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Abstract: The paper presents a pumpkin yield estimation method using images acquired by a UAV.
The processing pipeline is fully automated. It consists of orthomosaic generation, a color model
collection using a random subset of the data, color segmentation, and finally counting of pumpkin
blobs together with assessing the number of pumpkins in each blob. The algorithm was validated by
a manual check of 5% of each tested dataset. The precision value ranges between 0.959 and 0.996,
recall between 0.971 and 0.987, and F1 score falls between 0.971 and 0.988. This proves the very high
efficiency of the processing workflow and its potential value to farmers.
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1. Introduction

Detailed information about the amount and quality of crop plants can help farmers
make better decisions when selling crops. Unmanned Aerial Vehicles (UAVs) can collect
large amounts of data from farm fields in form of images [1]. To provide value to the farmer,
these images need to be interpreted in a suitable way [2].

The task of estimating crop emergence early in the growing season from UAV-acquired
images has been addressed in multiple studies. He et al. [3] reviewed the literature about
fruit yield detection and classify the topic of this paper, pumpkin counting, as a direction
yield estimation technique. Sankaran et al. [4] estimated potato emergence by segmenting
normalized difference vegetation index images and counting the number of segmented
objects above a certain size. Chen et al. [5] performed spectral-based segmentation to locate
plant objects in images and then determined the number of plants in each segment by
looking at the total area of the segment. Varela et al. [6] extended that approach by using
a decision tree to distinguish between corn and noncorn objects before counting the corn
plants. Maize tassels were located by [7] using information in the red-edge color band;
k-means clustering, with 5 clusters, were used to determine the segmentation threshold.
Segmentation using excess green followed by classification with a random forest classifier
was used by [8] to estimate the emergence of potatoes with very good results. To count
Hokkaido pumpkin fruits, Wittstruck et al. [9] trained a random forest classifier based
on manual annotated pixels. The classifier was used to segment an orthomosaic into
fruit objects that were then further analyzed. The above studies all rely on color-based
segmentation of the acquired images and then additional analysis of the segmented objects.

A similar image-processing pipeline was used to estimate the density of wheat plants
by classifying segmented objects using a support vector classifier [10]. Gnädinger and
Schmidhalter [11] counted maize plants with an error of less than 10% in test plots utilizing
de-correlation stretching and color segmentation. Koh et al. [12] combined object-based
image analysis with template matching to estimate the crop plant density in safflower
plants; they obtained an r2 of 0.86 when correlating manual counts with digital plant
counts. Fernandez-Gallego et al. [13] counted wheat plants by locating bright peaks in
acquired images and then classifying these peaks using machine learning into the classes
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“wheatear” and “other”; they reported r2 = 0.89. Mekhalfi et al. [14] located the ends of
kiwi fruits in RGB images using the Viola–Jones object detector.

In other studies, researchers have employed convolutional neural networks (CNNs) to
either locate individual crop plants or to estimate the number of crop plants in small image
patches. Ribera et al. [15] counted Sorghum plants by using convolutional neural networks
to regress the number of plants in nadir images that were oriented so that the crop row
was horizontal. Valente et al. [16] used segmentation based on excess green to locate plant
patches and then classify these using AlexNet to estimate the number of spinach plants in
each patch. Zhang et al. [17] built custom CNNs with up to five layers to count rapeseed
stands in images, achieving an error of 5% on the patch level. The company Raptor Maps
Inc. described that they used deep learning to count pumpkins but without giving many
details on the implementation [18]. The benefit of CNNs are their ability to generalize and
perform well under many circumstances, however, they require a large dataset for training.

Pumpkin yield estimation is a commercially interesting task, as a precise estimate
allows the farmer to optimize the sale well in advance of Halloween when the demand
for pumpkins declines. In this paper, we demonstrate that it is possible to estimate the
yield of pumpkins precisely without the need for a CNN by utilizing a multivariate color
model for segmenting and then performing morphological operations on the segmented
image. The paper describes how this approach for counting pumpkins is implemented and
demonstrates an approach to verify the obtained results visually and by comparing them
with manual counts of sampled patches.

