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Abstract: The fungal species belonging to the genus Trichoderma has been globally recognized as a
potential candidate of biofertilizer and biocontrol agent to prevent devastating soil-borne fungal
pathogens and enhance growth and productivity of agricultural crops. The antagonistic activity
of Trichoderma to pathogenic fungi is attributed to several mechanisms including antibiosis and
enzymatic hydrolysis, which are largely associated with a wide range of metabolites secreted by
the Trichoderma species. Besides suppressing target pathogens, several metabolites produced by
Trichoderma species may act against non-pathogenic beneficial soil microbial communities and perform
unintended alterations within the structures and functions of microbial communities in the crop
rhizosphere. Multiple microbial interactions have been shown to enhance biocontrol efficacy in
many cases as compared to bioinoculant employed alone. The key advances in understanding the
ecological functions of the Trichoderma species with special emphasis on their associations with plant
roots and other microbes exist in the crop rhizosphere, which are briefly described here. This review
focuses on the interactions of metabolites secreted by Trichoderma species and plant roots in the
rhizosphere and their impacts on pathogenic and non-pathogenic soil microbial communities. The
complex interactions among Trichoderma–plants–microbes that may occur in the crop rhizosphere
are underlined and several prospective avenues for future research in this area are briefly explored.
The data presented here will stipulate future research on sustainably maximizing the efficiency of
Trichoderma inoculation and their secondary metabolites in the crop soil ecosystem.

Keywords: Trichoderma; metabolites; root exudates; crop rhizosphere; soil pathogenic and
non-pathogenic microbiomes

1. Introduction

The Trichoderma species under the Hypocreaceae family has been commercially for-
mulated as biological inoculants or biofungicides worldwide [1–3]. More than 50% of
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registered biofungicides against soil-borne pathogens are formulated based on Tricho-
derma [4]. Trichoderma species have a wide distribution and ecological plasticity due to
their ability to generate a broad range of lytic enzymes to degrade substrates, a flexible
metabolism, and high resistance to microbial inhibitors [5]. Therefore, Trichoderma is the
most used bioinoculant due to its numerous beneficial characteristics, including producing
several secondary metabolites, such as antibiotics, peptaibols, and other bioactive com-
pounds with antibiosis properties for parasitizing soil pathogenic fungi [6]. As a result,
mycoparasitism and antibiosis are thought to be the most important biocontrol mechanisms
in Trichoderma species.

The effect of Trichoderma species as a biocontrol agent cannot be generalized since
it has both harmful and beneficial impacts on pathogens and growth promotion that
have been extensively studied [7,8]. Reports show that multidirectional metabolomic
interactions occur in the soil ecosystem due to the interactions with introduced Trichoderma
inoculants, plant root exudates, and resident microbial communities (e.g., antagonism
or synergism) [9,10]. The species diversity of existing microbial communities and their
richness in the root microbes results in the intra- and interspecies relationship among their
members. Secondary metabolites (SMs) play a major role in executing these interactions as
chemical signals [11].

In soil, how Trichoderma inoculants interact with other non-target and non-pathogenic
microorganisms, which are inherently beneficial for crop productivity, is relatively lesser
understood [12–15]. Several studies showed a significant increase in fungal population in
rhizosphere soil upon inoculation of Trichoderma strains; consequently, this increased fungal
population reduced the bacterial population [16]. In another study, Trichoderma koningii
inoculation reduced the resting spore germination of arbuscular mycorrhizal (AM) fungi
(e.g., Glomus spp.), which are considered key fungal communities responsible for enhanc-
ing soil biofertility and crop productivity [17–19]. For example, the volatile metabolites
secreted by T. koningii inoculant suppressed spore germination of AM fungi and decreased
the population of the beneficial Azospirillum species as well. Thus, Trichoderma applica-
tion to control soil-borne pathogens and growth improvement requires comprehensive
investigation considering the interactions not only with pathogens, but also with microbial
communities already present in crop soils.

Overall, soil microbes contribute significantly to soil structure, fertility, and pathogens
suppression [20,21]. At the same time, the release of root exudates (metabolites) influences
the structure of the soil microbial population and its enzymatic activity, which provide es-
sential nutrients to plants by decomposing and mineralizing the soil organic matters [22,23].
Furthermore, soil microbes are the primary source and mediators, such as biochemical
changes during nutrients recycling, and hence play a critical role in biogeochemical pro-
cess [24,25]. Research has sought to characterize these beneficial microbes from diverse
agricultural ecosystems to obtain a better knowledge of the biodiversity of the soil mi-
crobial communities. However, the plant species and soil types primarily influence the
composition of the soil microbial population; the interactions in the soil ecosystems are
very complicated, particularly among the plants and soil microbes [26].

In this review, we categorized the effect of the metabolomic compounds secreted by
different Trichoderma species on soil pathogenic (fungi), non-pathogenic (fungi and bacteria)
microbial communities, and soil enzymatic activities, and outlined the ecological challenges
of Trichoderma as a biofungicide/biocontrol inoculant in crop rhizosphere.

