 *** −0.25 *** −0.20 ***

Slope-length factor LSFactor −0.14 ** −0.14 ** −0.09 −0.15 **
Topographic position index TPI −0.44 *** −0.27 *** −0.24 *** −0.44 ***

Valley depth Valdep 0.28 *** 0.21 *** 0.25 *** 0.30 ***

***: significant at p < 0.0001; **: significant at p < 0.01.

2.3. Assessment of Autocorrelation and Spatial Dependency

Spatial autocorrelation of one-day CO2, organic C, organic N, SHI, and ECa was in-
vestigated using variograms that plot semivariance among observation pairs against their
separation distances (Equation (2)). It measures the average degree of dissimilarity between
unsampled values and a nearby data value [44] and thus can describe autocorrelation
among observations at various distances. We calculated omnidirectional experimental
variograms of measured properties following Equation (2) and modeled its spatial char-
acteristics using three different variogram models (Spherical model, Exponential model,
and Gaussian model). The variogram parameters nugget (C0), partial sill (C1), and range
of the variogram (a) from the best-fitted model among the three tested that provided the
lowest value of Akaike Information Criteria were recorded and were used to characterize
spatial autocorrelation or spatial dependence of the measured properties using nugget: sill
ratio (NSR). The NSR represents a contribution of the nugget to the overall spatial structure
of the variogram and it can be calculated as NSR = C0/(C0 + C1). The NSR tells how
well the measured property is spatially dependent or autocorrelated (NSR < 0.25, strong;
0.25 < NSR > 0.75, moderate; and NSR > 0.75, weak) [45]. The experimental variograms
were calculated considering 30 lags with a lag distance of 20 m for all measured properties.
Lags are the distances between observation pairs at which the variogram is calculated.
Variogram calculation and model fitting was performed in the VESPER program [41].

γ(h) =
1

2N(h)

N(h)

∑
a=1
{z(xa + h)− z(xa)}2 (2)

where, γ(h) is the variogram for a distance h(lag) between observations z(xa) and z(xa + h)
with N(h) the number of observation pairs separated by h.

2.4. Spatial Prediction, Mapping, and Model Validation

Prediction of one-day CO2, organic C, organic N, SHI, and ECa and its mapping across
the study area was performed with a machine learning technique—Random Forest. The RF
model was employed using a package ‘randomForest’ in the R environment [46], with three
different parameters defined in the model: the number of trees (ntree) set to be 500, the
minimum number of data points be used in each terminal node (nodesize) set to be 1, and
the number of variables tried at each node (mtry) was 4 determined with ‘tuneRF’ function.
The model also quantified the relative importance (RI) of predicting variables based on
the ranking of percentage increase in prediction error (mean squared error) (%IncMSE)
on its removal from the model. Before executing the RF model, point observations were
randomly split into training (75% of the data) for model calibration and test datasets (25%
of the data) for model performance evaluation. The mean and SD values of the measured
properties in training and test datasets were comparable. A correlation matrix of one
day CO2, organic C, organic N, and SHI and predictor variables was generated and the
variables that were at least significant at p value of <0.01 for each property were used in the
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RF models for subsequent predictions. Once the predictions were made, the maps were
exported to ArcGIS [40] for necessary map edits and layout.

The performance of the prediction models was evaluated on both the calibration
as well as the validation data sets using the statistical indices of R2, Lin’s Concordance
Correlation Coefficient (LCCC), root mean squared error (RMSE), and mean error (ME).
The LCCC was calculated as Equation (3), the calculation of the remaining indices could be
found elsewhere, e.g., [47].

LCCC =
2ρσYσX

σ2
Y + σ2

X +
(
Y− X

)2 (3)

where X and Y are the mean of the observed (X) and predicted values (Y), ρ is the correlation
coefficient between observations and predictions, σX and σY as corresponding standard
deviations, and σ2

X and σ2
Y corresponding variances.