2. Materials and Methods

This section describes the used approach for counting pumpkins in images acquired
by a UAV. When the pumpkins are ripe, they have a distinctive orange color, which makes
them stand out in the images. To avoid issues of counting the same pumpkin more than
once, all images from a field are combined to an orthomosaic. Then, the orthomosaic is
segmented based on color information. The size and shape of detected blobs are then
used to estimate the number of pumpkins in each blob. Finally, vector information about
pumpkin-blob position and number of pumpkins is saved in a separate file, so that a visual
evaluation of the generated count is enabled.

2.1. Image Acquisition and Orthomosaic Generation

The examined pumpkin fields were located in Gyldensteen Manor in Denmark
(55°34′ N 10°09′ E) (Figure 1). The data was collected through four years of collabora-
tion. Five separate datasets were collected. Survey parameters are presented in Table 1.

Table 1. Survey details.

Dataset Date Field Camera Area [m2] GSD [m]

G2017_102-1 19 September 2017 102-1 sensFly S.O.D.A. 32,066 0.025
G2018_104-0 23 August 2018 104-0 Sony UMC-R10C 361,049 0.020
G2019_106-0 17 September 2019 106-0 Sony UMC-R10C 229,609 0.025

G2020_105-0 I 27 August 2020 105-0 Sony UMC-R10C 468,805 0.036
G2020_105-0 II 17 September 2020 105-0 Sony UMC-R10C 468,805 0.025

Flights were conducted with 75–80% side and front overlaps. The process of orthomo-
saic generation was performed using Agisoft Metashape [19], where one orthomosaic was
generated per field. Images were processed following a typical UAV pipeline. Firstly, aero-
triangulations together with self-calibration were performed (photo alignment, accuracy:
high). As global orientation is of little importance in this project, no GCPs were measured
and georeferencing was provided using data from on-board GPS receivers. Next, dense
3D reconstruction was performed to serve as a source for digital surface model (DSM),
(dense point cloud generation, quality: medium). Lastly, orthomosaics were generated with



Agronomy 2022, 12, 964 3 of 14

ground sampling distance (GSD), specified in Table 1. The field boundaries were delineated
in Agisoft Metashape, and everything outside the field boundaries was excluded from
export. The generated orthomosaics were exported to GeoTiff for further processing.

Figure 1. Placement of the test fields within Danish boundary (maps available free from
kortforsyningen.dk).

2.2. Pumpkin Detection and Counting

Image processing after cropping of the orthomosaics was conducted using dedicated
scripts written in Python using OpenCV [20] and Rasterio [21] packages. The sheer size of
the orthomosaics (up to 4 GB) made it impractical to load them directly and process them
in one step. The orthomosaics were thus processed in tiles using the functionality of the
Rasterio toolbox.

The whole process was automated and can be divided into three main steps—reference
gathering, color segmentation, and counting pumpkins.

2.2.1. Color Space

Most common color spaces, RGB (red, green, and blue), HSV (hue, saturation, and
value), HLS (hue, lightness, and saturation), and CIELab (L*, a*, and b*), were tested to
choose the most applicable. Multiple randomly chosen tiles were examined. In Figure 2,
the difference between color spaces is clearly visible. Pumpkins are not clearly visible in all
presented bands. There is a perceptible response in the red band of the RGB color space,
saturation, and value bands in the HSV color space, the saturation band in the HLS color
space, and the b* band in the CIELab color space. Naturally, pumpkins are more discernible
in color spaces closer to human perception—HLS and HSV. However, clearly the highest
and most differential response is present in the saturation band of the HLS color space.
Additionally, the lightness band, which should only be responsible for a change in light in
the scene, can be disregarded. Thus, this color space was used in further processing.

kortforsyningen.dk
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Figure 2. Randomly selected tile with pumpkins presented in four different color spaces separated
by bands.

2.2.2. Reference Gathering

To be able to detect pumpkins using their distinct color, its model has to be created.
For each survey, weather conditions, or pumpkin type, this model can vary. Consequently,
a new model has to be created for each survey encompassing pumpkins from different
areas of the field.

Pumpkins’ natural high response in the saturation band of HLS color space is used
here, as the difference between background and pumpkin objects is utmost in this band
(Figure 2). A whole orthomosaic is divided into 2.5 × 2.5 m squares. Then, a random set
of 30 tiles are chosen (Figure 3a,e), where for the saturation band a clustering process is
conducted (Figure 3b,f) [22]. Superpixel creation is tailored to the typical size of a pumpkin
and the size of the tile.

