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Abstract: Agricultural systems are constantly under environmental pressure, and the continuous
rise of the global population requires an increasingly intensification of agronomical productivity. To
meet the current global food demand, particularly in depleted ecosystems under adverse climate
conditions, the development of novel agronomical practices, which ensure crop productivity while
safeguarding minimal impact to the environment, must be encouraged. Since aluminium (Al),
cobalt (Co), selenium (Se), silicon (Si) and sodium (Na) are not essential to plant metabolism, their
benefits are often neglected or underestimated in agriculture; however, several studies support their
advantages in sustainable agriculture when properly employed. The agronomical uses of these
elements have been studied in the last decades, delivering important cues for the improvement
of food and feed production worldwide due to beneficial effects in plant growth and productivity,
nutrient balance, pest and pathogen resistance, water stress management, heavy-metal toxicity
alleviation, and postharvest performance. However, their application has not been addressed as
part of a holistic conservation strategy that supports the sustainability of agroecosystems. Here,
we discuss the potential use of these elements in sustainable agriculture, and the knowledge gaps
that hinder their effective integration into agronomical practices, which result in equally profitable
applications while supporting environmental sustainability.

Keywords: climate change; ecosystem services; plant nutrition; plant protection; sustainability

1. Introduction

Current environmental changes combined with the rise of the global population
have resulted in extreme pressure over the current agricultural systems. In order to
respond to the increasing demand for food, the use of intensive agricultural practices has
resulted in increased greenhouse gases emissions, biodiversity loss, and soil erosion [1].
Furthermore, several studies show that the predicted increase in temperature and elevated
atmospheric carbon dioxide (CO2) can reduce pesticides’ efficacy [2,3], which may lead to
an exacerbated use of these compounds, decreasing soil quality and impacting the existent
beneficial microbial communities. Notwithstanding, it has been demonstrated that the
productivity and profitability of farms and orchards are not necessarily dependent on the
use of pesticides [4].

Agriculture provides economic, cultural, social, and nutritional benefits to the global
population [5], and it continues to transform in response to climate variances such as CO2
levels, water and air temperature, sea levels, and rainfall [6]. All these conditions directly
influence agricultural yields and crop resilience, creating an increasing need to take actions
that can mitigate or at least delay the effects of this phenomenon [7].

Due to the deeply negative impact that these climatic and environmental factors im-
pose on crops’ productivity and nutritional value, alternative agricultural systems have
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been promoted during the last decades [8]. However, the greatest challenge of these al-
ternatives is to maintain yield and comply with the sustainable agriculture definition [9].
This definition integrates the animal and plant production systems, under an efficient
management to respond to human food and fibre needs that improve environmental condi-
tions, balance the use of natural and non-renewable resources, support the economic farm
revenue, and increase general life quality. Examples of sustainable agricultural practices
include conservation agriculture, organic farming, biofertilization, precision agriculture,
and integrated pest management (Figure 1). Ideally, these techniques should contribute
to the sustainability of the farming systems’ ecosystem in light of their environmental,
economic, and social impacts [10].
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Figure 1. The role of beneficial elements in sustainable agriculture, plus the main contributions
and impacts. As beneficial elements impact land and water use, herbivores’ life cycle, soil health,
and livestock feed and management, they can contribute to different practices related to sustainable
agriculture. Hence, their optimised use can contribute to the environment, economy, and society.

Although these interventions must be able to support the need to increase food
production, they must also be pursued with low pressure on the natural environment. In
order to accomplish this, crop rotation [11], biofertilization [12], and precision agriculture
have been used to decrease these inputs while improving crop productivity and soil fertility
(Figure 1). Within organic agriculture and integrated pest management, a minimum or no
input is considered, specifically in the case of pesticides or veterinary medicines [13].

However, maintaining optimal plant nutrition with no or very low inputs is challeng-
ing, since different climatic and environmental conditions alter nutrients bioavailability,
hindering their uptake. This is particularly relevant when managing beneficial elements
in agriculture. Aluminium (Al), cobalt (Co), selenium (Se), silicon (Si), and sodium (Na),
when supplied to plants in low or limited concentrations (such as the ones promoted within
sustainable agriculture), can bring beneficial outcomes in certain crops, such as growth-
promoting effects [14]. Hence, they are not considered essential elements for species to
survive but have an important role in plant biology, including the ability to balance the
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toxicity and the beneficial effect of one another, as is the case of Al and Si or Na [15]. This
interaction between different beneficial elements can regulate ion uptake and accumulation,
enhancing the antioxidant defence system of the plant [16].

Additional members of the ecosystem such as herbivores, soil microbiota, and livestock
are also impacted by the effects of these beneficial elements. For example, the elements
play a role in defence against pathogens and herbivores, particularly by priming the
plants to enhance and shorten the response to insect herbivory [17]. Soil microbiota, on
the other hand, benefits from the presence of beneficial elements such as Se, since these
elements enhance microbiome diversity and beneficial rhizobacteria abundance, while
decreasing the abundance of pathogenic fungi [18,19]. As for livestock, by incorporating
the beneficial elements in the plant’s edible parts that serve as cattle feed, depending on
their bioavailability, they can impact feed efficiency, ensuring an efficient transformation of
feed into animal protein [20].

In contempt of all the positive outcomes that sustainable measures have on plant
nutrition, farming yield, and land use, European policy strategies to support farmers and
repel biodiversity loss and climate change, have failed to ensure an increased sustainable
production [21]. Political commitment in combination with a strong participation of all
stakeholders into decision-making continues to be pointed out as one of the most possible
effective strategies in order to successfully establish sustainable agricultural practices and
to make them profitable and competitive in the long-run [22]. The use of beneficial elements
can be an important tool to support these policies and enable the adoption of new strategies,
which can result in equally profitable production and more sustainable consumption.

2. Aluminium

Aluminium utilization in agricultural context is oftentimes limited, since its toxicity is
one of the primary factors impairing crop yield on highly acidic soils [23]. At pH values
lower than 5, Al3+ ions dissolve from clay minerals, potentially being toxic to plants by
hampering root growth and functioning as well as leading to reduced plant yield due
to drought and/or mineral deficiencies [24]. In fact, as much as 40–50% of arable lands
worldwide are acidic, with approximately 60% of acid soils being located in developing
countries, where Al toxicity limits crop production further threatening food security [25].
Since Al has been considered a major toxic factor for agriculture in these soils, most research
has focused on unravelling Al toxicity mechanisms in plants. Nevertheless, when supplied
at low concentrations through soil application, Al has been shown to be beneficial to some
plant species, having been classified as a beneficial element [7,26].

For example, Al-based biochar and nanoparticles could become an alternative to
synthetic chemicals in enhancing plant growth and productivity as well as in the control
of noxious pests and pathogens. Moreover, Al fluorides, sulphates, or phosphates have
also been proven to be less toxic or even non-toxic to plants, when applied in adequate
concentrations adapted to each type of crop [27]. Stimulatory effects have been reported
in several plant species supplemented with Al, ranging from increased mineral uptake,
including calcium (Ca), potassium (K), boron (B), and phosphorous (P), mitigation of pests
and pathogens, and alleviation of unfavourable environmental conditions, such as high H+

concentration in acid mineral soils, drought, high and low temperatures, soil salinity, and
manganese (Mn) and copper (Cu) toxicity [28–31].

Due to its proposed roles in signal transduction within plant tissues [32], Al-based
compounds could represent an additional option for crop valorisation and protection, either
by complementing other chemicals and fertilization regimens to promote plant growth and
productivity, or to enhance plant protection by inhibiting pests and pathogens, particularly
in situations of acquired resistance to currently used control compounds.

2.1. Plant Growth and Productivity

Although Al is generally linked to toxicity and impaired growth in most plants, a
beneficial effect has been observed in several economically important crops. In Al-tolerant
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rice (Oryza sativa) varieties, increased root growth was reported following supply of 160 and
200 mM of this element [30,33]. Similarly, Bertrand and Wolf [34] showed that increasing Al
concentration from 2.2 to 7.4 µM increased the yield of corn (Zea mays) plants by four-fold.
More recently, Wang et al. [35] observed that supply of corn plants with a low dose of Al
inhibited root growth, while increasing leaf growth. Nevertheless, increased root elongation
and activity was reported in soybean (Glycine max) and coffee (Coffea arabica) supplied with
up to 41 µM and 300 µM of Al, respectively [28,36]. In the tea plant (Camellia sinensis),
Al generally stimulates root growth in concentrations as high as 6.4 mM, with reported
delayed plant growth when Al is absent [37–39]. In fact, it has been shown that Al supply
alleviates Fe toxicity in tea plants, thus improving plant growth [40]. In silver birch
(Betula pendula) and jolcham oak (Quercus serrata), long-term Al supply increased root
and shoot growth [41,42], possibly due to stimulation of the nitrate reductase enzyme in
roots and to IAA-induced nitrate synthesis [43]. Nevertheless, it has been demonstrated
that Al promotes plant growth under ammonium supply, but it was inhibiting the nitrate
supply [44], clearly demonstrating an interaction between Al and other minerals during
plant growth.

2.2. Nutrient Balance

It has been hypothesised that Al induces the activity of transport proteins and changes
in membrane potential and proton flux, thus promoting nutrient fluxes into plant tissues [45].
The uptake of several macronutrients, such as N, P, and K, was found to be stimu-
lated following Al application to several agronomically interesting plant species, such
as rice, wheat (Triticum aestivum), cranberry (Vaccinium macrocarpon), Japanese bamboo
(Polygonum sachalinense), and buckwheat (Fagopyrum esculentum) [46]. Nevertheless, the
outcomes of Al supply seem to vary greatly depending on the form, concentration applied,
and plant species (Table 1).

