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Abstract: In this study, we provide a discretized system of a continuous dynamical model for
enhancing crop production in the presence of insecticides and insects. Crops are assumed to grow
logistically but are limited by an insect population that entirely depends on agriculture. To protect
crops from insects, farmers use insecticides, and their overmuch use is harmful to human health. We
assumed that external efforts are proportional to the gap between actual production and carrying
capacity to increase the field’s development potential. We use the Levenberg–Marquardt algorithm
(LMA) based on artificial neural networks (NNs) to investigate the approximate solutions for different
insecticide spraying rates. “NDSolve” tool in Mathematica generated a data collection for supervised
LMA. The NN-LMA approximation’s value is achieved by the training, validation, and testing
reference data sets. Regression, error histograms, and complexity analysis help to validate the
technique’s robustness and accuracy.

Keywords: mathematical modeling; system of ordinary differential equations; numerical solu-
tions; nonlinearity; artificial neural networks; machine learning; optimization techniques; levenberg–
marquardt algorithm

1. Introduction

Agriculture production is essential for meeting fundamental life demands and the
needs of the industrial sector for raw materials, which enhances the country’s economy.
Due to the increase in population, higher food production is essential (estimated to be
over 10 billion by 2050). Because agricultural land is limited, increasing crop production
can help increase agricultural production. Farmers utilize high-yield seed kinds, irriga-
tion techniques, and mechanical equipment to increase production. Despite agricultural
achievements, food insecurity continues to be a significant human health concern.

In 2018, 113 million people in 53 countries were food insecure, according to the
Organization for Food and Agriculture [1]. Some insects strike on growing crops, destroying
leaves, fruits, and roots. According to Oerke’s estimates [2], insects cause 26–29% loss in
cotton, soybean, and wheat crops, 31% loss in maize, 37% loss in rice, and 41% loss in
potato crops. Insect damaging the crops is one of the significant variables affecting the
quality and quantity of the crops. For this reason, managing insects population is vital for
crop production.

An ecosystem-based approach to pest management, known as Integrated Pest Manage-
ment (IPM), helps protect crops from insects. IPM strategies fall into two broad categories:
Non-chemical and chemical controls. Non-chemical control involves killing insects without
chemicals, such as crop rotations, antagonists, etc. On the other hand, chemical control
involves chemicals such as insecticides to reduce insect density.
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Biological control is a strategy that doesn’t use chemicals to get control of the incests
population. It uses living organisms to reduce the number of insects [3]. Putting an infected
insect on a crop field can help reduce the number of insects that eat it [4,5]. It is good that
biological control methods are suitable for the environment and effective at controlling
insect populations, but the process is prolonged. A biological approach to pest management
is no longer sufficient for the constantly increasing insect population; a methodology that
can quickly control insect population density is required. Insecticides are highly toxic to
certain species of insects; they can significantly lower the insect population and help protect
the crop. According to Wang et al., [6], it has been shown that periodic insecticides spraying
with infected insects can effectively manage insect populations.

Tang et al. [7] used IPM approaches to develop and study a dynamical system that is
state-dependent and impulsive between prey and predator. To keep the insect population
at or below a predetermined level, a precise number of insecticides must be applied. Insect
population density can be lowered by combining these two strategies [8].

Plants require specific nutrients, such as nitrogen, phosphorus, and potassium, to grow.
There are a variety of nutrients that may be found in agricultural soil to preserve the soil’s
fertility. Plants suffer from nutrient insufficiency when the nutrient level in the soil is low,
and their growth is affected. Farmers use fertilizers in their fields to meet the needs of
their crops. Adding fertilizer to the soil helps to ensure that it has the necessary amount
of nutrients.

According to Lombin and Uyovbisere [9], to increase maize yields, soil nutrition needs
to be optimized, which necessitates the use of fertilizers. The availability of agricultural
land influences crop growth. Farmers recruit extra staff to prepare crop fields. The external
effort includes both nutrition and extra labor. Several studies have shown the value of
external effort in several domains. Misra et al. [10] devised and analysed an algal model to
assess the effectiveness of external efforts in removing algae from lakes.