The tile is thus divided into n superpixels with a high level of compactness (Figure 3c,g).
If a pumpkin is not present, the superpixels have a tendency to form a square. Then, each
superpixel is evaluated against statistics of the whole tile. To be classified as a pumpkin, its
mean saturation value has to be higher than the median saturation value (assumed value
of the background) plus threshold_r standard deviations of the whole tile (Figure 3d,h).

All pixels from all the pumpkin clusters from all chosen tiles form a basis to calculate
reference color and reference covariance for the hue and saturation bands in the HLS color
space. It is worth noting that not all pumpkins are chosen within the tile, as their size might
be too small. Moreover, other objects can have high saturation and be selected. However,
when multiple tiles are taken into consideration, the overwhelming majority of selected
superpixels should be pumpkins; thus, after calculating its statistics, the influence of other
objects should be minimal.
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Figure 3. Reference tile with pumpkins (a), its saturation band (b), segmented image (c), and
thresholded image (d). Reference tile without pumpkins (e), its saturation band (f), segmented image
(g), and thresholded image (h).

Next, chosen reference tiles are processed again to establish a threshold for further pro-
cessing. When examining typical color values for pumpkin pixels, the hue and saturation
values are observed to follow a multivariate normal distribution, with a low covariance
between the hue and saturation values. As the variance in the saturation band is much
larger (around 60 times) than the variance in the hue band, a distance metric that takes
that into account is needed. Thus, Mahalanobis distance was chosen as a suitable distance
metric [23]. The Mahalanobis distance is defined as:

DM(~x) =
√
(~x−~µ)TS−1(~x−~µ) (1)

where ~x is the color value of the pixel to segment and ~µ and S describe the pumpkin color
distribution in terms of the average color value and the associated covariance matrix. Then,
summary statistics of the calculated Mahalanobis distances were calculated—mean and
standard deviation. The threshold for further segmentation was chosen as a mean plus
threshold_m standard deviations.

2.2.3. Segmenting Orthomosaics

For each pixel in the orthomosaic, the Mahalanobis distance to the pumpkin color
model was calculated. The generated distance image was then thresholded. Pixels with
a distance smaller than the threshold value were considered to originate from pumpkin
objects, while the remaining pixels were marked as background.

To reduce noise from the color segmentation, two filters were applied to the segmented
image, first median blur with threshold_mb × threshold_mb pixels operating window and
then a dilatation with a square kernel of threshold_d × threshold_d pixels.

2.2.4. Counting Pumpkins

The area and eccentricity of all the detected blobs were calculated. Then, assuming
that the majority of detected blobs contain one pumpkin, the median size and standard
deviation were calculated for all blobs in the orthomosaic. To detect blobs with multiple
pumpkins (Figure 4b), a threshold was set as median pumpkin size plus threshold_a standard
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deviation. In all the blobs bigger than that, the number of pumpkins in each blob was
approximated through the following relation:

npumpkins = area/medianpumpkin (2)

where area is the area of the blob and medianpumpkin is the median area of blobs which
appear to contain exactly one pumpkin.

To verify the pumpkin counts, all blobs’ center coordinates together with an additional
parameter of a number of pumpkins in the blob are exported to a text file. The results can
then be visualized and checked in QGIS [24] (Figure 4a).

Figure 4. A section of orthomosaic with detected pumpkin blobs and the number of pumpkins they
contain visualized (a) and the corresponding thresholded section (b).

3. Results
3.1. Threshold Sensitivity Analysis

All chosen thresholds within the algorithm were subjected to threshold sensitivity
analysis based on the G2017_102-1 dataset. This includes:

• Number of superpixels and conciseness parameter;
• Threshold_r—multiplication of standard deviations to classify superpixels as pumpkins;
• Threshold_m—multiplication of standard deviations for a threshold for Mahalanobis

distance segmentation;
• Threshold_mb and threshold_d—kernel sizes for median blur and dilatation operations;
• Threshold_a—multiplication of standard deviations to differentiate between single and

multiple pumpkin blobs.

Superpixel creation relies on two parameters: desired number of superpixels and
conciseness. Those parameters were chosen to reflect pumpkin size and shape. Since the
shape of a pumpkin is round, the conciseness parameter was chosen appropriately, so that
the superpixel shape would tend to follow a circular shape. Pumpkin varieties grown
within surveyed fields have a diameter of approximately 25 cm. Taking into consideration
acquisition blur and background vegetation, a desired size of a superpixel is around 20 cm,
then, in a tile of 2.5 × 2.5 m, about 121 of those would fit. Nonetheless, the approach was
tested on multiple randomly chosen tiles within different threshold values.