2. Trichoderma Species as a Commercial Biofungicide

Trichoderma is a filamentous fungus beneficial for its multi-prong action against nu-
merous plant pathogens [27]. Biofungicide is an important approach against some notable
plant pathogens. Several Trichoderma strains have been recognized as a potential source
to formulate biofungicide because of their suitability to reduce disease incidences caused
by several fungal plant pathogens [28]. Species belonging to the Trichoderma harzianum
complex are mostly found in various soil habitats and on plant decay materials, and



Agronomy 2022, 12, 900 3 of 17

have shown parasitism to other fungi [29]. Recently, a few commercial strains, such
as Trichoderma afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum,
T. guizhouense, T. harzianum, T. inhamatum, T. lentiforme, T. lixii, T. neotropicale, T. pyramidale,
T. rifaii, and T. simmonsii, have been identified as effective biofungicide formulations [30].
T. afroharzianum is the mostly reported strain used as an active ingredient in several commer-
cial biocontrol products [30,31]. The taxonomy of the T. harzianum complex formalized the
phylogenetic progenies and opened new prospects for the revelation of biological utilities,
particularly controlling the plant pathogens. For instance, newly recognized T. lentiforme
and T. neotropicale showed strong antagonistic actions against the Moniliophthora roreri
pathogen causing frosty pod rot disease of the cacao tree (Theobroma cacao) [32].

T. viride has also been extensively used as a well-known biofungicide that protects
the plant from fungal diseases striving with systemic negative effects on foliar leaves and
seedcoat. Bio-formulations based on T. viride work as potential biofungicides against seed-
borne and soil-borne fungal pathogens including Armillaria, Pythium, and Rhizoctonia [33].
Moreover, Trichoderma species play a significant role against seed-borne fungi, such as
Fusarium sp., M. phaseolina, and R. solani, which cause pre-harvest and post-harvest losses in
cotton, cowpea, mungbean, sorghum, soybean, and tomatoes [33]. The dry powder or dust
of Trichoderma is used to coat seed for seed treatment just before sowing [34,35]. T. harzianum,
T. virens, and T. viride were proven as potential seed protectants against the Pythium sp. and
R. solani. Incubation of Trichoderma–treated seeds under warm and humid conditions right
before radical emergence, results in rapid and uniform seedling emergence [36]. Trichoderma
germinates conidial masses on the seed surface and forms a layer surrounding the primed
seeds. These primed seeds are capable of tolerating the adverse conditions of soil habitats,
such as vegetable seedlings treated with Trichoderma spore or cell suspension showed
antagonistic to damping-off disease. Trichoderma was successfully applied in aerial plant
parts to control the decay fungi in wounded shrubs and trees [36]. For instance, across the
globe, several Trichoderma–based commercial bioformulations are used in controlling plant
pathogenic fungi are listed in Table 1.

Table 1. Trichoderma–based commercial bioformulations controlling plant pathogenic fungi.

Trichoderma–Based Bio-
formulation/Tradename Trichoderma Species Target Pathogens Manufacturer References

Agroguard WG™ T. harzianum Phoma, Pythium, Rhizoctonia, Sclerotinia,
and Sclerotium

Life Systems Technology
S.A. (Colombia) [34]

Antagon WP™ T. harzianum
Botrytis, Ceratocystis, Fusarium, Pythium,

Rhizoctonia, Rosellinia, Sclerotinia,
and Sclerotium

Bio Ecologico Ltd. (Colombia) [34]

Binab TF T. polysporum Fusarium, Pythium, Rhizoctonia,
Sclerotinia, and Sclerotium

BINAB Bio-Innovation
AB (USA) [35]

Bioderma H T. harzianum

Alternaria, Ascochyta, Cercospora,
Colletotrichum, Fusarium, Phytophthora,
Pythium, Macrophomina, Myrothecium,

and Ralstonia

Biotech International
Ltd. (India) [34]

BioFungo™ T. virens Botrytis cinerea and Sphaerotheca pannosa Orius Biotecnologia
(Colombia) [34]

ECO-77™ T. harzianum Botrytis and Eutypa Plant Health Products
(South Africa) [34]

ECO-T™ T. harzianum Fusarium, Phytophthora, Pythium,
and Rhizoctonia

Plant Health Products
(South Africa) [34]

Ecoderma T. virens Botrytis, Fusarium, Pythium, Rhizoctonia,
Rosellinia, Sclerotinia, and Sclerotium BigHaat Agro Ltd. (India) [35]

Ecotrich ES™ T. harzianum Rhizoctonia solani, Pythium,
and Sclerotinia

Ballagro Agro Tecnologia
Ltd. (Brazil) [34]
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Table 1. Cont.