In tea plants, for example, root growth stimulation by Al [44] probably results from
increased uptake of macronutrients such as P, most likely resulting from the precipitation of
Al–P complexes on the root surface and/or apoplast [38,42,46]. However, Konishi et al. [37]
showed that in these plants Al significantly decreased Ca content and, to a lesser extent, Mg
content, while nitrogen (N) and K contents increased. Most importantly, Al was also shown
to alleviate P-toxicity, suggesting a regulatory role in its absorption and utilization [37].
In jolcham oak, stimulation of root growth by Al was not only associated with P uptake,
but also with the activation of the enzyme nitrate reductase and the increase in nitrate
uptake [43,47]. Additionally, bananas (Musa spp.) growing with 78.5 µM of Al also
showed increased K and P contents, although the authors also reported reduced Ca and
Mg contents [48]. Similarly, in barley (Hordeum vulgare) plants, Al (100 µM) inhibited the
influx of Ca, P, and ammonium, but enhanced the influx of nitrate and phosphate [49].

In coffee plants, a supply of 100 µM of Al increased K and Ca concentrations in
roots [31]. In maize, ammonium enables Al-induced stimulation of N assimilation, leading
to increased nitrate accumulation in roots [55]. In addition, in tea plants submitted to B
deficiency, Al positively regulated N and carbon (C) metabolism as well as antioxidant
activity, increasing the uptake and transport of B into upper plant tissues [29,56].

It is clear that the interplay between Al and plant nutrient balance is extremely depen-
dent on the plant species, plant growth condition, and regimen of Al supply. However,
further studies could consolidate the potential of Al in the formulation of novel fertilizers.
In fact, nanoparticles of potassium aluminium silicate (Leucite) occluded by calcium am-
monium nitrate have already been proposed as green fertilizers, allowing the slow release
of nitrate for up to 16 days [57]. An Al-rich biochar from sugarcane cake has also been
proposed as an adsorbent and fertilizer, by increasing P availability in sandy soils [58],
which supports the use of agricultural by-product resulting from biomass pyrolysis and
other plant residues to improve nutrient use efficiency (NUE).
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Table 1. Impact of aluminium (Al) root supply to plant mineral contents and physiological traits in
several food and feed agronomical crops.

Plant Species Al
Supply

Al Concentration
Tested Effects Reference

Brachiaria ruziziensis AlCl3 15 ppm ↑N, P and K and ↓ Ca in L; ↑ K and ↓ Ca in St [46]

Camellia sinensis
Al2(SO4)3

43 ppm, low P
345 ppm, high P

Low P: ↑ K in L, St and R and Mn in L; ↓Ca in L; ↑ DW
High P: ↑ K and Mn in L, St and R and N in L; ↓Mg in L, St and R; ↑ DW [37]

AlCl3 200 µM ↑ Ca and Fe and ↓ P, Mn, Mg and B in L; ↓ catechin and epicatechin [50]

Coffea arabica AlCl3 2.7 ppm ↑ K and Ca in R; ↑ root growth; ↑ phospholipase C activity [28]

Hordeum vulgare Al2(SO4)3
100 µM ↑ NO3

− and PO4 in R; ↓P, Ca, and NH4
+ in R [49]

600 µM ↑ Zn in Sh and R and P in R; ↓ P in Sh and K, Ca, Mg, Fe and Mn in
Sh and R [51]

Musa spp. Al2(SO4)3 78.5 µM ↓ Ca, K, P, Mg, NO3_N and NH4_N; ↓Water uptake [48]

Oryza sativa AlCl3 3 ppm ↑ N and P in L, P and K in St and P in R; ↑ DW [46]

Phaseolus vulgaris AlCl3 10 ppm
↓ Ca in R, St and L, and ↑ R length, DW and St length in cv. ‘Hilds Maxi’;
↓ Ca in R, L area, Sh DW in cv. ‘Seleccion F-15′; ↑ Ca in St and ↓ Ca in L,

R and St length, L area, R and Sh DW in cv. ‘Eagle’
[52]

Prunus persica NS 1000 µM ↑ N in St ↓ P, K, Ca, Mg, in R, St and L; ↓ Fe, Mo, in R and L; ↓Mn in L;
↓ total growth, lateral Sh number and length, L number and area [53]

Secale cereale AlK(SO4)2 10 ppm ↑ P and ↓ K, Ca, Mg and Mn in L; ↑ K and ↓ Ca and Mn in R;
↓ Chl. b and carotenoid [54]

× Triticosecale AlK(SO4)2 10 ppm ↑Mn in R; ↓K in L and R; ↓ Chl. a and Chl. b; ↑ carotenoid [54]

Triticum aestivum AlK(SO4)2 5 ppm ↑ K and ↓ P and Mn in L; ↑ Ca and ↓Mn in R; ↑ Chl. a [54]

Vaccinium macrocarpon AlCl3 3 ppm ↑ N, P and K in L, St and R; ↑ DW [46]

↑ Increase; ↓ Decrease; (L) Leaves; (St) Stems; (Sh) Shoots; (R) Roots; (DW) Dry Weight; (NS) Not Specified;
(Chl) Chlorophyll.

2.3. Environmental Stress-Mitigation

Another mechanism by which Al may benefit plant fitness is through the alleviation of
toxicity caused by other elements when in potentially noxious concentrations [59]. In fact,
root biomass increase has been associated for a long time with proton flux toxicity mitiga-
tion in several plant species under Al supply, including wheat, pea plants (Pisum sativum),
and Japanese radish (Raphanus sativus var. longipinnatus) [45,60]. Copper toxicity in cit-
rus (Citrus spp.) and wheat was also alleviated by low Al concentrations in the nutrient
solution [61]. Similarly, in tea plants grown in acidic soils, Al was found to ameliorate
iron (Fe) toxicity by preventing leaf bronzing due to toxicity and by reducing Fe content
in roots and leaves [40]. In soybean and rice, Al may also prevent Mn toxicity [62,63].
Mitigation of Mn toxicity by Al in rice plants is possibly due either to reduced Mn accu-
mulation in plant shoots, resulting from decreased Mn uptake in roots due to changes in
cell membrane potential, or reduced Mn availability in roots, resulting in changes in the
properties of cell wall junctions [63]. In peanut (Arachis hypogaea), shoot and root growth
was promoted by adding Al to the nutrient solution (up to 20.4 µM), which was attributed
to reduced zinc (Zn) uptake and concentration in shoots, found to be toxic in plants without
Al supply [64]. Aluminium can also help to detoxify fluoride (F) through the formation
of Al-F complexes, thus alleviating F stress [31,65]. This possibly occurs through the reg-
ulation of lipid peroxidation and antioxidant enzymes activity in leaves, or through the
exudation of organic acids, which allow the regulation of root pH through the interaction
of Al with F [31]. Recent works also highlight the possibility to exploit Al-rich corn stalk
biochar to remove F and cadmium (Cd) from contaminated water bodies [66]. This evidence
supports the use of Al-containing plant biomass, resulting from, e.g., the phytoremediation
of industrial-contaminated soils [67], to promote plant resilience to environmental stresses
while ensuring the sustainability of agroecosystems.
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2.4. Aluminium Potential in Plant Protection

Fosetyl-aluminium, a systemic organophosphorus fungicide, has also been used for
a long time to promote plant health, acting directly on the pathogens and indirectly by
activating disease resistance mechanisms, such as phytoalexin production [68–71]. This
compound proved to be efficient in controlling a variety of diseases in several crops, in-
cluding Phytophthora spp. in citrus, pineapple (Ananas comosus), avocado (Persea americana),
black pepper (Piper nigrum), pepper (Capsicum annuum), tobacco (Nicotiana tabacum), and
potato (Solanum tuberosum) [68–70,72,73], Plasmopara viticola in grapevines (Vitis spp.) [68],
and, also, Pseudoperonospora cubensis in in vitro conditions [71]. Andreu et al. [70] demon-
strated that Fosetyl-aluminium increased tolerance to Phytophthora infestans in moderately
resistant and moderately susceptible potato cultivars, by increasing phytoalexin concen-
tration in tubers, during plant growth, and after harvest, possibly as a consequence of
downward mobility.