The thresholds 60, 80, 100, 120, 140, and 160 were tested (Figure 5). A visible im-
provement in segmentation can be seen up till the 120 superpixels threshold, and thus this
threshold was chosen for processing.
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Figure 5. Results of segmentation with different threshold sizes for the number of superpixels.

The conciseness parameter depends on the desired shape as well as the number of
bands considered in segmentation. The values range between 0 and 100, however, for one
band, the values are typically set within the lower side of this spectrum. The values of 0.1,
0.3, 0.5, 0.7, and 0.9 were tested (Figure 6). Following analysis of the results, a threshold of
0.3 was chosen as the optimal solution for detail in color and roundness of the superpixels.

Figure 6. Results of segmentation with different conciseness parameter values.

Pumpkin segmentation threshold differentiates between pumpkins and background in
the reference-gathering stage and is dependent on parameter threshold_r. Due to superpixel
size or vegetation obstacles, not all pumpkin superpixels contain a clear pumpkin image.
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What is needed is reference pumpkin color, thus, the reference pixel set should be as clear
as possible. Consequently, more important in this process is limiting false positive detection
than false negative.

A set of randomly chosen reference tiles was subjected to the thresholding process
using threshold_r values 1.5, 2, 2.5, 3, 3.5, and 4. The results were compared by looking for
false positives. Figure 7 presents the results for selected reference tiles. It is clearly visible
that improvement stagnates around the threshold_r of 2.5 standard deviations. However,
there is still one false positive present. A threshold_r of three standard deviations is more
restrictive but should keep the results clean.

Figure 7. Results of superpixel segmentation for different values of standard deviation multiplicator—
threshold_r.

Segmentation on the basis of the Mahalanobis distance requires a cut point threshold.
The threshold is established using the mean and standard deviation of the Mahalanobis
distance for pumpkin pixels in the reference gathering stage. Still, the multiplication
parameter threshold_m needs to be established. The values 0.5, 1.0, 1.5, 2.0, and 2.5 were
tested. As visible in Figure 8, the threshold value of 0.5 is too limited, however, the
1.5 threshold value provides no new true positive objects, but a lot of noise and false
negatives. This only escalates in higher thresholds. As a consequence, threshold_m equal to
1 was chosen.

Cleaning up the noise in the segmented image was performed by using two morpho-
logical operations—median blur and dilatation. The kernel sizes for both operations were
tested at the same time. For median blur values of 3 × 3, 5 × 5, and 7 × 7, mask sizes were
tested. For dilatation, kernels of 2 × 2, 3 × 3, and 4 × 4 were tested. There is not much
variation in the resultant images (Figure 9), however, threshold_mb = 5 and threshold_md = 3
seem to be simultaneously removing the noise, while not overly enlarging objects.
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Figure 8. Results of the Mahalanobis distance image being thresholded with different values of
threshold_m multiplication.

Figure 9. Results of morphological operations on segmented image for different values of threshold_mb
and threshold_d.

The last threshold used in the proposed algorithm differentiates between single and
multiple pumpkin blobs. Multiple values were tested to establish the correct threshold.
16 randomly chosen 10 × 10 m tiles were analyzed looking for errors, where a single
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pumpkin was classified as multiple pumpkins, or multiple pumpkins were classified as a
single one. The results are presented in Figure 10. As seen in the results, minimum values
of errors are achieved for threshold_a values 1.1–1.4, with a definite minimum in 1.2.

Figure 10. Results of pumpkin blob classification for different threshold_a values.

3.2. Results

All datasets were processed on a HP laptop with Intel® Core™ i7-8650U CPU @
1.90 GHz × 8 processor, 16GB RAM, and Intel® UHD Graphics 620. Processing parameters
for all the datasets are in Table 2 and results are in Table 3.

Table 2. Processing parameters for all datasets.