Trichoderma–Based Bio-
formulation/Tradename Trichoderma Species Target Pathogens Manufacturer References

Esquive T. atroviride Pythium and Rhizoctonia Agrauxine (France) [35]

Floragard T. hamatum Fusarium, Pythium, Rhizoctonia solani,
and Sclerotinia homeocarpa Sellew Associates LLC (USA) [35]

FoliGuard™ T. hamatum Alternaria, Botrytis cinerea, Cladosporium,
Oidium, and Sphaeroteca pannosa

Live Systems Technology
S.A. (Colombia) [34]

Lycomax T. viride Soil-borne pathogens Russell IPM (UK) [34]

Natibiol™ T. viride Rhizoctonia Probiagro S.A. (Venezuela) [34]

PlantShield™/RootShield™ T. harzianum Fusarium, Pythium, Rhizoctonia solani,
and Sclerotinia homeocarpa Bioworks (USA) [34]

T-Gro T. harzianum Botrytis, Ceratocystis, Fusarium, Pythium,
and Rhizoctonia Dagutat Biolab (USA) [35]

Trianum™ T. harzianum Soil-borne pathogens Koppert BV (The Netherlands) [34,35]

Tricho™ T. harzianum
Alternaria, Arrmilaria, Botrytis,
Fusarium, Pythium, Rhizoctonia,

Rosellinia, Sclerotinia, and Sclerotium

Orius Biotecnologia
(Colombia) [34]

Trichodermil™ T. harzianum
Botrytis ricini, Fusarium, Phytophthora

capsici, Phytophthora palmivora,
Rhizoctonia, and Sclerotinia sclerotiorum

Itaforte BioProdutos (Brazil) [34]

Trichodex T. harzianum Colletotrichum, Fusarium, Phytophthora,
and Pythium, Macrophomina

Makhteshim chemical works
Ltd. (USA) [35]

Trichosav T. harzianum Soil-borne pathogens Centros de Reproduccion de
Medios Biologicos (Cuba) [34]

Trichosoil T. harzianum Fusarium Lage S.A. (Uruguay)

Tusal T. asperellum Fusarium, Pythium,
and Rhizoctonia solani Isagro (USA) [35]

Virisan T. asperellum Phytophthora, and Pythium Isagro (USA) [35]

VinevaxTM–
Trichoprotection™ T. harzianum

Armillaria, Botryosphaeria stevensii,
Chondrostereum purpureum, Eutypa lata,

and Phaeomoniella chlamydospor

Agrimm Technologies Ltd.
(New Zealand) [34,35]

3. Effects of Trichoderma Metabolites on Plant Root Exudates

The signaling between Trichoderma and plant roots is often performed with root-
derived chemicals (Table 2). Plant roots exude various organic compounds into the rhizo-
sphere, which create and promote contact with Trichoderma [37]. Sucrose is a key molecule
in carbohydrate-mediated plant signaling. Plant cells degrades sucrose to provide a carbon
source for Trichoderma during Trichoderma–plant interactions [37]. T. virens intracellular
invertase (TvInv) is responsible to hydrolyze sucrose and production of normal T. virens
in the presence of sucrose. A plant-like sucrose transporter (TvSut) carries sucrose from
the plant to Trichoderma during their beneficial interactions [38]. The ThPTR2 gene encodes
the PTR family di/tripeptide transporter, which is found in T. harzianum. The secreted
proteins that are found in plant–pathogen and plant–mycorrhizal interactions, also play a
significant role in Trichoderma–plant interactions. Trichoderma species produce and regulate
hormonal signals that help to colonize in plant roots [3]. Auxin-induced root formations
(e.g., increased number of root hairs) increase the total area of the absorptive surface in the
root zones, making nutrient absorption easier and resulting in increased plant growth [39].

The exchange of root exudates and other signaling molecules between Trichoderma and
plants is complex and not well characterized [40]. Thus, several antibiotics, toxins, and plant
antimicrobial agents affect the Trichoderma species in the crop rhizosphere. For example,
benzoic acid, cinnamic acid, ferulic acid, phenolic acids, vanillic acid, 3-phenyl propionic
acid, and 4-hydroxybenzoic acid can inhibit the growth of Trichoderma [41]. However, some
Trichoderma species induce root branching and increase shoot biomass by the presence of
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auxin-like compounds, which help to exchange these root exudates and signaling molecules
between Trichoderma and plants in crop rhizosphere [40]. The ATP cassette-binding cell
membrane pump of Trichoderma species is an important part of a comprehensive, potent
cell detox system that explains the ability of Trichoderma to cope with various chemical
stresses. In addition to co-inoculating other useful organisms such as the AM fungi, the
Trichoderma species appears to have a role to play in attenuating plant hormone reactions to
the root colonization process [42]. The effective colonization of the Trichoderma species on
the roots of their hosts implies a reprogramming of the plant, with improved growth, yield,
and pathogen resistance [43].

