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Abstract: Direct seeding (DS) of rice gained much attention due to labor scarcity and unavailability
of water. However, reduced emergence and poor seedling establishment are the main problems of DS
which causes significant yield losses. Herein, DS-associated seedling traits of three major rice groups,
i.e., Indica (Ind), Japonica (Jap), and aus-type (Aus), were evaluated by using an improved mesocotyl
elongation assay. The associations among different traits at the seedling and maturity stage were also
studied. Significant variation was observed among the cultivars of different rice groups. The Aus
group cultivars showed higher mean values for coleoptile (C, 3.85 cm), mesocotyl (MC, 4.17 cm),
shoot length (SL, 13.64 cm), panicle length (PL, 23.44 cm), tillers number (T, 15.95), culm length (CL,
105.29 cm), and plant height (PH, 128.73 cm), while the Indica and Japonica groups showed higher
mean values of grain length (GL, 8.69 mm), grain length/width ratio (GL/WR, 3.07), and grain width
(GW, 3.31 mm), with 1000 grain weight (TGWt, 25.53 g), respectively. Pairwise correlation analysis
showed that MC, C, and SL were positively correlated among themselves and with PL, CL, and PH.
Moreover, based on principal component analysis (PCA), C, MC, SL, CL, and PH were identified as
the major discriminative factors in the rice cultivars. This study describes the development of desired
DS rice variety with long MC and semidwarf in height and suggests that Aus group cultivars can be
used as the donor parents of favorable DS-associated traits in rice breeding programs.

Keywords: direct seeding; rice groups; seedling and maturity parameters; association; PCA

1. Introduction

Rice (Oryza sativa L.) is a very important cereal because it feeds half of the world’s
population. More than 40,000 worldwide and 15,000 rice varieties in China are being
used for cultivation [1]. Asian rice varieties, due to the strong genetic background, can
quickly adapt to different climatic conditions [1,2]. This genetic variation created genetic
diversity in rice, such as Indica (Oryza sativa subsp. indica) and Japonica (Oryza sativa subsp.
japonica) [2,3]. These two groups are commonly grown and can be distinguished based on
their phenotypic characteristics. For example, Indica rice has long grains with cylindrical
shape, while Japonica has short grains with round shape [4]. In addition to the subdivision
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of Japonica, Aus-type (Oryza sativa subsp. aus) and Aromatic (Oryza sativa subsp. aromatic)
are the other groups of rice [5,6]. The origin of Aus-type is the Indian subcontinent, where
Indica and Japonica arrived later [6]. Aus-type is more closely related to Indica type, but
they have different genetic makeups [7]. The genotypes of Aus-types are generally tall, heat-
and drought-tolerant, and highly efficient in phosphorous (P) uptake [8–10]. Indica rice
is mainly grown at low altitudes areas of tropical and subtropical, while Japonica rice is
cultivated in a range of temperatures because it is more cold-tolerant than Indica [1,11].
Traditionally, rice is cultivated through transplantation of seedlings from nurseries to the
puddled field and known as transplanted rice (TPR) [12]. While seeds are directly sowed
on the dry soil or puddled soil in the second method known as direct seeding (DS) [13]. The
first method of sowing is becoming less profitable due to an increase in labor and energy
resources cost, climate-induced water shortage, and labor unavailability [14,15]. Earlier
studies also reported that the same varieties showed similar or even higher grain yield
in DS compared to TPR with the same cultivation and agronomic practices [14,16]. Due
to the ease, convenience, and the above reasons, farmers are now moving from puddled
TPR towards DS [17]. In China, 28% area of the total cultivated rice is under DS, and it is
increasing day by day [18]. However, poor seedling establishment, weed management, and
lodging are the major challenges of this method [17,19].

For DS, rice cultivars with high germination rate, lodging resistance, fast-growing
and early-tillering capacity, and well-developed root system are preferred [20]. Uniformly
germinated seedlings and high vigor is critical for good crop establishment when culti-
vating by DS method. Shoot-related parameters such as mesocotyl (the embryonic tissue
between the coleoptile node and scutella) elongation and coleoptile (the protective cover
outside of the emerging shoot) are central components that support emergence from deeper
soil [20–23] and help in weed management [24–26]. DS provides protection from the
birds and improves not only lodging resistance but also increase drought resistance in
rice because deep root system absorbs more water [27–29]. It also reduces the omission of
greenhouse gases during the cultivation of rice [30]. Rice breeders are looking for resources
with optimum elongated coleoptile and mesocotyl and good seedling establishment and
lodging resistance to cross with the high-yielding rice cultivars to develop rice variety
suitable for direct seeding.