Despite the promising effects of fosetyl-aluminium to control several plant diseases,
the increasing concerns related with the negative impact of organophosphorus fungicides
in the environment and human health propelled the identification of, e.g., Al-containing
salts and nanoparticles, which have been evaluated with varying degree of success as an
alternative to synthetic fungicides [74–77]. Aluminium-based salts, such as aluminium
chloride, aluminium sulphate, and aluminium lactate, have been applied to control diseases
caused by, e.g., P. infestans, Pythium sulcatum, and Thielaviopsis basicola, in crops including
potato and carrot (Daucus carota) [77]. Results suggest that Al may act as an elicitor of
a pathogenesis-related transduction pathway, as most genes found to be overexpressed
following Al supply are similar to the ones induced by pathogens [78]. Further research
supported this evidence by showing that Al-protective role was linked to hydrogen per-
oxide accumulation in plant roots and to the activation of the acquired systemic response
through nitric oxide- and salicylic acid-dependent pathways [79]. In tobacco plants, black
root rot caused by T. basicola and black shank caused by P. parasitica were suppressed by
aluminium sulphate [64,80]. Treatment of tobacco plants with aluminium hydroxide before
Ralstonia solanacearum infection also reduced the extent of disease development and leaf
injury, possibly due to increased antioxidant activity, particularly of NADPH oxidase and
superoxide dismutase [75]. Similarly, pre-soaking of pigeon pea (Cajanus cajan) seeds in
50 µM of Al for 24 h significantly decreased Fusarium incarnatum-equiseti infection, also
resulting in decreased reactive oxygen species (ROS) generation and cell death [76]. The
mycelial growth of other pathogens, such as F. sambucinum, P. sulcatum, Alternaria solani,
Botrytis cinerea, and Rhizopus stolonifera, was also negatively affected by Al-containing
salts [77]. Aside from Al-based salts, in recent years research efforts have focused on
the potential of nanotechnology to promote sustainable agriculture through improved
crop production and soil quality. Goswami et al. [74] explored novel applications of solid
and liquid formulations of nanoparticles against rice weevil (Sitophilus oryzae) and ob-
served that after only two days more than 90% mortality was obtained, with Al oxide
nanoparticles at dosage rates of 2 g per kg−1 rice. However, Al oxide nanoparticles at
concentration of up to 50,000 parts per million (ppm) have been found to be toxic to wheat,
which showed reduced root elongation, cellular damage in root cortex cells, and lignin and
callose accumulation [81]. Further research on the potential of Al in nanoparticle formula-
tion could greatly benefit the development of green fertilizers that mitigate noxious pests
and pathogens.

2.5. Enhancing Postharvest Performance

Despite the great efforts employed by crop producers to grow and harvest healthy
plants and food amenities, several diseases can lead to important losses when stored for
long periods. Such losses have been successfully mitigated using pesticides, although these
are frequently associated with negative impacts to consumers and the environment. Alu-
minium chloride at concentrations up to 5 mM showed high efficacy in controlling potato
tubers’ postharvest pathogens, such as F. sambucinum, P. infestans, Helminthosporium solani,
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and Rhizoctonia solani, possibly by interfering with pathogen cell membrane integrity and
permeability through the induction of lipid peroxidation [82,83].

Aluminium starch octenylsuccinate (ASOS), commonly used in the cosmetic industry
as an anticaking agent, has been successfully combined with plant essential oils (from e.g.,
peppermint and spearmint) and plant terpenes (including l-menthone and S-carvone,) to
inhibit several potato storage diseases caused by F. coeruleum, F. sambucinum, F. avenaceum,
F. oxysporum, A. solani, R. solani, H. solani, P. infestans, P. erythroseptica, Phoma exigua, and
Pythium ultimum. Mixtures of 10 g of ASOS and 4 g or 8 g of essential oils were the
most effective in inhibiting these pathogens for periods over 13 or 20 days, respectively,
particularly R. solani [84].

These results open the possibility to develop alternative tools for controlling storage
diseases and improve the shelf-life of food and plant amenities, and further studies should
be greatly encouraged for the development of novel affordable and sustainable conservation
products that support the sustainability of food and feed value chains.

3. Cobalt

Cobalt, a heavy metal, is a known essential element for both prokaryotes and animals,
particularly as a constituent of several enzymes and co-enzymes, i.e., vitamin B12. Although
any crucial role in plant physiological functions is yet to be reported, Co is considered to
be an important, although not essential, nutrient, which may affect, in different degrees,
growth and plant metabolism [7,85].

Co is normally an environmental scarce element, appearing in normal concentration
scopes between 15 and 25 ppm in soil, and 0.04 ppm in natural waters. Regarding the plant
itself, on a dry weight basis, the range is around 0.1–10 ppm, apart from plant species includ-
ing black bent (Agrostis gigantea, used as feed), and Haumaniastrum robertii, H. katangense,
and Aeollanthus subacaulis (used as food commodities), which are Co-hyperaccumulators
and may contain up to 1000 mg cobalt per plant [86]. Still, certain types of industrial ac-
tivities, misuse of fertilizers, and sewage sludge spreading can easily contaminate the
environment and adulterate the previously discussed Co concentrations [87], posing
new challenges to the mechanisms by which plants are able to successfully deal with
this element.

Co concentration limits are crucial, since Co can be noxious for plant health once
present in large amount in soils [88]. Specifically, it can hinder plant growth, photosynthetic
dynamics, seed germination, and metabolic functions [89,90]; therefore, most of the Co-
related literature is vastly focused on a better comprehension of the mechanisms and
molecular responses to cope with Co stress. Nevertheless, at lower concentrations, this
element has noteworthy beneficial effects, which are usually overlooked due to the toxic
effects. Providing the concentration is optimal, Co is capable of promoting overall plant
growth and it is even essential for specific taxa, as is the case for leguminous plants. With
food security goals and improvements on crop productivity in need to feed a growing
human population, an in-depth understanding of the beneficial effects of Co on plants may
very well be an important tool.

3.1. Cobalt Uptake and Stimulatory Effects on Plant Growth

As a transition element, Co is considered a divalent cation (Co2+), with a similar
chemical structure to nickel (Ni), whose uptake is entirely species-dependent, as it could
be transported along cortical cells by a various broad range transporters, both by passive
diffusion and active transport [91].

This element distribution within the plant depends on the stage of development, while
normally plant tissues contain Co in the subsequent increasing order: roots, leaves, seeds,
and stems. Soil pH variations impact Co uptake, which increases in acidic conditions,
and interactions between elements may also influence its bioavailability for root uptake,
i.e., high Mn levels in soil lead to the formation of complexing compounds with Co, thus
inhibiting its uptake from the soil to the plant [88].
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Even though the mechanisms and even the effects of Co on plants are still under inves-
tigation, there are a wide variety of advantageous effects described [92,93]. It has beneficial
effects not only on legumes, where it plays an essential role, but it is also capable of pro-
moting overall plant growth and functions [88,94]. These effects include hindrance of leaf
senescence, probably through inhibition of the biosynthesis of ethylene [95], and enhanced
seed drought resistance as cobalt treatments significantly increasing the growth, yield, and
mineral content under different water regime levels [96]. It may also stimulate the regula-
tion of alkaloid accumulation in medicinal plants, which could be hypothesised to have
an indirect effect on biotic stress resistance, although further confirmation is needed [26].
Furthermore, in hyperaccumulators plants, that usually concentrate potentially phytotoxic
elements to relatively extreme levels, high Co levels can offer direct protection from her-
bivores or pathogens [97], thus levering the productivity of commercially important but
susceptible cultivars used for food and feed production.

3.2. Cobalt in Plant Nutrition

In legume crops, Co is crucial for N fixation by Rhizobium, thus being indirectly re-
quired by these species. An indispensable component of cobalamine, required for the
activity of various enzymes regarding N fixation by rhizobia bacteria in root nodules of
leguminous plants, Co supplementation was reported to increase the root nodules forma-
tion and atmospheric N fixation, which consequently increased the N content in leguminous
plants [18]. Another study, with pea plants, also emphasised the beneficial effects of Co
incorporation in the soil (8 ppm in 10 kg pots), which resulted in increased growth, plant
nutrient levels, seed yield, and quality [98], likely due to the role of Co as a co-factor for
bacterial nitrogenase. There are few on-field examples of Co contribution to plant nutri-
tion and sustainable agriculture, but one promising study conducted a soil–crop system
management experiment, where, through application of combined treatments of Co and
organic fertilizers, improvements were achieved in overall productivity, yield, nutritional
status, and chemical constituents of moringa crops (Moringa spp.) [99]. Additionally, Co
supplementation on soybean plants lead to increased yield, oil, and protein contents in
seeds [93], and these results are in harmony with those reported for fava bean (Vicia faba)
and wheat [100,101]. Despite these positive effects, the interaction between Co and other
microelements in plant physiology and productivity still lacks sufficient attention, limiting
the possibilities to deliver comprehensive and well-thought Co biofortification strategies
that support sustainable agroecosystem management, NUE, and food safety.

3.3. Cobalt and Increased Shelf-Life

Several processes, such as humidity management and ethylene concentration control,
are essential in increasing a product’s shelf-life, and improving these processes is necessary
to meet the markets demand. Cobalt may play a key role in the latter, as demonstrated
by Prasetyo et al. [102], who developed an adsorbent analogous for ethylene removal,
during storage of fruit, based on Co-oxide-impregnated nanoporous carbon with sub-
stantial ethylene adsorption capacity, leading to an extended shelf life of these products.
Nevertheless, although postharvest storage of horticultural products, especially fruits, is
of crucial significance, the use of Co to promote product’s shelf-life and availability to the
public has still to be optimised and validated for larger-scale application.

4. Selenium

Different forms of Se can be found in the soil, including elemental selenium, selenite,
selentae, thioselenate, and selenide. However, only selenite and selenate can be absorbed
and retained by plants [27]. This mineral is essential for many species of plants as well as for
humans, but becomes toxic at higher levels, with the gap between deficiency and toxicity
being quite small [103,104]. Until today, it has not been proven that plants require Se for
their growth; however, it has been determined that there are beneficial effects of its appli-
cation in plant species with the particular capability to accumulate high quantities of this
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element [7,105]. Despite the fact that Se uptake can negatively affect plants by stunting their
growth or promoting chlorosis, the addition of this mineral in low quantities has proven to
increase plant resistance to oxidative stress and, even, hinder senescence while promoting
plant growth [106]. It has also been found that Se is capable of improving plant resilience to
abiotic and biotic stress injuries, generally resulting from cold, drought, senescence, salinity,
and pathogenic attacks. In fact, Se-protective mechanisms against pathogenic fungi attacks
in agricultural crops indirectly contribute to the reduction in the amount of fungicides
necessary to maintain healthy crops [107]. Moreover, Se can be used as a green fertilizer
and for crop biofortification, and it can intervene in phytoremediation (Table 2).