Dataset Reference Tile
Size [m]

Superpixels/
Conciseness threshold_r threshold_m threshold_mb/

threshold_d threshold_a

G2017_102-1 2.5 × 2.5 30 120/0.3 3 5 × 5/3 × 3 1.0
G2018_104-0 2.5 × 2.5 30 120/0.3 3 5 × 5/3 × 3 1.0
G2019_106-0 2.5 × 2.5 30 120/0.3 3 5 × 5/3 × 3 1.0

G2020_105-0 I 2.5 × 2.5 30 120/0.3 3 5 × 5/3 × 3 1.0
G2020_105-0 II 2.5 × 2.5 30 120/0.3 3 5 × 5/3 × 3 1.0

Table 3. Numerical results for all datasets.

Dataset Mahalanobis
Threshold

Estimated
Number of
Pumpkins

Pumpkins
per m2

Processing
Time [s]

Reference
Color Covariance Matrix

G2017_102-1 1.97 23,931 0.75 11.2 [17.17 192.37] [11.71 15.34]
[15.34 2286.79]

G2018_104-0 1.92 319,616 0.89 133.3 [18.22 186.06] [9.79 85.20]
[85.20 2135.87 ]

G2019_106-0 1.99 238,986 0.51 71.1 [19.16 206.54] [25.48 131.84]
[131.84 1668.06]

G2020_105-0 I 1.98 405,826 0.87 151.0 [18.46 185.15] [8.61 41.46]
[41.46 2031.58]

G2020_105-0 II 1.94 470,685 1.00 61.5 [17.94 193.20] [18.70 124.87]
[124.87 1902.46]

Visual check of the data showed that the majority of the pumpkins were detected
correctly in all the datasets (Figure 11). Particularly interesting are results from field 105-0
in 2020. The survey was conducted twice on the field, with a 3 week time difference as
well as GSD difference. The importance of correct timing is very visible here. Almost
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70,000 more pumpkins were detected in the later orthomosaic. It is possible that GSD size
had an influence here, as it was significantly smaller. However, most likely the plant’s
leaves have not shrunk yet, and so a significant amount of pumpkins are not visible in the
imagery (Figure 12).

Figure 11. Sections of processing results for datasets G2017_102-1 (a), G2018_104-0 (b), G2019_106-0
(c), G2020_105-0 I (d), G2020_105-0 II (e).

Figure 12. Same section of orthomosaics of field 105-0 for 2020 season 27.08.2020 (a) and 17.09.2020 (b).

To validate the results, 5% of the area of each orthomosaic was processed manually
in 10 × 10 m randomly chosen tiles. All pumpkins were counted and false positives and
false negatives were noted. All not-labeled pumpkins, or pumpkin blobs that counted
fewer than the actual pumpkin number, were labeled as false negatives (Figure 13b,d).
Elements of the background or pumpkin blobs showing more than the actual number of
the pumpkins were labeled as false positives (Figure 13a,c). Next Precision, Recall, and F1
score were calculated (Table 4).
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Figure 13. Labeled pumpkin counting errors. False positive in red (a,c) and false negative in
blue (b,d).

Table 4. Validation results for all datasets.

Dataset Validation Area in
10 × 10 m2 Tiles True Positive False

Positive
False

Negative Precision Recall F1 Score

G2017_102-1 16 1061 31 32 0.972 0.971 0.971
G2018_104-0 181 15297 284 196 0.982 0.987 0.985
G2019_106-0 115 11186 479 223 0.959 0.980 0.970

G2020_105-0 I 234 20534 84 408 0.996 0.981 0.988
G2020_105-0 II 234 21039 271 297 0.987 0.986 0.987

3.3. Discussion

The results are very good. Both precision and recall achieve very high values, with the
lowest score being 0.959. This means that almost all of the pumpkins are counted and not
many are disregarded or falsely detected.

A similar accuracy was obtained by [9]; their approach was based on manual anno-
tation of pumpkin pixels compared with the automatic method described in this paper.
However, even comparing with a very different counting task (rapeseed stands), the algo-
rithm error rate is much lower than the 5% error reported by [17].

A simple algorithm based on k-means clustering for choosing a segmentation threshold
was introduced by [7] to locate maize tassels in red-edge images. Our more involved
algorithm for sampling of pumpkin-colored pixels was implemented and tested on a single
dataset but was seen to perform extremely well on all of the five tested datasets.