Most of the previous studies on DS reported the role of mesocotyl elongation and
coleoptile in shoot emergence from the deeper soil and mapped different QTLs (qMel-1,
qMel-3, and qMel-6) and genes (OsML1 and OsML2) with no detailed validation of the
results at maturity stage under field conditions [1,12,26,31–35]. In the life cycle of rice,
it needs continuous changes for better growth and development. If the rice plant faces
any abnormal conditions at any stage, it will affect the overall growth, development, and
ultimately grain yield. Thus, it is necessary to understand the growth stages, association,
and strength between the agronomic parameters of different growth stages, which will help
in improving genetic selection.

The purpose of this work was to study the association between the seedling and
maturity parameters and the evaluation of genotypic variation through an improved
mesocotyl elongation assay. These investigations could be used as screening criteria and
selection of elite parental material for DS cultivars improvement.

2. Materials and Methods
2.1. Experimental Procedure

A diverse panel of 190 rice accessions from the 3000 rice genomes project [36] was used
in the present study. The panel contained rice accessions from 35 countries (Figure 1A).
From these cultivars, 87 and 69 cultivars belong to Indica and Japonica groups, while
34 cultivars belong to Aus/Boro group. The names and origins of these cultivars are
presented in Supplemental Table S1. Fifteen healthy seeds of each genotype were counted
and sown 10 cm deep in vermiculite media in the dark at 28 ◦C by using an improved
mesocotyl elongation assay as previously described by our group [22]. In detail, glass
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bottles of 6 cm in diameter and 18 cm in height were filled with vermiculite medium up
to 5 cm, and 15 seeds were placed on it. Then, vermiculite media were added to make an
overlayer of 10 cm, and 3 cm from the top was kept empty. An amount of 200 mL of ddH2O
was added to each bottle and the pH of the ddH2O was adjusted with 1 M HCl and 1 M
NaOH up to 5.8. Bottles were covered with black plastic bags and then placed in cardboard
boxes (Figure 1B). These boxes were kept in a growth chamber in complete darkness for
10 days. The entire experiment was performed thrice.
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Figure 1. Germplasm distribution and an improved mesocotyl elongation assay. (A) The worldwide
distribution of 190 rice cultivars. Different countries with the number of cultivars are represented with
different colors. (B) The sowing method in which green arrows are representing seeds. (C) Diversity in
10-day-old seedling parameters. Left picture representing indica and japonica, respectively, while the
other two pictures representing Aus group. Red arrows showing mesocotyl elongation. C, coleoptile;
L, leaves; MC, mesocotyl; Bars = 1 cm.
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2.2. Data Collection and Statistical Analysis

After 10 days of sowing, uniformly germinated seedlings were selected, and data for
MC, C, and SL were recorded with the help of a ruler in centimeters (Figure 1C; Supple-
mental Table S1). The same cultivars were planted in the field and at the time of maturity,
the number of Tillers (T) was counted per genotype [37]. Data for PL and related traits such
as GL, GW, GL/WR, and TGWt and height-related characteristics such as CL and PH were
obtained from a previously reported study [38] and Rice Functional Genomics & Breeding
Database version 2.0. Available online: https://www.rmbreeding.cn/phenotype#ifr2 (ac-
cessed on 9 September 2021). Descriptive statistics were performed by using Microsoft Excel
2016 to summarize the data for each agronomic parameter across each group. One-way anal-
ysis of variance (ANOVA) and heritability (h2) were calculated by using IciMapping V4.2
(freely available from https://isbreeding.caas.cn/rj/index.htm accessed on 10 October
2021) [39]. Pearson’s correlation (r), principal component analysis (PCA), and visual-
ization of data were carried out with the help of R 3.4.5. ArcGIS ESRI, Redlands, CA,
USA (https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources accessed
on 20 August 2021), was used for the visualization of the geographical distribution of
the cultivars.