Table 2. Selenium (Se) contribution towards sustainable agriculture interventions.

Plant Species Se Supply
Se Amount

Supplemented/Se
Amount Present *

Application
Method Effects Reference

G
re

en
Fe

rt
il

iz
er

Triticum aestivum,
Secale cereale

Na2SeO3

10 ppm Soil fertilization ↑ bioavailability of Se in the final yield [108]

Pisum sativum L. 3 ppm Foliar fertilization ↑ photosynthetic ability; ↓ lipid
peroxidation rate [109]

Camellia sinensis 150 ppm Foliar fertilization ↑ Vit C and plant antioxidant activity [110]
Phaseolus vulgaris

Zea mays 10 and 31 g ha−1 Foliar fertilization ↑ bioavailability of Se in the final yield [111]

Ocimum basilicum L. 8 ppm Foliar fertilization ↑ number of germinated seeds and longer
roots [112]

B
io

fo
rt

ifi
ca

ti
on

Triticum durum Na2SeO4 40 g ha−1 Foliar fertilization Uptake avg: 1.540–5.532 ppm DW (SeMet) [113]

Lens culinaris L. SeO3 and SeO4 0.037 to 0.301 ppm * Natural soil Se
concentration Uptake avg: 0.425–0.673 ppm DW (SeMet) [114]

Allium porrum SeO3 3.8 ppm Soil fertilization Uptake avg: 0.167 ppm DW (SeMet) and
0.068 ppm DW (MeSeCys) [115]

Triticum aestivum SeO4 10 g ha−1 Soil fertilization Uptake avg: >0.100 ppm DW (SeMet) [116]
Ocimum basilicum L. SeO3 8 ppm Foliar fertilization Uptake avg: 0.203 ppm DW (SeMet) [112]

Ph
yt

or
em

ed
ia

ti
on

Oryza sativa
SeO4

0.25–4.55 ppm * Soil fertilization ↑ water pH from 29 to 92% [117]
Oryza sativa,

Brassica oleracea 20 µM Volatilization ↑ volatilization of SeO4 and SeO3 by
rhizosphere bacteria [118]

Lolium perenne Na2SeO3 150 ppm Soil fertilization ↑ aerial part weight and plant
development by 59% and 27% respectively [119]

Olea europaea L. Na2SeO4 150 ppm Foliar fertilization ↑ fruit yield, photosynthesis and leaf
water level [120]

Cucumis sativus L. Na2SeO4 8 µM Foliar fertilization ↓membrane damage; ↑ plant biomass and
fruit yield [121]

Triticum aestivum L. Na2SeO3 1–2 ppm Foliar fertilization
↑ biomass and root activity, ↑ proline

content and peroxidase and
catalase activity

[122]

* Refers to cases where the “amount supplemented” corresponds in fact to the amount of Se that was already
present; ↑ Increased; ↓ Decreased.

In order to benefit from Se in these interventions, it is important to consider if the
plant species to employ belongs to the group of selenium-hyper accumulators or the
non-accumulators, because this categorization will define the ability and resistance of the
plant to carry out the expected mediation [104,107]. Se hyperaccumulator species act by
sequestering Se available into their peripheral leaves, thus turning leaves into a defence
mechanism against herbivory attacks [123].

Research has shown the potential of Se to act as an ecological fungicide, based on the
results obtained when fighting sclerotinia stem rot disease in rapeseed (Brassica napus),
which not only decreased as the level of Se in the plant increased, but also enhanced the
growth of plant beneficial bacteria in the soil [19]. The growth of surrounding plants
and reduced herbivory attacks have also been associated with the existence of ground
depositions of Se or to Se hyperaccumulator plant species in the area [124]. Moreover,
findings show that plants with high quantities of Se were less appealing to prairie dogs
when presented with plant species that had low and high levels of Se, leading to the belief



Agronomy 2022, 12, 888 10 of 25

that plants with as little as 38 ppm will gain a certain level of protection against these
herbivores [125].

4.1. Selenium as Green Fertilizer

In 1984, Finland began to supplement their compound fertilizers with sodium selenate
in order to evaluate if this could improve the nutritional quality of their agricultural
crops [126,127]. The amounts of Se have been revised and adjusted since then, bringing the
supplementation levels as high as 10 ppm since 1998. This intervention allowed crops such
as potato, carrot, cabbage (B. oleracea var. capitata), and spinach (Spinacia oleracea) to absorb
selenate and convert it into organic Se compounds, specifically selenomethionine, which
not only increased the Se content in food but also in the animal produce that was fed with
supplemented crops [108].

The use of fertilizers in plants, such as pea, supplemented with Se enhanced plant
photosynthetic capabilities while decreasing their lipid peroxidation rate [109]. Green tea,
also proved to benefit from Se leaf spraying during producing season, which resulted in
the colour of the leaves, aroma, and sweetness being more stable in the Se-enriched tea
leaves than in the control samples over time [110]. Microgreens of basil (Ocimum basilicum)
increased their antioxidant activity after being sprayed with sodium selenate [112], and
species of chives (Allium schoenoprasum), garlic (A. sativum), and onion (A. cepa) demon-
strated increased growth, yield, and antioxidant activity subsequent to the use of Se as a
fertilizer [128].

The use of Se as a green fertilizer in sustainable agriculture, resulting in direct crop
biofortification and strategies to evaluate Se-uptake capability by different types of agricul-
tural crops have been implemented, although still to a reduced extent, around the world.
Se is not an essential mineral for crop maintenance (because it does not lead to increased
crop yield), which often discourages its application as a green fertilizer, so other minerals
that result in a substantial economic benefit are employed instead [111]. Due to its positive
effects at low concentrations, it is clear that, with sufficient research, Se could support
sustainable agri-food production by promoting plant fitness and nutritional quality.

4.2. Crop Biofortification

Biofortification continues to play a prominent role in the attainment of sustainable
food systems around the world, as it is capable of delivering plant-based foods with an
improved nutritional profile [129]. By manipulating the capability of agricultural crops to
collect Se, it becomes possible to increase Se intake in humans and animals through the
consumption of fruits, vegetables, cereals, and animal feed, thus providing beneficial effects
for the health in a long term [130]. Several regions worldwide have very low quantities of
Se and their population could suffer from a Se deficiency [103]. Countries such as Australia,
China, Finland, and Congo experience this situation, and interventions destined to increase
the dietary intake of Se to the recommended daily doses continue to be studied [131].

Legumes, such as peas and lentil (Lens culinaris), are an important source of plant
protein shown to be able to keep up to 70% of Se in form of selenomethionine (SeMet),
which is easier to absorb by the human body and less than 20% of inorganic Se after
biofortification [113,114]. Leek (A. porrum) was also evaluated, showing that 60% of Se was
bioaccessible in the stomach after consumption and up to 80% was available after reaching
the small intestine [115]. Fruits, vegetables, and cereals have proven to be viable vehicles
that can deliver Se through the diet [116,132], opening the possibility to develop novel
sustainable biofortification tools through the use of Se.

4.3. Phytoremediation for Sustainable Fertilization

It is important to consider the toxicity that Se can cause in plants or soils if administered
in inadequate concentrations. Selenate has proven to be less toxic than selenite, this is
because of the ability that selenite possess to be quickly absorbed by the plant [117], and
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the unwanted effects of Se are mostly shown when Se incorporates organic compounds
that act as Se analogues in the plant’s sulphur metabolism [118].

Selenium contamination in soils, waste waters, and sediments are often seen in arid
and semi-arid areas with seleniferous soils and heavy crop irrigation. Removal of these
contamination traits represents a very laborious and, therefore, high-cost activity. Turning
towards sustainable agriculture interventions to remediate this situation can foster a less
costly solution. Certain Se-tolerant plant species that can collect volatile Se can be employed
in the removal of Se from contaminated surroundings through phytoremediation. There
are different reactions that can take place depending on the specific scenario, including
phytoextraction, where Se is absorbed in plant roots and transported into the shoot in order
to be removed or even harvested from the area, and phytovolatilization, which allows
to remove Se forms such as hydrogen selenide, dimethyl selenide, dimethyl selenenyl
sulphide, and dimethyl diselenide by releasing them back into the environment as volatile
forms [133].

Terrestrial and aquatic species alike have shown to be competitive enough to grow at
interesting speeds, while producing substantial biomass amounts after the Se removal from
its settings [103]. It has been determined that the decrease in selenate in Se contaminated
environments promotes the anaerobic respiration of a range of soil microorganisms, and
that the reduction in soluble selenate and selenite to elemental Se reduces the toxicity of Se
in plants. Drain water and its derivates also benefit from Se phytoremediation by trapping
the inorganic Se found in wastewater streams. Harvesting it as plant biomass can lead to
the creation of a green fertilizer, which directly joins the cycle of sustainable agriculture,
thus providing a natural fertilizer that can be used for crop biofortification, animal feed, or,
even, biofuel creation [134,135].