The number of counted pumpkins might not translate directly to the field yield. With
the GSD of this size, there is no way to judge if the pumpkin is damaged in any way. Rotten
or mechanically damaged fruit is still counted. That also applies to very small pumpkins.
A size limit could be introduced, but the size of the blob is not always representative of the
true pumpkin size, as the fruit can be obscured by leaves or other objects. Thus, the results
should be treated as overestimation.

4. Conclusions

UAV images can be used to estimate the yield of pumpkin fields accurately to assist
farmers in optimizing their sales. The algorithm is fully automated and robust. However, it
is required to go out and acquire drone footage at the proper growth stage to be able to
count the pumpkins reliably. This relies on particular properties of pumpkins—both color
and size, though none of them provide hard thresholds.

The use of hue and saturation from the HLS color space ensures the detection of
pumpkins in various lighting conditions. Algorithm performance has been thoroughly
tested, showing high performance in all datasets. The lowest F1 score (0.970) for the
validation process shows the high efficiency and precision of the method.

The dependency of the algorithm’s performance using the selected intuitive thresholds
have also been investigated. Slight changes in parameters do not change the outcome
significantly.



Agronomy 2022, 12, 964 13 of 14

Author Contributions: Conceptualization, H.S.M.; methodology, H.S.M. and E.P.; software, H.S.M.
and E.P.; validation, E.P.; resources, H.S.M.; data curation, E.P.; writing—original draft preparation,
H.S.M. and E.P.; writing—review and editing, H.S.M. and E.P.; visualization, E.P.; funding acquisition,
H.S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the Development Fund of EnergiFyn, Denmark.

Acknowledgments: We want to thank Gyldensteen Manor for providing access to their fields and
their know-how about growing pumpkins.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [CrossRef]

[PubMed]
2. Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.S.; Neely, H.L.;

et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781.
[CrossRef] [PubMed]

3. He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; Dhupia, J. Fruit yield prediction and estimation in orchards: A
state-of-the-art comprehensive review for both direct and indirect methods. Comput. Electron. Agric. 2022, 195, 106812. [CrossRef]

4. Sankaran, S.; Quirós, J.J.; Knowles, N.R.; Knowles, L.O. High-Resolution Aerial Imaging Based Estimation of Crop Emergence in
Potatoes. Am. J. Potato Res. 2017, 94, 658–663. [CrossRef]

5. Chen, R.; Chu, T.; Landivar, J.A.; Yang, C.; Maeda, M.M. Monitoring cotton (Gossypium hirsutum L.) germination using
ultrahigh-resolution UAS images. Precis. Agric. 2018, 19, 161–177. [CrossRef]

6. Varela, S.; Dhodda, P.; Hsu, W.; Prasad, P.V.; Assefa, Y.; Peralta, N.; Griffin, T.; Sharda, A.; Ferguson, A.; Ciampitti, I. Early-Season
Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning
Techniques. Remote Sens. 2018, 10, 343. [CrossRef]

7. Kumar, A.; Desai, S.V.; Balasubramanian, V.N.; Rajalakshmi, P.; Guo, W.; Balaji Naik, B.; Balram, M.; Desai, U.B. Efficient Maize
Tassel-Detection Method using UAV based remote sensing. Remote Sens. Appl. Soc. Environ. 2021, 23, 100549. [CrossRef]

8. Li, B.; Xu, X.; Han, J.; Zhang, L.; Bian, C.; Jin, L.; Liu, J. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant
Methods 2019, 15, 15. [CrossRef] [PubMed]

9. Wittstruck, L.; Kühling, I.; Trautz, D.; Kohlbrecher, M.; Jarmer, T. UAV-Based RGB Imagery for Hokkaido Pumpkin (Cucurbita
max.) Detection and Yield Estimation. Sensors 2020, 21, 118. [CrossRef] [PubMed]

10. Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude
UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [CrossRef]

11. Gnädinger, F.; Schmidhalter, U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sens. 2017, 9, 544.
[CrossRef]

12. Koh, J.C.; Hayden, M.; Daetwyler, H.; Kant, S. Estimation of crop plant density at early mixed growth stages using UAV imagery.
Plant Methods 2019, 15, 64. [CrossRef] [PubMed]

13. Fernandez-Gallego, J.A.; Lootens, P.; Borra-Serrano, I.; Derycke, V.; Haesaert, G.; Roldán-Ruiz, I.; Araus, J.L.; Kefauver, S.C.
Automatic wheat ear counting using machine learning based on RGB UAV imagery. Plant J. 2020, 103, 1603–1613. [CrossRef]
[PubMed]