3. Results
3.1. Mean Performance of Rice Groups and Analysis of Variance (ANOVA)

An improved mesocotyl elongation assay [22] was followed in the present study
simply using ten-day-old seedlings to evaluate the pattern of variability for seedling
emergence in 190 diverse rice cultivars and provided useful information at the early stage
of plant development. ANOVA revealed that highly significant (p ≤ 0.001) differences exist
among the cultivars for C, MC, SL, GW, GL/WR, and T, except TGWt (p ≤ 0.01) (Table 1).
Groups (Ind, Jap, and Aus) varied significantly (p ≤ 0.01) for all traits. The mean for all
traits under study was calculated in an entire population and then in separate groups to
study the variation among cultivars and the groups. The values for C vary from 1.27 to
6.62 cm, with a mean of 3.34 cm. The Aus group has a significantly higher mean of 3.85 cm
as compared with Indica and Japonica groups (Table 1 and Figure 2). The values for MC
vary from 0.06 to 13.93 cm, with an overall mean of 2.24 cm. For MC, the Aus group also
showed a significantly higher mean of 4.17 cm, while the Indica (1.79 cm) and Japonica
(1.85 cm) had lower MC means (Table 1 and Figure 2). In this population, SL ranged from
4.79 to 20.45 cm, with a mean of 10.51 cm (Table 1). Maximum SL was recorded in the Aus
group with a mean of 13.64 cm (Table 1 and Figure 2).

https://www.rmbreeding.cn/phenotype#ifr2
https://isbreeding.caas.cn/rj/index.htm
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
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Table 1. Summary statistics of 11 agronomic parameters at early seedling stage and maturity stage of 190 rice cultivars.

Trait
Overall Population Aus Group Indica Group Japonica Group ANOVA

Mean Range CV Mean Range CV Mean Range CV Mean Range CV G h2

C 3.34 1.27–6.62 29.28 3.85 1.5–5.65 24.55 3.24 1.65–6.47 30.37 3.21 1.27–6.62 28.54 *** 99
MC 2.24 0.06–13.93 95.46 4.17 0.37–13.93 74.87 1.79 0.06–8.39 94.00 1.85 0.10–6.45 78.77 *** 97
SL 10.51 4.79–20.45 31.54 13.64 5.63–20.45 25.46 9.87 4.79–18 29.03 9.77 5.11–18.64 29.48 *** 98
GL 8.41 5.7–11.4 10.97 8.22 5.7–9.8 10.88 8.69 6.3–11.4 10.13 8.15 5.7–10.6 11.06 NS -
GW 3.08 2.1–4.3 13.19 3.06 2.2–4.1 13.21 2.9 2.1–4.0 12.57 3.31 2.4–4.3 10.09 *** -

GL/WR 2.8 1.8–4.6 21.31 2.74 1.9–4.1 19.84 3.07 2–4.6 19.94 2.49 1.8–3.7 17.00 *** -
TGWt 24.8 13.5–35.6 14.86 22.53 13.5–32.1 19.34 25.10 20.1–32.6 12.02 25.53 13.9–35.6 14.55 ** -

PL 22.66 14–35 13.84 23.44 18–28 10.77 22.52 17–28 11.48 22.46 14–35 17.49 NS -
T 14.63 4.83–38.66 32.13 15.95 8–28.6 29.39 15.79 4.83–25.33 26.86 12.52 5.66–38.66 36.55 *** -

CL 85.77 36–145 28.06 105.29 63–145 18.92 77.86 36–131 27.81 86.14 42–143 27.33 NS -
PH 108.44 56–172 23.6 128.73 86–172 16.38 100.38 56–158 22.64 108.60 60–166 23.71 NS -

ANOVA; Analysis of variance, G; cultivars, ** p ≤ 0.01 and *** p ≤ 0.001; NS, non-significant; h2, heritability (%age); -, missing data; CV, coefficient of variance (%age); C, coleoptile
length (cm); MC, mesocotyl (cm); SL, shoot length (cm); GL; grain length (mm); GW, grain width (mm); GL/WR, grain length/width ratio (ratio); TGWt, 1000 grains weight (g);
PL, panicle length (cm); T, tillers number; CL, culm length (cm); PH, plant height (cm).
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Figure 2. Comparison of 11 agronomic parameters between Aus, Indica (Ind), and Japonica (Jap)
groups. Boxplots represent the median (middle line), error bars, and outliers (dots). LSD was used
for statistical test. Different letters (a, b and c) above the column differs at p < 0.05.