4.4. Interactions with Other Trace Elements

During plant growth, trace elements present in the soil are inevitably absorbed by
roots and transported to aboveground plant tissues [136]. Nevertheless, Se can reduce
the uptake of heavy metals through the formation of immobilised compounds by plants,
especially in the rhizosphere, and, therefore, its application can alleviate metal toxicity in
plants by regulating metal concentrations in plants [104]. Indeed, several studies suggest
that Se can be used to reduce the uptake of potentially toxic elements, as it exhibits a strong
antagonistic effect of a several heavy metals in plants such as Cd, lead (Pb), chromium (Cr),
arsenic (As), and mercury (Hg) in plants [7,104,137]. For instance, Se has been shown to
reduce the Cd toxicity, mainly by preventing oxidative stress in tomato (S. lycopersicum),
regulating light utilization, repairing cell damages, and regulating gene expression, in crops
such as grapevine, rapeseed, rice, tomato, wheat, and peach (Prunus persica) [137–141]. The
mechanisms involved in this Se-mediated reduction in trace element toxicity in plants
were recently reviewed [142], involving the inhibition of metal uptake and root-to-shoot
translocation, the decrease in oxidative stress, the improvement of plant growth and
photosynthesis, chelation, and compartmentalization of those compounds, as well as
changes in metal species both in the soil and within the plant. Therefore, the use of Se
might be crucial to help in the remediation of metal-contaminated soils, as far as the doses
of Se used are well controlled, as the range of optimal Se rates for plant growth and human
safety is quite narrow.

4.5. Improving Water-Use Efficiency (WUE)

Water availability in farming is becoming harder to predict, as climate change effects
continue to create warmer summers, droughts, and floods in areas of the world that only
a few years ago had never experienced such conditions [143]. Over 90% of the crops
grown in the European Union (EU) are rain fed, leading to uncertain water availability and
subsequent water stress [119]. It appears that Se has a physiological and antioxidant effect in
plant species exposed to abiotic stress by improving the dismutation of superoxide radicals
that lead to the activation of peroxidase enzymes [144]. Olive trees (Olea europaea) under
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induced water stress and treated with a foliar spray solution containing sodium selenite
showed increased photosynthetic ability and fruit yield, while keeping a considerable water
level in leaves and showing improved WUE [120]. Selenium also proved to be of aid for
species experiencing heat stress [121], promoting plant growth during periods with water
shortage in rice and wheat [122,126].

All of the above-mentioned interventions point towards the adoption of natural and
sustainable actions that have shown to be capable of ameliorating agricultural limitations
resulting from climate change and/or soil exploitation. By following these actions, a circular
model of sustainable farming can be set in place, while simultaneously assuring regular and
controlled Se intake by humans and animals nationwide. The adoption of strategies that
employ Se-rich plant species to phytoremediate the soil, while simultaneously developing
a green fertilizer that leads to the harvest of fortified foods in seleniferous soils, becomes
an interesting starting point for further research, bringing valuable information to policy
makers, farmers, and consumers alike on how to harness all of the natural benefits that Se
has to offer.

5. Silicon

Silicon, the second most common element in the Earth’s crust, rarely occurs as a pure
element, being majorly present in combination with other elements, forming oxides or
silicates that are unavailable for plants’ uptake [145]. Silicic acid is the Si available form
for plants uptake, and its concentration ranges from 0.1 to 0.6 mM in the soil solution at a
general agricultural pH level (between 5.5 and 7.5) [146]. This element is considered non-
essential for plant growth; however, during the last two decades the interest in studying
this element has grown impressively, and the effective role of Si in plant biology has been
demonstrated [7]. In general, the crescent reports show that using Si as fertilizer is a major
contributor to maintain plant productivity, especially, but not exclusively, under stress
conditions [147–149], making this one of the most consensual elements in terms of the
positive outcomes and contributions to sustainable agricultural practices. However, there
is a gap of knowledge in regard to Si interaction with nutritional stresses and how this may
impact Si utilization in agriculture [149,150].

As depicted in Figure 2, there are four main beneficial outcomes of using Si in agri-
cultural crops: quality and yield improvement, pest and pathogen resistance, drought
and salinity tolerance, and heavy metal toxicity alleviation. Therefore, the range of Si
applications in agricultural context is very wide and helps in the reduction in pollutant
fertilizers and pesticides [151]. Due to these positive effects, Si is in fact suitable for organic
farming and can be an important tool in sustainable agricultural practices [152].
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Figure 2. The role of silicon in climate change mitigation and the mechanisms that support sustainable
agricultural practices, i.e., decreased fertilizer and pesticide input [151,153–168], improved water
management [35,169–178], and soil amendment [130,157,161,179–190].
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Additionally, Si seems to have an important role in climate change mitigation, as
there are evidences that Si cycling helps to control atmospheric CO2 concentrations [157].
Although Si concentration in plant tissues seems to decrease under these adverse climatic
conditions [191], Si supplementation was reported to be an effective measure to maintain
legume productivity under predicted climate change scenarios, i.e., elevated CO2 and
increased temperatures [192].

5.1. Quality and Yield Improvement

The effect of Si in agricultural crop quality and yield improvement is related to its
impact on crops’ ability to respond to diverse biotic and abiotic stresses. Hence, the
mechanisms behind Si action in enhancing general plant fitness are important to prime
plants’ defence and the ability to acclimate to adverse conditions [193]. However, it is still
a matter of controversy if Si by itself, without an underlying stress, can promote plant
growth, function, or metabolic activity [194].

Scientific evidences suggest that fertilization of rice plants with 17.3 mg Si ha−1

under field conditions [154], or with 1.67 mM or 2 mM Si solution under hydroponic
conditions [153,155], significantly increases grain yield and plant growth. Silicon applica-
tion also seems to impact photosynthetic mechanisms in different crops [195], but usually
in association with an additional stress. For example, it was shown that: (i) the application
of 150 kg ha−1 Si led to a higher photosynthetic rate, together with increased stomatal con-
ductance in maize grown in field conditions [158]; (ii) application of 2 mM Si increased net
photosynthetic and transpiration rates, stomatal conductance, and chlorophyll fluorescence
efficiency in rice and barley plants under hydroponic conditions [153]; and (iii) the addition
of 1.5 mM Si induced the expression of photosynthesis-related genes in rice plants under
hydroponic conditions [157].

Si also impacts crops growth and development by managing plants nutritional status. This
role in metal distribution and protection against micronutrient deficiencies [153,156,163,164],
together with the beneficial effects in crop growth and development, can lead to a decreased
utilization of fertilizers in agriculture. Since synthetic fertilizers contribute to a large share
of environmental pollution, replacing part of their utilization with this beneficial element
could improve the sustainability of agricultural practices.

5.2. Pest and Pathogen Resistance

As recently reviewed [147,152], there are many evidence that show that the application
of Si in agricultural crops has a protective role against several biotic stresses. This is of
primary interest to achieve sustainable crop production, since the use of pesticides not
only poses a risk to the ecosystems [196], but it might also be aggravated due to climate
change. Plant supplementation with Si showed a suppressive effect of several plant diseases
in important food and feed crops, including, e.g., R. solani and Magnaporthe oryzae in
rice [197], Podosphaera aphanis and Tetranychus urticae in strawberry [198], and F. graminearum,
Pyricularia oryzae, and Pyrenophora tritici-repentis in wheat [199,200].

The most important mechanisms associated with Si action in biotic stress (Figure 2) are
cell wall reinforcement, through which plants become more rigid and resistant, creating a
physical barrier to pathogen penetration and decreasing plant palatability and/or digestibil-
ity to herbivores [164]; activation of antioxidant defence, such as an ROS scavenging system
and increase in phenolic compounds concentration [166]; and gene regulation, specifically
in increasing the activation of pathogenesis related proteins and the expression of the
jasmonic acid/ethylene marker genes that induce resistance against biotic stresses [168].

5.3. Tolerance to Drought and Salinity

The addition of Si-based formulations to agricultural crops may have a role in balanc-
ing nutritional status, which in turn, can help mitigating the effects of drought, salinity, or
other abiotic stresses. Benefits of Si have been reported in plant water balance, particularly
under salt-induced osmotic stress conditions [171,173,177,201–203], by: (i) increasing WUE,
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for example, through the up-regulation of aquaporin gene expression to increase water
uptake; (ii) reducing oxidative stress, by triggering the activity of antioxidant enzymes (e.g.,
APX and CAT) and decreasing hydrogen peroxide; (iii) modulating photosynthesis and
stomata conductance, improving photosynthetic rates, transpiration rates, and chlorophyll
concentration; and (iv) increasing membranes’ stability, by decreasing membranes’ lipid
peroxidation and helping to maintain cell membrane integrity (Figure 2). By modulating
these key mechanisms, Si can promote plant resilience in arid or semi-arid conditions,
contributing to sustainable crop growth and productivity under the predicted scenarios of
water shortage.

5.4. Alleviation of Heavy-Metal Toxicity

Currently, a large percentage of soils have high concentrations of toxic metals or met-
alloids, being unsuitable for agriculture [204]. Although these lands have been overlooked
in the past years, their restoration or remediation is now an important strategy to increase
the ratio of usable land is the world. An increasing amount of evidence has shown that Si
has the ability to counteract the negative effects of certain elements such as Al, Cd, Pb, Cu,
Zn, Cr, or As that, when in high dosages, represent a serious threat for living organisms
and jeopardise the agricultural system [205].