2.5. Correlation between ECa and Soil Health Index and Its Mapping

Spatial correlation between ECa and SHI maps was quantified using a local correlation
between two maps [48], and the values were mapped across the study area at 5 m spatial
resolution. Around each pixel of the raster, a 3 × 3 pixel neighborhood was defined to
record local correlation using the ‘cor’ function, and the operation was repeated throughout
the raster using the ‘focal’ function in the R environment [46]. Further, an empirical
relationship between ECa and SHI was established using a linear model where SHI was
used as a dependent variable on ECa for each predicted pixel from the map. The linear
equation could then be used to predict SHI from easy to obtain ECa data.

3. Results
3.1. Descriptive Summary of Observation Data

Summary statistics of one-day CO2, organic C, organic N, SHI, and ECa for the
measurement locations are listed in Table 2. One day CO2 measurements ranged from 9.9 to
123 mg/kg with a mean of 42.7 (±17.5 SD). Average organic C and organic N were 154 and
11.7 mg/kg, respectively, with their corresponding coefficient of variation (CV) of 18.9, and
24%. Similarly, SHI ranged from 2.6 to 16.6 with a mean of 8.5 (±2.2 SD), and that of ECa
from 0.5 to 1.5 dS/m with a mean of 1.0 ((±0.2 SD). Among all properties, one-day CO2 had
the highest CV (41%) followed by SHI, and organic C had the smallest CV (18.9%) of all.
All properties data had positive skewness coefficients except for organic N and ECa which
were slightly negatively skewed with skewness coefficients of −0.4, and −0.2, respectively.

Table 2. Summary statistics of soil health indicators, soil health index, and apparent electrical
conductivity measured at sample locations (n = 218).

One Day
CO2 (mg/kg)

Organic C
(mg/kg)

Organic N
(mg/kg)

Soil Health
Index ECa (dS/m)

Mean 42.7 154 11.7 8.5 1.0
SD 17.5 29.1 2.8 2.2 0.2

Skewness 1.0 0.6 −0.4 0.8 −0.2
Kurtosis 1.8 0.6 0.2 1.1 −0.8

CV % 41.0 18.9 24.0 26.3 21.8
Minimum 9.9 59.0 3.9 2.6 0.5
Maximum 123 242 20.1 16.4 1.4

Median 40.3 151 12.0 8.2 1.0
IQR 24.0 36.0 3.5 2.8 0.3

SD: standard deviation; CV: coefficient of variation; IQR: Inter-quartile range; ECa: apparent electrical conductivity.

3.2. Spatial Autocorrelation

The experimental variogram of the measured properties was best modeled with a
spherical variogram as the model showed the lowest value of Akaike Information Criteria
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among the tested models—Spherical, Exponential, and Gaussian models (Figure 2). The
range of the variogram of one-day CO2, organic C, and organic N was between 360–370 m,
and NSR between 0.25 and 0.41 showing a strong to moderate spatial dependence of these
properties. Similarly, a strong spatial dependence was observed for SHI, which had a range
of 396 m, and a partial sill of 4.5. Among these four properties, SHI had the lowest nugget
variance and organic C had the highest nugget of all. ECa was strongly spatially dependent
with a nugget variance of zero, and a range of 383 m.
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3.3. Correlation of Soil Properties with Predictors

A Pearson’s correlation coefficient of one-day CO2, organic C, organic N, and SHI
with predicting variables that included terrain attributes and ECa is listed in Table 1 with
their corresponding level of significance. Among the 16 predictors, 14 predictors were
significantly correlated (p-value < 0.01) with one-day CO2, 10 predictors with organic C,
9 predictors with organic N, and 13 predictors with SHI, respectively. The predictors that
were not significantly correlated with one-day CO2 were MRRTF and Overlflw. Similarly,
predictors that were not significant with organic C were Aspect, ECa, FlowAccu, Midslp,
Curvmin, and Overlflw. The same predictors that were not significant with organic C except
FlowAccu were also non-significant for organic N. Two additional predictors namely, Slope
and LSFactor were found non-significant to predict organic N as well; however, both were
significantly correlated with organic C. In the case of SHI, all predictors except Aspect,
MRRTF, and Overlflw were significantly correlated.