Grain-related traits (GL, GW, GL/WR, TGWt, and PL) played essential roles in im-
proving the overall yield [40–42]. GL ranged from 5.7 to 11.4 mm, with a mean of 8.41 mm
(Table 1). For GL, Indica group showed a significantly higher mean (8.69 mm) compared
to the Aus and Japonica groups (Figure 2). Similarly, GW changed significantly (p < 0.05)
among the groups and ranged from 2.1 to 4.3 mm, with a mean of 3.08 mm. The Japonica
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group had the highest GW (3.31 mm), and the Indica group had the lowest (2.90 mm).
The mean values of GL/WR ranged from 1.8 to 4.6 with a combined mean of 2.8 (Table 1).
The Indica group showed the significantly highest mean (3.07). TGWt ranged from 13.5
to 35.6 g, with a mean of 24.8 g (Table 1). A significant variation among the groups was
found, and the Japonica group had the highest (25.53 g) TGWt compared to Indica (25.10 g)
and Aus (22.53 g). In the studied population, PL ranged from 14 to 35 cm with a mean
of 22.66 cm. The Aus group had the highest PL (23.44 cm) followed by Indica (22.52 cm)
and Japonica (22.46 cm) groups (Figure 2). Similarly, T ranged from 4.83 to 38.66, with
a mean of 14.63 (Table 1). The highest mean for T was observed in Aus (15.95) followed
by Indica (15.79) and Japonica (12.52) groups. In grasses, culm is composed of nodes and
internodes. These are not an actual stem but help in the standing of the crop. CL changed
non-significantly from 36 to 145 cm, with a mean of 85.77 cm (Table 1). Among the groups,
Aus (105.29 cm) showed the highest CL, followed by Japonica (86.14 cm). The lowest mean
for CL was observed in Indica (77.86 cm) group (Figure 2). The plant height of the rice crop
is mainly dependent on CL and PL [43,44]. We observed non-significant variations in rice
cultivars for PH, which ranged from 56 to 172 cm with a mean of 108.44 cm (Table 1). The
Aus group has a higher mean of 128.74 cm compared with Japonica (108.61 cm) and Indica
(100.39 cm) groups (Table 1 and Figure 2).

3.2. Estimation of Heritability in 190 Rice Cultivars

Heritability is an important selection parameter because it provides necessary infor-
mation related to the transfer of a trait from parents to the next generation and guides
the breeder to select a plant trait that is highly heritable as compared with a less heritable
trait. Heritability was calculated for C, MC, and SL. High broad-sense heritability values
related to C (99%), MC (97%), and SL (98%) were obtained (Table 1), which indicate that
the presence of reasonable variation. These results were consistent with previous stud-
ies [45,46]. Heritability for the rest of the traits was not calculated due to the unavailability
of replicated data.

3.3. Relationship between and among the Seedlings and Maturity Traits

Pearson’s correlation analysis was conducted to study the association among seedling
and maturity-related traits (Figure 3). Seedling-related traits MC and C played a significant
role in seedling emergence. Results indicate that they showed highly significant and
positive correlation with SL (r = 0.53 *** and r = 0.53 ***, respectively) and showing the
scope of simultaneous improvement of these parameters [17]. SL showed positive and
highly significant association with PL, CL, and PH (r = 0.22 **, 0.41 ***, and 0.42 ***,
respectively) (Figure 3). PH exhibited a highly positive correlation with all parameters
except GL/WR and TGWt. Seedling parameters such as SL (r = 0.42 ***), MC (r = 0.34 ***),
and C (r = 0.28 ***) and maturity parameters CL (r = 0.99 ***) and PL (r = 0.53 ***) showed
highest positive correlations with PH (Figure 3). While, GW had a lowest positive but
significant (r = 0.18 *) correlation with PH. The parameters studied at seedling stage showed
highly significant association among themselves and proved a strong relation with maturity-
related traits. These findings elaborated that those seedlings of greater vigor could perform
better at later stages.