The main mechanisms proposed for Si action against toxic metals are summarised
in Figure 2. Similarly to the mechanisms to cope with pathogen attack, to alleviate heavy
metal toxicity Si induces structural changes to strengthen the plants, such as, root elon-
gation, suberin development, and increased cell-wall extensibility and thickening of the
endodermis [181,182]; and Si improves the photosynthetic apparatus [206], increasing
membrane and tissue stability, especially in the leaves. Another well-described mechanism
induced by Si to detoxify heavy metals is the stimulation of organic acids’ exudation from
plants to chelate metal ions. When Si was supplied to crops, such as tomato, wheat, and
cucumber (Cucumis sativus), it formed complexes with organic acids as well as Cu and Cd,
including aconitate, malate, and citrate, [181–183]. As also demonstrated for water and
salinity stress as well as pest and pathogen resistance, the stimulation of antioxidant en-
zyme activity is a key process in Si’s protective role against toxic metals. When challenged
with heavy metal toxicity, plants often display increased levels of oxidative stress as well
as membrane permeability and degradation due to lipid peroxidation [121]. Under heavy
metal stress, the application of Si was shown to benefit numerous crops, including soybean,
barley, rice, cotton, banana, and peanut [207], by increasing the ascorbate-glutathione [184]
and glyoxalase [208] systems and enhancing the activity of scavenging enzymes, such as
SOD, POD, and CAT [186,206].

Silicon can co-precipitate with different heavy metals, for example, Cd [187], Cu [188]
and Mn [161], hence decreasing their mobility from roots to shoots and, consequently,
decreasing their accumulation in the shoots. Additionally, increased compartmentation of
heavy metals in plant tissues after Si application has been reported, leading to an increased
metal concentration in plant roots compared to shoots [209]. For instance, Si application was
shown to reduce Al, Cr, Cd, Mn, and Zn transport from roots to shoots, by cell wall retention
and vacuole compartmentalization, which decreases their concentration in the shoots, thus
preventing adverse effects on photosynthetic machinery and on grain production of several
crops [161,189]. All these above-mentioned mechanisms are linked to alterations in gene
expression, as Si supplementation alters the genetic response of heavy-metal-challenged
plants. For example, Si modulated photosynthesis-related gene expression in Zn-stressed
plants [157]; suppressed the expression of heavy metal transporter genes [161,189]; and in-
duced the expression of encoding genes for important stress-tolerance enzymes and organic
compounds, such as polyamines, in Cd-stressed plants [190]. Despite the promising pieces
of evidence on the role of Si in promoting plant fitness under potentially limiting levels of
toxic metals, the lack of empirical data still constrains the possibility to take advantage of
this element in promoting the sustainability of metal-contaminated agroecosystems.
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6. Sodium

Sodium nutrition remains a controversial topic. Although Na+ is mainly known by
its toxicity due to the salt stress caused at high concentrations, there is some evidence that
at low concentrations Na+ might have a beneficial role in plants [27]. While Na+ is not
essential by all plants for basic metabolism, it can promote plant growth and be essential
for some species [210,211]. It has been shown that when used in small quantities, similar to
micronutrients, Na+ can improve plant metabolism and synthesis of chlorophyll, plus it can
aid in stomata control, which might be helpful to regulate the internal water balance [212].
In fact, at low levels, Na+ is not only inoffensive but can be greatly beneficial, particularly
when potassium (K+) is at low concentrations, as it can be partially replaced by this element
due to their chemical similarity via non-selective cation transporters. Accordingly, as far
as the plants have the capacity to do Na+ uptake, as well as to translocate it to the shoot
and to compartmentalise it in their vacuoles, many of the functions played by K+ can be
fulfilled by Na+, including osmotic adjustment of the large central vacuole and cell turgor
regulation, which allows for cell enlargement or long-distance transport of anions [211,213].

6.1. Promotion of Plant Growth and Sensorial Quality

Sodium application has been shown to be beneficial for several crops, including
barley, wheat, pea, tomato, rapeseed, carrot, cotton, cabbage, radish, vetch, asparagus
(Asparagus officinalis), broccoli (B. oleracea var. italica), brussels sprout (B. oleracea),
caraway (Carum carvi), celery (Apium graveolens), chicory (Cichorium intybus),
flax (Linum usitatissimum), horseradish (Armoracia rusticana), millet (Setaria italica), oat
(Avena sativa), beets (Beta vulgaris spp.), rutabaga (B. napobrassica), and turnip (B. rapa subsp. rapa),
by stimulating their growth [211,214–218]. Additionally, the taste of several crops including
asparagus, barley, broccoli, and beet has been shown to be improved by the addition of
small amounts of Na [219]. However, the molecular and metabolic regulatory networks
underpinning beneficial plant responses to Na supplementation remain unclear. In fact,
the effect of Na research in plants physiology and productivity has been focused on its
toxicity, but considering Na+ only as a toxic ion might be a simplistic approach, limiting the
possibility to take advantage of this element to support sustainable plant production. As
such, the effects of beneficial elements such as Na should deserve more attention in order
to improve crop production under potential limiting conditions [219,220].

6.2. Potassium Nutrition

The role of Na was already demonstrated to be beneficial for some agronomical
crops, namely in rice plants where K+ was limited and Na+ uptake was proven to be
key for biomass production [221]. Furthermore, even when K+ supply was adequate,
the partial replacement of K+ by Na+ was demonstrated to have positive effects in some
crops. In sugar beet, when 2.5 mM K+ + 2.5 mM Na+ was replaced by 5 mM K+, an
increase in the dry weight and sucrose concentration in the storage root of the plant
occurred [213]. Moreover, in beets, it was observed that for vascular function Na+ can
replace K+, thus compensating nearly 95% of the plant’s K requirement [211]. Similarly,
for olive trees under K+ deficit conditions, the addition of Na+ produced higher growth,
stomatal conductivity, assimilation capacity, and leaf starch concentration, thus reducing
deficiency symptoms [222]. Further research regarding Na+ use is, thus, of high interest, as
partial substitution of K+ by this element might be important, especially in soils where K+

availability is limited. This substitution could lower agriculture’s dependence on expensive
potash fertilizer, thus contributing for a more sustainable agriculture [219]. Nevertheless,
although several researchers have explored the possibility of K+ substitution, at least in
part by Na+, the available information is not enough and more insights regarding this topic
are needed [215–218].
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6.3. Promoting Water Use Efficiency (WUE)

Wakeel et al. [218] reported that the positive effects of Na extend beyond its known
osmotic role to positively influence plant metabolic function. Regarding its osmotic role, it
is expected that Na enhances drought resistance by improving stomatal regulation, thus
increasing cell turgor and expansion. In fact, Hampe and Marschner [223] demonstrated
that Na supplementation reduced the stomatal conductance under drought stress, thus
enhancing the relative water content of the sugar beet. Unfortunately, the benefits of Na+

in drought tolerance of agronomical crops has yet been poorly explored, and more studies
regarding this subject could be useful to potentiate the use of Na+ to counteract water stress
and/or economise water usage. Due to the urgent need to increase agricultural production
through a balanced use of resources and inputs (e.g., fertilizers and water), understanding
the role and the benefits of Na use for drought tolerance enhancement of agronomical crops
should be dully pursued [224].

7. Future Perspectives

Increased demand for water and food production is forcing our natural resources to
scarcity, therefore, a sustainable approach to water resources and nutrient management
in agriculture is vital. As demonstrated, the available literature revealed that the addition
of these beneficial elements improved biotic and abiotic stress tolerance in several plants,
along with many other discussed benefits, leading to the belief that the adoption of more
sustainable practices in agriculture could be successfully implemented by farmers and
agricultural systems around the world. Therefore, the utilization of these elements may
be one approach to improve the growth of crops and to increase the production in arid
or semi-arid areas and under adverse conditions, but it could also serve as a preventive
intervention in lands that have not yet been depleted. The mechanisms behind these
beneficial effects are still largely unknown, increasing the need for further exploration and
commitment of higher authorities that promote these studies. The pathways by which Al,
Co, Se, Si, and Na moderate plants’ responses in face of different stimuli still need further
investigation, especially regarding the molecular and biochemical mechanisms behind
their beneficial actions. Moreover, the development of agronomically safe formulations
of these elements is still under development, and further research efforts could facilitate
novel practices that improve plant performance while imposing little pressure to already-
challenged ecosystems.
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16. Muszyńska, E.; Labudda, M. Dual Role of Metallic Trace Elements in Stress Biology—From Negative to Beneficial Impact on

Plants. Int. J. Mol. Sci. 2019, 20, 3117. [CrossRef]
17. Wang, J.; Song, Y.Y.; Hu, L.; Yang, M.Y.; Zeng, R.S. Plant anti-herbivore defense priming: Concept, mechanisms and application. J.

Appl. Ecol. 2018, 29, 2068–2078. [CrossRef]
18. Abd-Alla, M.H.; Bagy, M.K.; El-enany, A.-W.E.-s.; Bashandy, S.R. Activation of Rhizobium tibeticum With Flavonoids Enhances

Nodulation, Nitrogen Fixation, and Growth of Fenugreek (Trigonella foenum-graecum L.) Grown in Cobalt-Polluted Soil. Arch.
Environ. Contam. Toxicol. 2014, 66, 303–315. [CrossRef] [PubMed]

19. Liu, K.; Cai, M.; Hu, C.; Sun, X.; Cheng, Q.; Jia, W.; Yang, T.; Nie, M.; Zhao, X. Selenium (Se) reduces Sclerotinia stem rot disease
incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles.
Environ. Pollut. 2019, 254, 113051. [CrossRef] [PubMed]

20. Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make ruminants green again—How can sustainable intensification and agroecology
converge for a better future? Animal 2018, 12, 210–219. [CrossRef] [PubMed]

21. Vasconcelos, M.W.; Pinto, A.G.E.; Ferreira, H.; Vieira, E.; Pimenta, A.; Santos, C.S. The push-, pull- and enabling—Capacities
necessary for legume grain inclusion into sustainable agri-food systems and healthy diets. World Rev. Nutr. Diet. 2020,
121, 193–211.