4. Effects of Trichoderma Metabolites on Soil and Root Pathogens

Trichoderma species are commonly found on plant root surfaces in various soil habitats
where they control the soil-borne pathogens causing plant root diseases [44]. The most
versatile strains from the Trichoderma genus, including Trichoderma arundinaceum, T. asperel-
lum, T. atroviride, T. citrinoviride, T. cremeum, T. crissum, T. gamsii, T. hamatum, T. harzianum,
T. pseudo-koningii, T. koningii, T. koningiopsis, T. longibrachiatum, T. longipile, T. ovalisporum,
T. polysporum, T. reesei, T. saturnisporum, T. spirale, T. virens, and T. viride, secrete diverse
chemical compounds [45–47] (Table 2). A large number of soil-borne fungi are capable of
generating chemicals that are recognized for their antifungal efficiency. Trichoderma species
possess the fungicidal and fungistatic characteristics as they generate various cell wall-
degrading enzymes and secondary metabolites (SMs) [48,49]. These metabolites enhance
the plant defense response when attacked by phytopathogens. Secreted antimicrobial com-
pounds during the Trichoderma–mediated defense response pathways are often associated
with the barriers of pathogen entry into the plant cells [43]. For example, the accumulation
of secondary phenolic metabolites plays a crucial role in plant defense mechanisms against
various pathogens. Trichoderma produces various peptides, proteins, and low molecular
weight compounds, which are involved in biochemical resistance to pathogens and induce
resistance in plants [50].

Various groups of compounds are secreted by the Trichoderma species trigger to induce
the defense reactions in plants. Celluloses produced by T. harzianum have been proven to
act as an elicitor for systemic acquired resistance (SAR) by causing peroxides and chitinase
activity. Systemic plant reactions occur via the JA/ethylene signaling pathway (Figure 1).
Trichoderma has been shown to release these enzymes or otherwise functioning proteins,
avirulence gene (Avr) encoded homologous proteins, oligosaccharides, and other low
molecular weight compounds [51]. The chitinase enzymes are commonly known as plant
gene-encoding enzymes, which degrade cell walls, and are used to induce plant resistance
against phytopathogens. In terms of antifungal efficiency, the chitinase genes from Tri-
choderma showed dominant expression over the corresponding plant genes resulting in
improved pathogenic resistance [52]. Therefore, it is expected that the transgenes inserted
in the plant-host increase the resistance level against a variety of plant pathogens [53]. The
Trichoderma gene chit42 encodes a powerful endochitinase enzyme that exhibits strong anti-
fungal activity against a broader range of plant pathogens as compared to other chitinolytic
enzymes. The constitutive expressions of Trichoderma genes in plants have shown higher
levels and improved resistance against soil-borne plant pathogens [54].
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Figure 1. Metabolites (antibiotics and enzymes) produced by Trichoderma induce plant defense
responses against the pathogens: (A) Trichoderma released antibiotics, enzymes, and secondary
metabolites (SMs) through metabolic pathways leading to antagonize the phytopathogens. (B) Signals
involved in Trichoderma–plant interaction enhanced the plant defense responses.

Table 2. A list of metabolites and chemical compounds secreted by Trichoderma species affects soil
pathogenic fungi.

Metabolites Compound Trichoderma Species Target Fungal Pathogens References

Anthraquinones

1,8-dihydroxy-3-
methylanthraquinone,

1-hydroxy-3-
methylanthraquinone and

6-methyl-1,3,8-
trihydroxyanthraquinone

T. harzianum

Fusarium oxysporum,
Macrophomina phaseolina,

Rizoctonia solani, and
Sclerotium rolfsii

[55]

1,8-dihydroxy-3-
methylanthraquinone and

1-hydroxy-3-methylanthraquinone
T. harzianum Gaeumannomyces graminis var.

tritici, and Pythium ultimum [56]

Azaphilones

Harziphilone, Fleephilone and
T22azaphilone T. harzianum G. graminis var. tritici, P. ultimum,

and R. solani [57]

T22azaphilone T. harzianum Leptosphaeria maculans, and
Phytophthora cinnamomi [58]

Epipolythiodio-
xopiperazines

Gliotoxins T. virens

M. phaseolina, Pythium
aphanidermatum, Pythium

deharyanum, Rizoctonia bataticola,
R. solani, and S. rolfsii

[1]

Gliovirin T. longibrachiatum R. solani [1]

Gliovirin T. virens P. ultimum [1]

Koninginins

koninginins A, B, D, E, and G T. aureoviride
T. harzianum and T. koningii G. graminis var. tritici [59]

koninginins A, B, and D T. koningiopsis F. oxysporum, F. solani, and S.
rolfsii [59]

koninginin D T. harzianum and
T. koningii

Bipolaris sorokiniana, F. oxysporum,
P. cinnamomi, and

Pythium middletonii
[6]
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Table 2. Cont.