3.4. Principal Components Analysis (PCA)

A principal component analysis (PCA) was performed to analyze the variations and
associations of agronomic parameters among the 190 cultivars of different groups originated
from different countries of the world. Rice cultivars were scattered in biplots by groups,
with agronomic parameters shown as vectors (Figure 4). The first three PCs accounted for
65.8% of the total variability (Figure 4A). Variation in PC1 is mainly attributed to PH, CL, SL,
C, MC, and PL for which the eigenvalues are 25.44%, 24.21%, 16.15%, 8.36%, 11.43%, and
11.57%, respectively. While variation is attributed by GL/WR (36.49%), GW (31.92%), and
GL (17.34%) (Figure 4B) in the PC2. PC3 was highly related to TGWt (44.64%), GL (24.78%),
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and T (21.34%) (Figure 4B). Moreover, Indica and Japonica cultivars were more diverse
compared with the Aus group (Figure 4C) [47]. This conserveness might be related to a
higher seedling emergence of Aus cultivars.
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Figure 3. Correlation analysis among the 11 agronomic parameters of rice. The upper diagonal
represents the correlation coefficient (r); *, ** and *** represent significance at p < 0.05, 0.01, and 0.001,
respectively. The lower diagonal plots show the distribution of each parameter. C; coleoptile length
(cm), MC; mesocotyl (cm), SL; shoot length (cm), GL; grain length (mm), GW; grain width (mm),
GL/WR; grain length/width ratio (ratio), TGWt; 1000 grains weight (g), PL; panicle length (cm), T;
tillers number, CL; culm length (cm), PH; plant height (cm).

3.5. Estimation of Diversity

Different kinds of analytical analysis are available for the estimation of diversity
among the cultivars. In this study, Hierarchical Cluster Analysis (HCA) and Constellation
Plot Analysis (CPA) were used to estimate diversity among the rice cultivars (Figure 5).
Such analysis provides a better distribution of cultivars under the different environments
as well as different groups of cultivars in the same environment. Results indicated that
the rice cultivars distributed into three (Aus, Ind and Jap) distinct classification groups
and each group further divided into two sub-groups. Group 1 (Aus) showed the highest
values for most of the traits such as C, MC, SL, PL, T, CL, and PH. Among these groups,
Group 2 (Japonica) performed poorly for all traits except GW and TGWt. Similarly, the
third group (Indica) performed better for GL and GL/WR (Figure 5A). The Constellation
Plot also indicates that the cultivars distributed into three groups (Figure 5B).
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Figure 4. Principal component analysis (PCA)-based agronomic parameters of rice. (A) Scree plot
representing the percentage of variance accounted by principal components. (B) Contribution of
11 agronomic parameters in the first three PCs. (C) Projection of variables. Different cultivars of
different rice groups were represented with different color-coded shapes. C, coleoptile length (cm);
MC, mesocotyl (cm); SL, shoot length (cm); GL, grain length (mm); GW, grain width (mm); GL/WR,
grain length/width ratio (ratio); TGWt, 1000 grains weight (g); PL, panicle length (cm); T, tillers
number; CL, culm length (cm); PH, plant height (cm).
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Different colors were used to differentiate rice groups; red denoted to Aus, green to Japonica,
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length (cm); GL, grain length (mm); GW, grain width (mm); GL/WR, grain length/width ratio (ratio);
TGWt, 1000 grains weight (g); PL, panicle length (cm); T, tillers number; CL, culm length (cm); PH,
plant height (cm).

4. Discussion

Previous studies have reported the conventional rice production system (TPR) and
explained the performance of rice cultivars at seedling stages as well as at maturity stages
separately. The TPR system is no more cost-effective and less profitable. Farmers are
now shifting from TPR toward the DS method. A depth of 2–3 cm is recommended for
japonica rice, while seedling emergence delayed under the depth of >3 cm [48,49]. In
the past decade, efforts were made to explore the genetic variations and some QTLs and
genes related to mesocotyl and coleoptile were cloned, but no one explained the role of
seedling parameters in seedling emergence and germination, which leads to better crop
establishment or production [26]. For deep-sowing tolerance, coleoptile and mesocotyl
elongation were thought to be main traits for seedling emergence from deep soil and were
studied extensively for understanding QTLs and the genes governing them. In this study,
the performance of 190 cultivars comprising three rice groups were evaluated by using an
improved mesocotyl elongation assay to explore genetic variation for important seedling
traits. This new method is very sophisticated, time- and resource-saving, and required less
labor. Variance analysis (Table 1) showed significant effects due to cultivars [48]. Seedling
vigor is very important for the better establishment of seedlings [50]. Coleoptile and
mesocotyl play important roles in the emergence of DS seedlings from deep soils, and their
elongation is controlled by many genetic and environmental factors [20]. Their elongation
shows significant variations across rice groups. In this study, Aus cultivars showed longer
C, MC, and SL compared with Ind and Jap cultivars (Table 1).
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The yield of any crop is a complex trait, which appears from multiplicative interac-
tions of many other parameters that are termed as yield components. Yield is directly or
indirectly dependent on the overall net effect produced by various yield-related parame-
ters. Therefore, the identification of yield-related traits is very important for developing
efficient breeding strategies for evolving high-yielding varieties. For the improvement of
grain yield, it is necessary to improve PL because the architecture of panicle including
length determined the overall yield [40,42]. To harvest more grains per panicle, cultivars
with larger panicle are required. The Aus group showed longer PL compared with Indica
and Japonica groups. The seed length and width determined the overall weight of the
grain [41]. In this study, the Japonica group shows higher GW followed by Aus, while
the Indica group showed higher GL followed by Aus. Greater seed width may contribute
to high TGWt and, thus, higher yield. TGWt is a quantitative trait and depends on three
dimensional grain thickness, length, and width [51]. Similarly, the Japonica group showed
higher TGWt. The number of fertile tillers helped in the determination of overall crop yield
by increasing the number of panicles per plant. In DS plants, it showed faster growth rates
and tillering ability compared with TPR [15,52]. The Aus group showed higher number of
tillers followed by Indica and Japonica.