22. Abarca-Gómez, L.; Ezzati, M. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A
pooled analysis of 2416 population-based measurement studies in children, adolescents, and adults. Lancet 2017, 390, 2627–2642.
[CrossRef]

23. Poschenrieder, C.; Gunsé, B.; Corrales, I.; Barceló, J. A glance into aluminum toxicity and resistance in plants. Sci. Total Environ.
2008, 400, 356–368. [CrossRef]

24. Barceló, J.; Poschenrieder, C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of
aluminium toxicity and resistance: A review. Environ. Exp. Bot. 2002, 48, 75–92. [CrossRef]

25. Wood, S.; Rosen, C.; Billings, H.; Powell, M.; Sebastian, K.; Scherr, S.; Batjes, N.; Farrow, A.; Faurs, J.; Iiasa, G.; et al. Pilot Analysis
of Global Ecosystems: Agroecosystems; Wood, S., Sebastian, K., Scherr, S.J., Eds.; World Resources Institute (WRI) and International
Food Policy Reseach Institute (IFPRI): Washington, DC, USA, 2001.

26. Pilon-Smits, E.A.H.; Quinn, C.F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial elements. Curr.
Opin. Plant Biol. 2009, 12, 267–274. [CrossRef] [PubMed]

27. Kaur, S.; Kaur, N.; Siddique, K.H.M.; Nayyar, H. Beneficial elements for agricultural crops and their functional relevance in
defence against stresses. Arch. Agron. Soil Sci. 2016, 62, 905–920. [CrossRef]

28. Bojórquez-Quintal, D.J.E.; Sánchez-Cach, L.A.; Ku-González, Á.; de los Santos-Briones, C.; de Fátima Medina-Lara, M.; Echevarría-
Machado, I.; Muñoz-Sánchez, J.A.; Teresa Hernández Sotomayor, S.M.; Estévez, M.M. Differential effects of aluminum on in vitro
primary root growth, nutrient content and phospholipase C activity in coffee seedlings (Coffea arabica). J. Inorg. Biochem. 2014, 134,
39–48. [CrossRef] [PubMed]

29. Hajiboland, R.; Bastani, S.; Bahrami-Rad, S.; Poschenrieder, C. Interactions between aluminum and boron in tea (Camellia sinensis)
plants. Acta Physiol. Plant. 2015, 37, 54. [CrossRef]

30. Moreno-Alvarado, M.; García-Morales, S.; Trejo-Téllez, L.I.; Hidalgo-Contreras, J.V.; Gómez-Merino, F.C. Aluminum Enhances
Growth and Sugar Concentration, Alters Macronutrient Status and Regulates the Expression of NAC Transcription Factors in
Rice. Front. Plant Sci. 2017, 8, 73. [CrossRef]

31. Pan, J.; Li, D.; Zhu, J.; Shu, Z.; Ye, X.; Xing, A.; Wen, B.; Ma, Y.; Zhu, X.; Fang, W.; et al. Aluminum relieves fluoride stress through
stimulation of organic acid production in Camellia sinensis. Physiol. Mol. Biol. Plants 2020, 26, 1127–1137. [CrossRef]

http://www.fao.org/fileadmin/templates/solaw/files/thematic_reports/TR_15_web.pdf
http://doi.org/10.1093/aob/mcu205
https://www.gpo.gov/fdsys/pkg/USCODE-2007-title7/pdf/USCODE-2007-title7-chap64-subchapI.pdf
https://www.gpo.gov/fdsys/pkg/USCODE-2007-title7/pdf/USCODE-2007-title7-chap64-subchapI.pdf
http://doi.org/10.1016/j.agee.2019.106583
http://doi.org/10.1007/s11356-016-8104-0
http://doi.org/10.1017/S0029665114001438
http://doi.org/10.32615/ps.2021.032
http://doi.org/10.3390/ijms19103073
http://www.ncbi.nlm.nih.gov/pubmed/30297682
http://doi.org/10.3390/ijms20133117
http://doi.org/10.13287/j.1001-9332.201806.034
http://doi.org/10.1007/s00244-013-9980-7
http://www.ncbi.nlm.nih.gov/pubmed/24366585
http://doi.org/10.1016/j.envpol.2019.113051
http://www.ncbi.nlm.nih.gov/pubmed/31450117
http://doi.org/10.1017/S1751731118001350
http://www.ncbi.nlm.nih.gov/pubmed/30139401
http://doi.org/10.1016/S0140-6736(17)32129-3
http://doi.org/10.1016/j.scitotenv.2008.06.003
http://doi.org/10.1016/S0098-8472(02)00013-8
http://doi.org/10.1016/j.pbi.2009.04.009
http://www.ncbi.nlm.nih.gov/pubmed/19477676
http://doi.org/10.1080/03650340.2015.1101070
http://doi.org/10.1016/j.jinorgbio.2014.01.018
http://www.ncbi.nlm.nih.gov/pubmed/24531533
http://doi.org/10.1007/s11738-015-1803-1
http://doi.org/10.3389/fpls.2017.00073
http://doi.org/10.1007/s12298-020-00813-2


Agronomy 2022, 12, 888 18 of 25

32. Poot-Poot, W.; Teresa Hernandez-Sotomayor, S.M. Aluminum stress and its role in the phospholipid signaling pathway in plants
and possible biotechnological applications. IUBMB Life 2011, 63, 864–872. [CrossRef]

33. Famoso, A.N.; Zhao, K.; Clark, R.T.; Tung, C.-W.; Wright, M.H.; Bustamante, C.; Kochian, L.V.; McCouch, S.R. Genetic Architecture
of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping. PLoS
Genet. 2011, 7, e1002221. [CrossRef]

34. Bertrand, D.; Wolf, A.D. Physiologie vegetale. L’aluminium, oligo-element necessaire au mais. CR Acad. Sci 1968, 267, 2325–2326.
35. Wang, L.; Fan, X.-W.; Pan, J.-L.; Huang, Z.-B.; Li, Y.-Z. Physiological characterization of maize tolerance to low dose of aluminum,

highlighted by promoted leaf growth. Planta 2015, 242, 1391–1403. [CrossRef]
36. Yu, H.N.; Liu, P.; Wang, Z.Y.; Chen, W.R.; Xu, G.D. The effect of aluminum treatments on the root growth and cell ultrastructure

of two soybean genotypes. Crop Prot. 2011, 30, 323–328. [CrossRef]
37. Konishi, S.; Miyamoto, S.; Taki, T. Stimulatory Effects of Aluminum on Tea Plants Grown under Low and High Phosphorus

Supply. Soil Sci. Plant Nutr. 1985, 31, 361–368. [CrossRef]
38. Fung, K.F.; Carr, H.P.; Zhang, J.; Wong, M.H. Growth and nutrient uptake of tea under different aluminium concentrations. J. Sci.

Food Agric. 2008, 88, 1582–1591. [CrossRef]
39. Xu, Q.; Wang, Y.; Ding, Z.; Song, L.; Li, Y.; Ma, D.; Wang, Y.; Shen, J.; Jia, S.; Sun, H.; et al. Aluminum induced metabolic responses

in two tea cultivars. Plant Physiol. Biochem. 2016, 101, 162–172. [CrossRef] [PubMed]
40. Hajiboland, R.; Barceló, J.; Poschenrieder, C.; Tolrà, R. Amelioration of iron toxicity: A mechanism for aluminum-induced growth

stimulation in tea plants. J. Inorg. Biochem. 2013, 128, 183–187. [CrossRef] [PubMed]
41. Kidd, P.S.; Proctor, J. Effects of aluminium on the growth and mineral composition of Betula pendula Roth. J. Exp. Bot. 2000, 51,

1057–1066. [CrossRef] [PubMed]
42. Tomioka, R.; Oda, A.; Takenaka, C. Root growth enhancement by rhizospheric aluminum treatment in Quercus serrata Thunb.

seedlings. J. For. Res. 2005, 10, 319–324. [CrossRef]
43. Tomioka, R. Stimulation of Root Growth Induced by Aluminum in Quercus serrata Thunb. Is Related to Activity of Nitrate

Reductase and Maintenance of IAA Concentration in Roots. Am. J. Plant Sci. 2012, 03, 1619–1624. [CrossRef]
44. Zhao, X.; Chen, R.F.; Shen, R.F. Coadaptation of Plants to Multiple Stresses in Acidic Soils. Soil Sci. 2014, 179, 503–513. [CrossRef]
45. Kinraide, T.B. Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by

two toxic cations. Physiol. Plant. 1993, 88, 619–625. [CrossRef]
46. Osaki, M.; Watanabe, T.; Tadano, T. Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci. Plant Nutr.

1997, 43, 551–563. [CrossRef]
47. Tomioka, R.; Takenaka, C. Enhancement of root respiration and photosynthesis in Quercus serrata Thunb. seedlings by long-term

aluminum treatment. Environ. Sci. Int. J. Environ. Physiol. Toxicol. 2007, 14, 141–148.
48. Rufyikiri, G.; Nootens, D.; Dufey, J.E.; Delvaux, B. Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I.

Plant growth and chemical composition. Fruits 2001, 55, 367–379. [CrossRef]
49. Nichol, B.E.; Oliveira, L.A.; Glass, A.D.M.; Siddiqi, M.Y. The Effects of Aluminum on the Influx of Calcium, Potassium, Ammonium,

Nitrate, and Phosphate in an Aluminum-Sensitive Cultivar of Barley (Hordeum vulgare L.). Plant Physiol. 1993, 101, 1263. [CrossRef]
50. Tolrà, R.; Martos, S.; Hajiboland, R.; Poschenrieder, C. Aluminium alters mineral composition and polyphenol metabolism in

leaves of tea plants (Camellia sinensis). J. Inorg. Biochem. 2020, 204, 110956. [CrossRef] [PubMed]
51. Alam, S.M. Influence of aluminium on plant growth and mineral nutrition of barley. Commun. Soil Sci. Plant Anal. 1981, 12, 121–138.