Metabolites Compound Trichoderma Species Target Fungal Pathogens References

Lactones

aspinolide C T. arundinaceum Fusarium sporotrichioides [60]

Cerinolactone T. cerinum Rosellinia necatrix [60]

Cremenolide T. cremeum. F. oxysporum and R. solani [60]

Peptaibols
trichokonins VI, VII, and VIII T. koningii F. oxysporum, R. solani, and

Verticillium dahliae [55]

Trichokonin VI T. pseudokoningii F. oxysporum, Phytophthora
parasitica, and V. dahlia [55]

Polyketides

Harzianolide and
Dehydro Harzianolide T. harzianum F. oxysporum and R. solani [61]

6-pentyl-α-pyrone

T. harzianum
T. koningii

T. viride and
Trichoderma spp.

R. solani [61]

6-pent-1-enyl-α-pyrone T. harzianum and T. viride R. solani [61]

Massoilactone δ-decenolactone Trichoderma spp. R. solani and S. rolfsii [61]

Koninginia E, B, and A T. harzianum and
T. koningii G. graminis var. tritici [57]

Koninginin D and
Seco-koninginin T. harzianum G. graminis var. tritici [57]

Koninginin C T. koningii G. graminis var. tritici [57]

Pyridones Harzianopyridone T. harzianum
G. graminis var. tritici,

L. maculans, P. cinnamomi,
P. ultimum, and R. solani

[57]

Pyrones
6-Pentyl pyrone (6-PP) T. harzianum, T. koningii,

and T. viride F. oxysporum and R. solani [62]

Viridepyronone T. viride S. rolfsii [62]

Steroids Stigmasterol T. harzianum and
T. koningii

F. oxysporum, M. phaseolina,
R. solani, and S. rolfsii, [57]

Terpenes
(trichothecenes)

Trichodermin
T. polysporum
T. sporulosum

T. reesei and T. virens
R. solani [63]

Harzianum A T. harzianum F. oxysporum [63]

Mycotoxin T2 T. lignorum R. solani and S. rolfsii [63]

Terpenes
(triterpenes)

(sterols)

Ergokonin A
T. koningii

T. longibrachiatum and
T. viride

Phoma spp. [64]

Viridin T. koningii
T. virens and T. viride F. oxysporum and R. solani [64]

Trichothecenes
Trichodermin T. brevicompactum R. solani [65]

Trichodermin T. harzianum F. oxysporum and R. solani [66]

5. Effects of Trichoderma Metabolites on Soil Non-Pathogenic Fungal Communities

Microbial community structure, biodiversity, and functions are crucial for maintaining
agroecosystem sustainability and productivity [67,68]. Very little is known about how
Trichoderma interacts with non-pathogenic microbial communities. Trichoderma species
secrete numerous cell wall-degrading enzymes such as cellulases, chitinases, glucanases,
proteinases, and xylanases, which can substantially degrade the microbial cells (including
pathogens) in soil habitats to absorb nutrients and persist longer. Thus, changing or
altering the structure and functions of microbial populations, particularly fungal and
bacterial communities [69,70].

Secondary metabolites (SMs) are secreted by Trichoderma play significant roles in
signaling, developing, and establishing interactions with plants and soil microbes (Table 3).
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Trichoderma produces numerous secondary metabolites, such as peptaibols, polypeptides,
pyrons, siderophores, steroids, terpenes, etc. [62]. The effectiveness of using Trichoderma in
agriculture depends on their metabolic activity and the type of interaction with plants and
other microbes. These fungi effectively colonize the plants roots and soil rhizosphere, and
produce several metabolites with anti-microbial features [27]. For instance, T. atroviride and
T. harzianum have developed different major antibiotics, such as azaphilone, butenolide,
harzianolide, hydrazinopyridine, 1-hydroxy-3-methyl-anthraquinone, 1,8-dihydroxy-3-
methyl-anthraquinone, and 6-Pentyl pyrone (6-PP) [71,72]. This low molecular weight,
non-polar, volatile compounds (i.e., 6-PP) yield a high concentration of antibiotics in the
soil environments, which influence the diversity, composition, and functional attributes of
the long-distanced soil microbial community. On the other hand, the polar antibiotics and
peptaibols affect the production of microbial hyphae within short-distanced ranges [73].
However, the contribution of other secondary metabolites (i.e., pyrones) by Trichoderma
and their synergisms with other soil-root associated chemical compounds to beneficial soil
microbial communities has not yet been well understood [74–76].

T. koningii producing volatile compounds induced the reduction in resting spore
germination of non-pathogenic AM fungi (e.g., G. mosseae) [17]. However, these volatile
compounds did not affect the mycelial growth of G. mosseae, affecting the spores produced
only in the resting phase. Trichoderma inoculation on mycorrhizal maize plants reduced
Azospirillum populations in soil [77]. This operation was only found in natural mycor-
rhizal plants as compared to non-mycorrhizal control plants. The relative abundance of
fungal species was also found in the soil rhizosphere of black pepper (Piper nigrum L.).
T. harzianum caused considerable alterations in the metabolic profiles of the black pepper
rhizosphere, resulting in a lower number of metabolized compounds; although, absorbance
was considerably greater for a specific set of metabolites in which Trichoderma was ap-
plied [78].

The treatment with T. harzianum MTCC 5179 altered the structure and functions of
fungal communities such as Mortierella verticillata, Oidiodendron maius, Pseudogymnoascus
pannorum, Rhizophagus irregularis, Talaromyces stipitatus, and T. harzianum [78]. Significant
variations were observed among the fungal communities in the soil rhizosphere due to Tri-
choderma inoculation. For instance, Gibberella and Phoma were found as the dominant fun-
gal genera, whereas relative abundances of other fungi, such as Monographella, Mortierella,
Penicillium, Rhizophlyctis, Sphaerosporella, and Trichoderma, were reduced. Another study
showed that after inoculation of Trichoderma, the relative abundance of Trichoderma was
98.41%, including resident Trichoderma species, while the relative abundances of other gen-
era were reduced [79]. In contrast, inoculation of T. atroviride I-1237 resulted in a significant
increase in the density of the other soil fungal community [80]. Similarly, T. longibrachiatum
inoculation enhanced the capacity of microbial communities utilizing the carbon source
that was the highest in rhizosphere soil [81].