Among the predictors, ECa was positively correlated with one-day CO2 (r = 0.47),
and SHI (r = 0.37), but was weakly correlated with organic C (r = 0.07) and organic N
(r = −0.11). Elevation, on the other hand, was negatively correlated with all properties
with r ranging from −0.19 for organic N to −0.27 for SHI. There was a strong positive
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correlation of one-day CO2 with MRVBF (r = 0.50), and SAGAWI (r = 0.52), and a negative
correlation with TPI (r = −0.44), Landforms (r = −0.36), and Slope (r = −0.36). Similarly,
organic C was strongly negatively correlated with Landforms but positively correlated
with SAGAWI (r = 0.44), which was positively correlated with organic N (r = 0.44). There
was a strong positive correlation of SHI with MRVBF (r = 0.49), SAGAWI (r = 0.57); and a
negative correlation with Landforms (r = −0.40), and TPI (r = −0.44).

3.4. Model Performance and Predicted Maps

The RF model used to predict and map soil health indicators and SHI was evaluated
on 25% set-aside data that were not used in model calibration, and Table 3 lists model
evaluation results for both training and test datasets. The predicted R2 value ranged from
0.85 to 0.90 for training data, and from 0.24 to 0.48, respectively, for the test data; one-day
CO2 had the highest R2, and organic C had the lowest R2 of all. The model produced the
highest LCCC for one-day CO2 and the lowest RMSE value for SHI, and the lowest LCCC
and the highest RMSE for the prediction of organic C in the test data set. The ME statistics
showed that the model was negatively biased to predict one-day CO2. Overall, the RF
model showed that the SHI was best predicted with the higher value of R2 and LCCC and
the lower value of RMSE, and organic C was least predicted with the lowest value of R2

and LCCC and the highest value of RMSE (Table 3).

Table 3. Performance evaluation of prediction model on train (75%) and test (25%) dataset.

R2 LCCC RMSE ME

Train Test Train Test Train Test Train Test

One-day CO2 0.90 0.48 0.93 0.63 4.72 10.15 0.07 −0.16
Organic C 0.85 0.24 0.91 0.33 8.48 20.29 0.05 0.34
Organic N 0.87 0.41 0.91 0.54 1.01 3.01 0.00 0.03

Soil Health Index 0.90 0.47 0.93 0.52 0.61 1.38 0.00 0.00

R2: coefficient of determination; LCCC: lin’s concordance correlation coefficient; RMSE: root mean squared error;
ME: mean error.

The predicted map of one-day CO2, organic C, organic N, and SHI are shown in
Figure 3, and their corresponding important predictors are shown in Figure 4, respectively.
These maps were generated by using the RF model in which only the significant predictors
of each property (Table 1) were used in their subsequent predictions. Based on the predicted
maps, the investigated field seems variable in terms of soil health indicators and SHI
distribution; CVs of these properties ranged between 8% and 20%. Among all properties,
organic C distribution in the field was least variable (mean = 157 mg/kg; CV = 8.2%) and
organic N was moderately variable (mean = 11.7 mg/kg; CV = 13%). The maps showed that
a major portion of the central part of the field had a lower level of one-day CO2 and organic
C content resulting in a lower SHI value in that area compared to the rest of the field. On
the other hand, most of the southern part of the field had higher values of those properties
including organic N. Specific to organic N which was higher in the lower 3 quarters of the
field, its maximum value was mapped from the southernmost part, and in the western
corner of the field. These maps also showed the influence of field terracing on the spatial
distribution of measured properties across the field (Figure 3).
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3.5. Important Predictors for Soil Health