[CrossRef]
52. Massot, N.G.; Poschenrieder, C.; Barceló, J. Differential response of three bean (Phaseolus vulgaris) cultivars to aluminium. Acta

Bot. Neerl. 1992, 41, 293–298. [CrossRef]
53. Graham, C. The influence of nitrogen source and aluminum on growth and elemental composition of ‘Nemaguard’ peach

seedlings. J. Plant Nutr. 2001, 24, 423–439. [CrossRef]
54. Dinev, N.; Stancheva, I. Changes in nitrate reductase activity, plastid pigment content, and plant mineral composition of wheat,

rye, and triticale grown in the presence of aluminum. J. Plant Nutr. 1993, 16, 2397–2409. [CrossRef]
55. Mihailovic, N.; Vucinic, Z.; Hadzi-Taskovic Sukalovic, V. Ammonium Enables Aluminum-Induced Stimulation of Nitrogen

Assimilation in Roots of Al-Tolerant Maize Genotypes. J. Plant Nutr. 2015, 38, 371–383. [CrossRef]
56. Hajiboland, R.; Bahrami-Rad, S.; Bastani, S. Aluminum alleviates boron-deficiency induced growth impairment in tea plants. Biol.

Plant. 2014, 58, 717–724. [CrossRef]
57. Farrukh, M.A.; Naseem, F. Nano-Leucite for Slow Release Nitrogen Fertilizer and Green Environment. Available online:

https://patents.google.com/patent/US20140190226A1/en (accessed on 27 August 2020).
58. Sornhiran, N.; Tuntrachanida, J.; Malachey, P.; Thongtuk, P.; Wisawapipat, W.; Aramrak, S.; Prakongkep, N. Aluminum- and

iron-engineered biochar from sugarcane filter cake as phosphorus adsorbents and fertilizers. ScienceAsia 2021, 47, 220–227.
[CrossRef]

59. Kopittke, P.M.; Gianoncelli, A.; Kourousias, G.; Green, K.; McKenna, B.A. Alleviation of Al Toxicity by Si Is Associated with the
Formation of Al–Si Complexes in Root Tissues of Sorghum. Front. Plant Sci. 2017, 8, 2189. [CrossRef] [PubMed]

60. Thornton, F.C.; Schaedle, M.; Raynal, D.J. Tolerance of Red Oak and American and European Beech Seedlings to Aluminum. J.
Environ. Qual. 1989, 18, 541–545. [CrossRef]

61. Hiatt, A.J.; Amos, D.F.; Massey, H.F. Effect of Aluminum on Copper Sorption by Wheat1. Agron. J. 1963, 55, 284–287. [CrossRef]

http://doi.org/10.1002/iub.550
http://doi.org/10.1371/journal.pgen.1002221
http://doi.org/10.1007/s00425-015-2376-3
http://doi.org/10.1016/j.cropro.2010.11.024
http://doi.org/10.1080/00380768.1985.10557443
http://doi.org/10.1002/jsfa.3254
http://doi.org/10.1016/j.plaphy.2016.02.001
http://www.ncbi.nlm.nih.gov/pubmed/26895429
http://doi.org/10.1016/j.jinorgbio.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23910825
http://doi.org/10.1093/jexbot/51.347.1057
http://www.ncbi.nlm.nih.gov/pubmed/10948233
http://doi.org/10.1007/s10310-005-0152-0
http://doi.org/10.4236/ajps.2012.311196
http://doi.org/10.1097/SS.0000000000000086
http://doi.org/10.1111/j.1399-3054.1993.tb01380.x
http://doi.org/10.1080/00380768.1997.10414782
http://doi.org/10.1051/fruits:2001107
http://doi.org/10.1104/pp.101.4.1263
http://doi.org/10.1016/j.jinorgbio.2019.110956
http://www.ncbi.nlm.nih.gov/pubmed/31862583
http://doi.org/10.1080/00103628109367134
http://doi.org/10.1111/j.1438-8677.1992.tb01336.x
http://doi.org/10.1081/PLN-100104970
http://doi.org/10.1080/01904169309364696
http://doi.org/10.1080/01904167.2014.934471
http://doi.org/10.1007/s10535-014-0425-6
https://patents.google.com/patent/US20140190226A1/en
http://doi.org/10.2306/scienceasia1513-1874.2021.032
http://doi.org/10.3389/fpls.2017.02189
http://www.ncbi.nlm.nih.gov/pubmed/29312419
http://doi.org/10.2134/jeq1989.00472425001800040027x
http://doi.org/10.2134/agronj1963.00021962005500030024x


Agronomy 2022, 12, 888 19 of 25

62. Yang, Z.B.; You, J.F.; Xu, M.Y.; Yang, Z.M. Interaction between aluminum toxicity and manganese toxicity in soybean
(Glycine max). Plant Soil 2009, 319, 277–289. [CrossRef]

63. Wang, W.; Zhao, X.Q.; Hu, Z.M.; Shao, J.F.; Che, J.; Chen, R.F.; Dong, X.Y.; Shen, R.F. Aluminium alleviates manganese toxicity
to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots. Ann. Bot. 2015,
116, 237–246. [CrossRef]

64. Deluca, T.H.; Shew, H.D. Inhibition of growth and reproduction of Phytophthora parasitica var. nicotianae by aluminum. Phytopathology
1988, 78, 1576.

65. Yang, Y.; Liu, Y.; Huang, C.-F.; de Silva, J.; Zhao, F.-J. Aluminium alleviates fluoride toxicity in tea (Camellia sinensis). Plant Soil
2016, 402, 179–190. [CrossRef]

66. Zhang, X.; Qi, Y.; Chen, Z.; Song, N.; Li, X.; Ren, D.; Zhang, S. Evaluation of fluoride and cadmium adsorption modification of
corn stalk by aluminum trichloride. Appl. Surf. Sci. 2021, 543, 148727. [CrossRef]

67. Hanafiah, M.M.; Zainuddin, M.F.; Mohd Nizam, N.U.; Halim, A.A.; Rasool, A. Phytoremediation of Aluminum and Iron from
Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Appl. Sci. 2020, 10, 3064. [CrossRef]

68. Beach, B.G.W.; Chalandon, A.; Gallinelli, G. The control of various Phytophthora diseases in tropical crops with aluminium
tris(ethyl phosphonate). In Proceedings of the 1979 British Crop Protection Conference, Brighton, UK, 19–22 November 1979;
pp. 319–329.

69. Guest, D.I. Modification of defense responses in tobacco and capsicum following treatment with Fosetyl-Al [Aluminium tris
(o-ethyl phosphonate)]. Physiol. Plant Pathol. 1984, 25, 125–134. [CrossRef]

70. Andreu, A.B.; Guevara, M.G.; Wolski, E.A.; Daleo, G.R.; Caldiz, D.O. Enhancement of natural disease resistance in potatoes by
chemicals. Pest Manag. Sci. 2006, 62, 162–170. [CrossRef]

71. Zhao, X.; Ren, L.; Yin, H.; Zhou, J.; Han, J.; Luo, Y. Sensitivity of Pseudoperonospora cubensis to dimethomorph, metalaxyl and
fosetyl-aluminium in Shanxi of China. Crop Prot. 2013, 43, 38–44. [CrossRef]

72. Davis, R.M. Control of Phytophthora Root and Foot Rot of Citrus with Systemic Fungicides Metalaxyl and Phosethyl Aluminum.
Am. Phytopathol. Soc. 1981, 66, 218–220. [CrossRef]

73. Farih, A.; Menge, J.A.; Tsao, P.H.; Ohr, H.D. Metalaxyl and efosite aluminium for control of Phytophthora gummosis and root rot
on citrus. Plant Dis. 1981, 65, 654–657. [CrossRef]

74. Goswami, A.; Roy, I.; Sengupta, S.; Debnath, N. Novel applications of solid and liquid formulations of nanoparticles against
insect pests and pathogens. Thin Solid Films 2010, 519, 1252–1257. [CrossRef]

75. Zhang, B.; Wang, X.Q.; Li, X.; Ni, Y.Q.; Li, H.Y. Aluminum uptake and disease resistance in Nicotiana rustica leaves. Ecotoxicol.
Environ. Saf. 2010, 73, 655–663. [CrossRef]

76. Satapathy, P.; Achary, V.M.M.; Panda, B.B. Aluminum-induced abiotic stress counteracts Fusarium infection in Cajanus cajan (L.)
Millsp. J. Plant Interact. 2012, 7, 121–128. [CrossRef]

77. Kolaei, E.A.; Cenatus, C.; Tweddell, R.J.; Avis, T.J. Antifungal activity of aluminium-containing salts against the development of
carrot cavity spot and potato dry rot. Ann. Appl. Biol. 2013, 163, 311–317. [CrossRef]

78. Hamel, F.; Breton, C.; Houde, M. Isolation and characterization of wheat aluminum-regulated genes: Possible involvement of
aluminum as a pathogenesis response elicitor. Planta 1998, 205, 531–538. [CrossRef] [PubMed]

79. Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J.; Drzewiecka, K.; Chmielowska-Bąk, J.; Abramowski, D.; Izbiańska, K.
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