6. Effects of Trichoderma Metabolites on Soil Bacterial Communities

Several metabolites released by Trichoderma species have been shown to substantially
inhibit the growth of diverse bacterial strains in the tomato rhizosphere. Occasionally,
volatile compounds (VCs) produced by indigenous bacterial communities affected the
growth of Trichoderma and their secretion of antifungal/antibacterial metabolites. This
counter-secretion within the rhizosphere raised the questions of whether these Trichoderma
species significantly change the rhizosphere bacterial communities during biocontrol and
how the consequent alterations influence soil and plant health. Trichoderma species strongly
inhibiting the bacterial population implies that VCs might be used as soil fumigants.
However, 373 distinct bacterial strains have been identified in the soil rhizosphere, though
the specific activity of these microbes are still unknown in many cases [6,82,83].

Trichoderma has some fundamental functions to stimulate the plant beneficial bacteria
to restrict pathogens through different mechanisms (Table 3) [84]. The non-target effects
of T. harzianum, Bacillus megaterium, and Pseudomonas fluorescens were found on major
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actinomycetes and β-proteobacterial communities in soil rhizosphere [85]. T. harzianum
and B. megaterium significantly increased the population of actinomycetes with greater
abundance during the maturity stage of plants. Another study showed that Trichoderma
inoculant reduced the total soil bacterial population of Pseudomonas fluorescens [16]. A
study on biodegradation revealed, T. viride was inoculated together with a bacterial con-
sortium of 195 strains [86]. After 12 months of observation of the biodegradation process,
only 73 bacterial strains were found from the consortium population. T. viride proved
to exert an antagonistic effect on the bacterial consortium; as a result, the lower relative
abundance of bacterial communities was achieved, whereas higher relative abundance of
bacterial communities was found in the control treatment. Gasoni et al. [87] found that
the application of T. harzianum changed a particular group of compounds deferred from
the uninoculated control, indicating that the inoculation of T. harzianum contributed to the
growth of a distinct soil bacterial population, altering the microbial communities in the
host rhizosphere.

7. Effects of Trichoderma Metabolites on Soil Enzyme Activities

The Trichoderma species applied in the crop rhizosphere affected soil enzyme activities.
A variety of Trichoderma species substantially decreased the activities of β-glucosidase,
chitobiosidase, and N-acetyl-β-D-glucosaminidage (NAGase) enzymes, thus inducing
the plants to respond with their defense mechanisms [16]. These enzymes exhibited
the alteration in microbial communities in the soil ecosystem [73] (Table 3). Enzymatic
activities occurring in the soil are used to better understand the ecological functions of
Trichoderma [88]. Several Trichoderma species reduced the activity of alkaline phosphatase
resulting in the effective control of the soil-borne pathogen (P. ultimum). Different degrees
of soil enzyme activities significantly inhibit the pathogenic effect of soil-borne fungi [16].

Trichoderma inoculation to AM fungi-colonized plants (G. deserticola) reduced phos-
phatase activity [73]. A significant increase in chitinase activity was found in the soil
with Trichoderma inoculation of natural mycorrhizal fungi-colonized plants (121%) and
non-mycorrhizal plants (151%). However, it considerably reduced the enzymatic activity of
trehalase by 47%. The imbalance structure of the soil microbial community is the major
reason for soil-borne diseases. Trichoderma species increase the contact area among the soil
microbes and crop rhizosphere because of their strong colonization ability. Trichoderma
species exhibit hyperparasitism due to their advantages of rapid growth and high vitality.
The fungus secretes cell wall-degrading extracellular enzymes, such as cellulases, chitinases,
glucanases, proteinases, and xylanases, which enhance the soil enzyme activity to repair
soil health [89]. The inoculation of Trichoderma increases nutrient availability, nutrient
recycling activity, and microbial biomass by degrading microbial cells, thus leading to the
improvement of structure and function of the soil microbial community [90,91]. Tricho-
derma inoculation significantly enhances the nutrient contents and enzymatic activity in
rhizosphere of Pinus sylvestris var. mongolica seedlings. T. virens ZT05 was proven to have a
greater impact as compared to T. harzianum E15 on nutrient availability and soil enzymatic
activity in the crop rhizosphere [75].

Table 3. Rhizosphere metabolites secreted by crop roots, Trichoderma, and soil microbial communities.

Metabolites (Enzymes) Trichoderma Strains Bacteria Fungi Host Plant References

1,8-dihydroxy-3-
methylanthraquinone

Trichoderma hamatum
TR1-4 Bacillus spp.