14. Mekhalfi, M.L.; Nicolò, C.; Ianniello, I.; Calamita, F.; Goller, R.; Barazzuol, M.; Melgani, F. Vision system for automatic on-tree
kiwifruit counting and yield estimation. Sensors 2020, 20, 4214. [CrossRef] [PubMed]

15. Ribera, J.; Chen, Y.; Boomsma, C.; Delp, E.J. Counting plants using deep learning. In Proceedings of the 2017 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; Volume 2018,
pp. 1344–1348. [CrossRef]

16. Valente, J.; Sari, B.; Kooistra, L.; Kramer, H.; Mücher, S.; Kramer, ·.H.; Mücher, ·.S.; Nl, J.V. Automated crop plant counting from
very high-resolution aerial imagery. Precis. Agric. 2020. [CrossRef]

17. Zhang, J.; Zhao, B.; Yang, C.; Shi, Y.; Liao, Q.; Zhou, G.; Wang, C.; Xie, T.; Jiang, Z.; Zhang, D.; et al. Rapeseed Stand Count
Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks. Front. Plant Sci. 2020.
[CrossRef] [PubMed]

18. Vadhavkar, N. Case Study: Identifying Pumpkins with Drones and Machine Learning—Raptor Maps. 2017. Available online:
https://deveron.com/wp-content/uploads/2020/01/deveron-casestudy-pumpkin_nov1-1.pdf (accessed on 1 September 2019).

19. Agisoft. Metashape. 2018. Available online: www.agisoft.com (accessed on 1 September 2019).
20. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
21. Gillies, S.; Ward, B.; Petersen, A.S. Rasterio: Geospatial Raster I/O for Python Programmers. 2013. Available online: https/

/github.com/mapbox/rasterio (accessed on 1 March 2019).
22. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel

Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]

http://doi.org/10.1038/nature14542
http://www.ncbi.nlm.nih.gov/pubmed/26017445
http://dx.doi.org/10.1371/journal.pone.0159781
http://www.ncbi.nlm.nih.gov/pubmed/27472222
http://dx.doi.org/10.1016/j.compag.2022.106812
http://dx.doi.org/10.1007/s12230-017-9604-2
http://dx.doi.org/10.1007/s11119-017-9508-7
http://dx.doi.org/10.3390/rs10020343
http://dx.doi.org/10.1016/j.rsase.2021.100549
http://dx.doi.org/10.1186/s13007-019-0399-7
http://www.ncbi.nlm.nih.gov/pubmed/30792752
http://dx.doi.org/10.3390/s21010118
http://www.ncbi.nlm.nih.gov/pubmed/33375474
http://dx.doi.org/10.1016/j.rse.2017.06.007
http://dx.doi.org/10.3390/rs9060544
http://dx.doi.org/10.1186/s13007-019-0449-1
http://www.ncbi.nlm.nih.gov/pubmed/31249606
http://dx.doi.org/10.1111/tpj.14799
http://www.ncbi.nlm.nih.gov/pubmed/32369641
http://dx.doi.org/10.3390/s20154214
http://www.ncbi.nlm.nih.gov/pubmed/32751295
http://dx.doi.org/10.1109/GlobalSIP.2017.8309180
http://dx.doi.org/10.1007/s11119-020-09725-3
http://dx.doi.org/10.3389/fpls.2020.00617
http://www.ncbi.nlm.nih.gov/pubmed/32587594
https://deveron.com/wp-content/uploads/2020/01/deveron-casestudy-pumpkin_nov1-1.pdf
www.agisoft.com
https//github.com/mapbox/rasterio
https//github.com/mapbox/rasterio
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706


Agronomy 2022, 12, 964 14 of 14

23. Mahalanobis, P.C. On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55.
24. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. Available online: http://www.qgis.org/

(accessed on 10 March 2019).

http://www.qgis.org/

	Introduction
	Materials and Methods
	Image Acquisition and Orthomosaic Generation
	Pumpkin Detection and Counting
	Color Space
	Reference Gathering
	Segmenting Orthomosaics
	Counting Pumpkins


	Results
	Threshold Sensitivity Analysis
	Results
	Discussion

	Conclusions
	References