Among the 16 predictors (Table 2), SAGAWI was ranked in the list of top five predictors
of all properties indicating its higher influence on the spatial distribution of these properties
in the study area (Figure 4). The RI of SAGAWI ranged between 13% for one-day CO2
to 29% for organic C and organic N prediction. Similarly, ECa was among the top three
predictors of one-day CO2 and SHI for which the highest RI of nearly 21% was observed.
However, ECa was not considered a good predictor of organic C and organic N distribution,
even though it had some correlation with those properties. Predictors such as Curvmin,
slope, FlowAccu, and MRRTF were less important compared to multiresolution valley
bottom flatness, TPI, Landforms, and slope height to predict soil health indicators and
SHI. Predictors like multiresolution valley bottom flatness, SAGAWI, and TPI were the
top terrain attributes to predict one-day CO2, organic C, organic N, and SHI in the study
area. Overall, the spatial distribution of soil health indicators and SHI in the study area
was greatly influenced by ECa and local topography and their level of influence depended
on the properties considered (Figure 4).
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3.6. Relationship between ECa and soil Health Index

Spatial correlation between SHI and ECa maps based on each predicted pixel quan-
tified and mapped as in Figure 5A and the linear relationship between them is shown in
5B, respectively. There was a correlation of about 0.55 between ECa and SHI based on all
pixels and its distribution showed some patchy patterns across the field. The western part
of the field showed a lower or negative correlation between ECa and SHI compared to the
rest of the field; the central and the eastern part of the field showed a mixed low and high
correlation between ECa and SHI. Based on the linear relationship between SHI and ECa,
30% of SHI variability was explained by ECa only, and that the former could be predicted
by ECa with an equation: y = 6.21 + 2.71x.
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4. Discussion

In this study, a 35 m × 35 m grid design was applied to identify sampling locations
for mapping within-field soil health status across a field. As reported in Adhikari, Smith,
Collins, Haney, and Wolfe [35], the selected grid size of 35 m × 35 m and the number
of samples collected were representative of the study area to capture field variability, as
the grid size was smaller than the range of the modeled variograms of measured soil
properties [49]. Furthermore, grid sampling is a widely used soil sampling scheme in field-
scale soil attribute mapping, e.g., [50,51] because of its simplicity and potential for greater
efficiency [52]. Grid samplings are useful to access within-field variations in plant-available
nutrients and facilitate site-specific management [53,54]. Spatial autocorrelation of soil
health indicators and SHI including ECa was investigated with geostatistical methods
(i.e., variogram) which are common in spatial studies in soil and agronomic research [55].
As suggested by [56], the spherical model is a common variogram model to describe the
autocorrelation of soil properties, and our study reported the same as the experimental
variogram of all properties were best modeled by a spherical model. We observed that
one-day CO2, SHI, and ECa had a strong spatial dependence, and organic C and organic
N had a moderate dependence in the study area. A strong spatial dependence of SHI at a
field scale was previously reported by Amirinejad, et al. [57] in which the variogram range
of organic C and SHI varied between 300–380 m, similar to the variogram ranges observed
in this study. The range values of one-day CO2, organic C, and organic N were between
360–370 m, and it is the average distance to which those properties are correlated in the
field [58].

Spatial variability in soil properties affects crop performance, yield, and adoption of
site-specific management practices. The study site showed a moderate to a high degree
of variability (i.e., CV 15–35%: moderate; CV > 35%: high [59] as the CV of measured
soil properties including SHI, and ECa ranged between 18.9 to 41% (Table 2). The spa-
tial variability of those properties was predicted and mapped with a RF model which
is becoming popular in field-scale soil properties mapping because of its higher predic-
tion performance, among other benefits. Studies by Schmidt, et al. [60] and Zhang, Ji,
Saurette, Easher, Li, Shi, Adamchuk, and Biswas [32] found a higher and more consistent
performance of the RF model compared to regression tree and generalized linear model in
predicting soil properties at field level; our results are consistent with these findings as we
observed a similar model performance (R2 as high as 0.90). However, a recent study from
Denmark found the performance of kriging (R2 = 0.90) as high as the RF model (R2 = 0.91)
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in predicting field-scale variability of soil organic matter [50]. Authors argued that the
higher performance of kriging might be due to a high sampling density (20 m × 20 m grid
sampling scheme) in their field.