Gaeumannaomyces
graminis var. tritici,

and Rhizoctonia solani

Wheat and
Eggplant [92,93]

1-hydroxy-3-
methylanthraquinone T. harzianum 2413 Pseudomonas spp. Phytophthora capsici Pepper [94]

1,8-dihydroxy-3-
methylanthraquinone T. harzianum T-22 Pseudomonas fluorescens Q8r1-96

Gaeumannaomyces
graminis var. tritici,

and Pyrenophora
triticis-repentis

Wheat [95,96]
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Table 3. Cont.

Metabolites (Enzymes) Trichoderma Strains Bacteria Fungi Host Plant References

Harzianopyridone T. harzianum T-1 Pseudomonas aureofaciens AB244
Fusarium oxysporum;

Pythium ultimum, and
R. solani

Bean and Tomato [97,98]

6-pentyl-α-pyrone T. harzianum 1295-22 Pseudomonas fluorescens VO61 R. solani Creeping bent
grass and rice [99,100]

Trichorzianin TA
Trichorzianin TB T. harzianum Th-87 Stenotrophomonas maltophilia C3 R. solani Eggplant and

Tall fescue [92,101]

Trichodermin T. harzianum
BAFC 742 Bacillus subtilis GB03 Sclerotinia sclerotiorum Soybean [102]

β-1,4 endoglucanase T. longibrachiatum
CECT 2606 Serratia plymuthica P. ultimum Cucumber [101,103]

6-pent-1-enyl-α-pyrone T. viride WT-6 Bacillus subtilis GB03 R. solani Eggplant [96]

3,4-dihydroxycarotane T. virens GL-21 Pseudomonas fluorescens VO61 P. ultimum and
R. solani

Cucumber
and pea [104]

6-Pentyl pyrone (6-PP) T. virens GL-1,
GL-21, GL-23 Bacillus subtilis BACT-D R. solani Eggplant [92]

β-1,4 glucanase
3,4-dihydroxycarotane

Viridin
T. virens GL-3

Burkholderia cepacia A3R, B.
cepacia PHQM 100, Pseudomonas

aureofaciens 63-28, and
P. aureofaciens AB244

Fusarium
graminearum, Pythium
aphanidermatum, and

P. ultimum

Barley,
Cucumber,
Maize, and

wheat

[105–109]

8. Challenges and Future Research Directions
8.1. Efficacy of Trichoderma–Based Bioformulations

The compatibility of Trichoderma–based bioformulations needs to be assessed for inte-
grated disease control approaches. Farmers should be encouraged to use Trichoderma–based
formulations for environmentally sustainable disease control. To overcome the drawbacks
of biological control techniques due to adverse environmental factors, formulations based
on Trichoderma strains can be developed that act employ different mechanisms under both
abiotic and biotic stresses in different climate zones. The utilization of microencapsulation
technology can improve the effectiveness of Trichoderma–based bioformulations, and thus
help to protect the pathogens in the field [34,35]. Furthermore, encapsulation is also capable
to extend the shelf life of commercial products. This new technology will allow for the
development of more effective pathogen control formulations in the pre- and post-harvest
periods [34,35]. It is important to highlight the optimization and adjustments of microen-
capsulation processes employed to produce viable Trichoderma bioformulations for field
applications. In this context, the association of the nanotechnology and biologically active
compounds derived from Trichoderma on the surface of the nanoparticles can promote
additional benefits for the efficient management of phytopathogens. However, it is a new
technology, detailed investigation should be conducted to confirm that these nanoparticles
do not have adverse effects on non-target organisms or cause any environmental contam-
ination. Moreover, to commercialize these nanotechnological products obtained by the
biogenic synthesis route, it is necessary to establish protocols for the standardization of
the preparation of these biocontrol agents, as well as methods for scaling up production
processes. There is tremendous potential to develop and commercialize novel products
for the biological control of plant pathogens based on the genus Trichoderma, especially
considering their applications in sustainable agriculture. In this review, we briefly dis-
cussed recently identified few commercial strains from the T. harzianum complex, which
have been used to formulate biofungicides. We suggest researchers conduct further re-
search to confirm how these commercial strains are effective in combating phytopathogens.
Nowadays, silicon–based nanoparticles are also using in controlling microbes that exist in
crop rhizosphere [110]. So, to see how Trichoderma bioformulations perform compared to
silicon-based nanoparticles, further investigation needs to be assessed.
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8.2. Ecological Challenges of Trichoderma Inoculant in Crop Rhizosphere

Metabolites and antibiotics produced by Trichoderma inoculant might affect not only
phytopathogens, but also other beneficial or neutral soil microbes. The intensity of such
impacts depends upon the inoculation period of biocontrol agents and the concentration
of metabolites secreted [76]. The competition for nutrients might also be responsible for
the alteration of the microbial population in the soil. The soil enzymatic activities are
considered as the indicator for abiotic or biotic stresses with the presence of pathogens
increasing their levels. Generally, inoculation of biocontrol agents has been shown to reduce
biotic stress (soil pathogens) by decreasing the level of enzyme activities [111]. However,
Trichoderma inoculant has certain non-target impacts because of the increase in enzymatic
activities. It is highly challenging to monitor how bioinoculants affect non-target soil
microbes in the rhizosphere and to understand their functions in the soil ecosystem. Future
research is also needed to analyze the ecological consequences on non-target microbes, due
to the application of bioinoculants into the crop rhizosphere.