In a breeding program, for improving any trait, it is necessary to obtain knowledge
about the inter-relationship with other traits. The knowledge of the relative importance of
different plant traits can be of value in a crop breeding program [53,54]. Vigorous seedlings
are an important indicator of the yield of a plant in a short period of time [55]. We found
a strong relationship between seedlings traits C, MC, and SL (Figure 3). Only cultivars
that were able to elongate their C, MC, and SL emerged in deep sowing [48,49]. For the
development of lodging-resistant cultivars, PH and CL are the main agronomic parameters
to be considered. In this study, all seedling parameters (MC, C, and SL) showed highly
significant associations with CL. CL had positive correlation with PH (r = 0.99). Previously,
it has been reported that the genes controlling PH also linked with genes of MC and
C [56]. It is very important to study the genetic basis for the positive correlation between
C, MC, and PH. There are two possibilities: (1) tight linkage between genes controlling
C, MC, and PH; (2) pleiotropism in which one gene controls more than one trait. During
the green revolution of rice breeding, semi-dwarfism (a plant with 50–100% height of the
wild type) has been the favorable trait to increase lodging resistance under high rates of
N fertilizer [57,58]. Lodging resistance can be achieved through the optimal size of the
internodes [59], while Islam et al. 2007 [60] also showed that plant height is not a primary
source of lodging. In the case of tight linkage, a large segregating population was needed
to break down the linkage between them to select individuals having both semi-dwarfism
and long MC. In the case of pleiotropism, screening a favorable allele of the target gene
from a large collection of rice germplasm that has mild effects on both MC and PH is
recommended [23,52].

PCA (Principal Component Analysis) and PLS-DA (Partial Least Squares-Discriminant
Analysis) forms of clustering methods are often employed to explore variations within the
samples of different groups and to find out the main parameters [61–63]. In this study, PCA
on 11 agronomic parameters revealed that PC1, PC2, and PC3 capture 65.8% of variations
that primarily impacted seedling and plant height; thus, these PCs are an indicator for SL
and PH. PC1 represents that the traits of seedling height and could be useful for selecting
cultivars with more extended height. Increasing PH is an effective method of increasing
yield [64,65]. Among the rice cultivars groups, the Aus group stood out in PC1 with
their higher seedling and plant height. The diverse cultivars (group) recognized here will
be helpful in planning crosses for rice seedling emergence and the better establishment
of seedlings.

5. Conclusions

In the present study, the significant variations were observed in seedling and maturity
parameters. Among three rice groups, the higher values for seedling (C, MC, and SL)
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and maturity (PL, T, CL, and PH)-related parameters were observed in Aus cultivars. The
cultivars of Indica and Japonica group showed higher levels of GL, GL/WR, GW, and TGWt,
respectively. To improve seedling emergence in DS rice, cultivars with higher seedlings
traits (such as Aus) can be used as parental lines in the breeding program. Furthermore, a
significant association was found among C, MC, SL, CL, and PH, which will be helpful in
the selection and utilization of the cultivars for not only better seedling establishment but
also improved lodging resistance and high yield.
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