The present study used a range of terrain attributes and ECa which were collected
on-the-go as predictors of one-day CO2, organic C, organic N, and SHI. Research showed
that collecting ECa data on the go is an efficient way of capturing field variability as ECa
is mostly related to soil physicochemical properties (e.g., porosity, soil moisture, salinity,
cation composition, cation exchange capacity, ionic strength, particle size distribution,
particle shape and orientation, wettability) [61], and it can be collected intensively in an
easy and inexpensive way [62,63]. Due to their correlation with soil properties, ECa and
terrain attributes are widely used in spatial prediction and mapping of soils properties at
the field scale, e.g., [51,64–67]. Among the predictors used, we found a weak correlation of
ECa with organic C, and organic N, whereas it was highly correlated with SHI and one-day
CO2. Our study highlighted the importance of terrain attributes such as SAGAWI, MRVBF,
and TPI in predicting soil health indicators in the study area. SAGAWI had the highest
influence on Organic C, Organic N, and SHI (RI > 25%) suggesting that the field areas that
tend to remain moist or low-lying areas had a strong and positive (Table 1) influence on
these properties. A positive influence of wetness index on soil carbon distribution was also
reported in other studies, e.g., [50,68]. As low-lying or concave areas in the field tend to
accumulate organic matter due to erosion from upslope areas and favor slow decomposition
of organic matter [69,70], terrain attributes like SAGAWI, MRVBF, and Valdep have a high
potential to predict soil carbon and nitrogen distribution in those areas. We also observed
the influence of field terracing on soil properties distribution (Figure 3). Those terraces
were built to reduce soil erosion, and increase infiltration 30–40 year ago, which might have
influenced field hydrology and soil and nutrient transport [71]. The terrain attributes we
used for prediction were able to identify those terracing signatures and perhaps captured
their influence on soil properties variations across the field.

The correlation map between ECa and SHI shows a pixel-by-pixel relationship be-
tween these properties and it could provide a lot more information in the spatial context.
This could be very useful in within-field soil variability assessment and for site-specific
management decisions as it shows a direct relationship between these properties from
every paddock of the field. Establishing an empirical relationship between ECa and SHI is
helpful, as it highlights the potential of on-the-go sensing to estimate SHI in the field easily
and efficiently with a minimum cost.

5. Conclusions

This study was conducted to quantify and map within-field variability of the soil health
status of Blackland prairies soils in Texas. Two hundred and eighteen topsoil samples were
collected and analyzed for one-day CO2, organic C, organic N, and soil health index. A
High-resolution (5 m × 5 m grid) map of each property was generated using a random
forest model in which terrain attributes and ECa data were used as predictors. Furthermore,
the spatial correlation between ECa and SHI was mapped and a linear relationship between
them was established. Results showed that one-day CO2, organic C, and organic N, SHI,
and ECa data were moderate to strongly spatial dependent in the study area, and the
range of this dependency was between 259 to 396 m. The ECa was strongly positively
correlated with one-day CO2, and SHI, whereas it was weakly correlated with organic C
and organic N. There was a strong positive correlation between one-day CO2, organic C,
and organic N, and SHI and SAGAWI, and a strong negative correlation with TPI. Based on
the predicted maps, average values of one-day CO2, and SHI were 47.1 mg/kg (±7.9 SD),
and 8.9 (±1.2 SD), respectively. The field shows high variability in terms of SHI. The ECa,
SAGAWI, MRVBF, and TPI were among the top predictors of soil health indicators, and
SHI in the study area, while ECa was a good predictor of one-day CO2, and SHI, but
not for organic C and organic N. Validation of the RF model showed a higher prediction
performance for one-day CO2 and SHI but a lower performance for organic C. The ECa
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and SHI maps were correlated (r = 0.55), and the latter could be fairly estimated with ECa
with a linear function y = 6.21 + 2.71x. There was a noticeable variation in the selected
soil health indicators, and SHI in the study area at within-field scale, and such variation
could play a role in yield variations across the field. We recommend using topography
and ECa to predict soil health indicators and soil health indexes. Further, SHI could be
fairly estimated with ECa data that could be collected on-the-go efficiently with minimum
cost; however, it needs to be tested in other fields as well. We believe the high-resolution
predicted maps of soil health indicators, and SHI including the correlation map between
ECa and SHI could be useful in fine-tuning SSCM applications.
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