8.2.1. Survival Fitness of Microbial Communities in Crop Rhizosphere

Soil microbes have been shown to play an essential role in soil formation, pathogen
suppression, and nutrient solubilization and acquisition [112]. Bioinoculation is the most
efficient and successful method for manipulating soil microbial communities [113,114].
However, there is very little evidence that these microbes can compete, develop, and operate
since they are not reproducible on a long-term basis in natural agricultural soil. Moreover, a
wide range of bioinoculants in agricultural fields is readily attacked by many predators and
face nutrient competition from native microbes. The effective bioinoculants must be capable
of forming interactions with other neighboring microbes, imitating the strongly structured
crosslinks found in the native soil rhizosphere. The goal behind this strategy is to introduce
beneficial microbial diversity into the plants, which will enhance the plant functions and
provide resistance against phytopathogens [115,116]. A systemic approach is required for
the successful engineering of soil microbes in the crop rhizosphere. However, knowledge of
the basic mechanism of bioinoculants regarding how they are linked with the rhizosphere
is important, it and also would improve sustainable crop production simply by enhancing
the beneficial symbiotic associations among the plant–soil–microbial communities [117].

8.2.2. Trichoderma Affects Chemical Signals in Crop Rhizosphere

Interaction between plants and their associated microbes occurs in the soil rhizo-
sphere through the exchange chemicals signals secreted by inoculated Trichoderma [118].
Signaling molecules can influence the metabolomic interactions among the soil microbes
in either a positive or a negative way [119]. The interchange of these signaling molecules
in Trichoderma–plant relationships is complex and not well characterized. However, in
recent years, increased attention has been paid to understanding the chemical composition
of Trichoderma–released secondary metabolites and their impacts on plant biochemical
and physiological processes with potential applications in the field. Thus, we suggest
researchers investigate how these signaling molecules interchange in Trichoderma–plant
complex interactions.

8.2.3. Trichoderma Challenges Abiotic and Biotic Factors in Crop Rhizosphere

So far, around 100 compounds (e.g., alcohols, alkanes, amines, arenes, esters, phe-
nols, etc.) have been identified in the rhizosphere soil [120]. Therefore, metabolomic
interactions in the microbial community imply that soil chemical ecology might play sig-
nificant roles in establishing biological inoculants and agroecosystem functions under
diverse abiotic and biotic environments, such as soil–plant, pathogen–pathogen, microbe–
microbe, microbe–pathogen, and indigenous versus non–indigenous inoculant interac-
tions [18,118,120], which require further investigation to ensure introduced microbial
inoculants such as Trichoderma can contribute in an eco-friendly and efficient manner in an
agricultural production system (see soil ecological factors in Figure 2).
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Figure 2. Soil ecological challenges and factors (1. Biotic, 2. Abiotic, and 3. Metabolomics) of
Trichoderma bioinoculants’ survival, establishment, and function in crop rhizosphere.

With the continuous growth of Trichoderma–based bioinoculants, we suggest researchers
conduct further research to confirm how these commercial inoculants are effective to com-
bat phytopathogens. To understand this multitalented biocontrol agent, further research
should be conducted by which Trichoderma species can act against several lethal fungi as a
potential biocontrol agent rather than minimizing the negative impact of Trichoderma on
other resident microbes in the rhizosphere. To confirm an acceptable database for safe and
sustainable usage of Trichoderma for better ecological balance, the extensive applications
of any fungal species and their secondary metabolites for biological control management
should be assessed. As a result, Trichoderma genomes can be a valuable source of candidate
genes to produce transgenic or genetically modified plants resulting in improved resistance
against abiotic and biotic stresses.

9. Conclusions

The successful establishment of biocontrol inoculants is reliant upon the multitrophic
interactions including wide-ranging metabolites in the crop rhizosphere that play a vital role
in shaping the microbial population, plant defense responses, and pathogen control. The
molecular cross-talk among the contributors and understanding of these entire ecosystem
processes would result not only in the safe use of biocontrol inoculants, but also expand
our knowledge of the developmental process of soil and plant root diseases and their
biocontrol mechanisms. The potentiality of the Trichoderma species in controlling soil-
borne fungal pathogens is already renowned; however, reviewing this topic, no clear
evidence of Trichoderma controlling bacterial plant pathogens in the soil rhizosphere has
been found, conceivably an area that warrants further investigation. Future experiments
on the mechanisms of possible synergistic actions by Trichoderma, soil microorganisms
(pathogenic and non-pathogenic consortia), and environmental interactions should be
performed. This could open up a new door for crop plants adapting to the Trichoderma as
biological inoculants, minimizing negative impacts or unintended alterations to keystone
functional soil microbiomes and crop productivity in diverse agroecosystems.
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