Models based on mathematics are usually used to show nonlinear physical phenomena.
It is very rare for a mathematical model to have an analytical solution. So numerical
methods are preferred to approximate it. There are various numerical techniques for
solving nonlinear initial value problems, such as Euler, Adams-Bashforth, and Runge-
Kutta (RK), but these strategies don’t always work [11]. There are several methods to
avoid numerical discrepancies. Mickens developed a non-standard finite difference (NSFD)
approach to prevent numerical instability [12,13]. Approximation of nonlinear terms by
nonlocal approximation, he discretizes the continuous model and reconstructs dynamical
variable derivatives. Equilibrium points are bounded, stable, and, positive much like a
continuous system. There is a dynamically consistent solution for the continuous system
using this technique. Continuous dynamical systems can be used to derive many different
finite-difference strategies. An NSFD scheme keeps one of the following qualities:

• Nonlocal strategies are used to approximate nonlinear terms in continuous systems.
• During the derivatives of discretization procedure, ψ(h) is denominator function with

a renormalized denominator used instead h a traditional denominator, as a result
when h→ 0, ψ(h)→ h + O(h2) [14–16].

For logistic equations, Olabode and Obayomi [17] investigated non-standard and
standard schemes and discovered that the non-standard scheme’s solution curve has more
consistency with the analytical solution than the standard scheme. Similarly, numerous
discretization techniques for nonlinear differential equations have been devised across
several fields [18–21]. The following are some prominent elements of the presented study:

• We use the developed nonlinear computational model [8] to determine the effects of
insecticides, insects, and external efforts on agricultural crop production in order to
achieve optimal crop production.

• Using artificial neural networks, a Levenberg–Marquardt technique (LMT) trains
hidden neurons and validates the reference data set obtained using the “NDSolve”
tool in Mathematica for different insecticide spraying rates instances.
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• Based on curve fitting, regression, the mean squared error (MSE), and total and
absolute errors, the technique has to prove its convergence, accuracy, and processing
cost through extensive graphical study.

2. Problem Formulation

To defend the crop from pests using pesticides and improve agricultural production via
external actions, we create a non-linear mathematical model. Let A(t) represent agricultural
production, S(t) population of insects’ density, P(t) insecticide concentration, and N(t)
external efforts at t > 0. We expect that A(t) consent the strategic development work
with r the rate of inherent development and K the ecological conveying limit. The rate
of crop consumed by insects is considered by α. It lowers the pace of crop production by
αAS. It is anticipated that insect population density grows at a rate of θαAS; this rise is
due to the consumption of crops by insects, here θ signifies the conversion efficiency of
insects. We have likewise accepted in the population of insects the intra-specific contest
happens, resulting in the decrease in insects density at a rate δS2, where the intra-specific
competition rate is represented by δ. Insecticides are applied at a rate φ proportionate to
the insects’ population density. The natural depletion rate of insecticides is denoted by φ0.
Insecticide normally exhausts relative to its fixation at the rate φ0P. It is believed that there
is a decrease in the insecticides quantity owing to the population of incests uptake, which
is comparable to insects density and the quantity of it (i.e., φ1PS), where the insecticides
uptake rate by insects is represented by φ1. The density of the insect population reduces by
λφ1PS as a result of this uptake, here λ signifies the constant of proportionality. To boost
productivity, farmers apply external efforts in the cultivation field. The external efforts are
quantified by using fertilizers to provide nutrients for crop gro. External efforts are assumed
to raise the proportional difference between the actual production of crop and carrying
capacity (i.e., (K− A)µ) here the constant of proportionality is µ. The rate of increase in
crop production, which comes as a result of applied external efforts, is represented by βNA.
External efforts are assumed to deplete proportionally to themselves (i.e., µ0), here the
external efforts’ natural depletion rate is represented by µ0. Thus, the following set of ODEs
drives agricultural production dynamics with insect populations and insecticides:

dA
dt

= rA(1− A
K
)− αAS + βAN,

dS
dt

= θαAS− δS2 − λφ1PS,

dP
dt

= φS− φ0P− φ1PS,

dN
dt

= µ(K− A)− µ0N,

(1)

where A(0) ≥ 0, S(0) ≥ 0, P(0) ≥ 0, and N(0) ≥ 0 are initial conditions.
This is because the model system (1), insect population density, insecticide amount,

and external efforts all drive agricultural crop production dynamics in a non-negative way.
Table 1 shows the description, source of reference of parameters used in model (1) and their
values for numerical simulations.

Table 1. Parameter setting for the numerical simulation of model (1).

Parameter Representation Value Source

r Crop intrinsic growth rate 0.2 [22]
K Carrying capacity of crop 50 [22]
α Insect crop consumption rate 0.025 [22]
β Crop production rising as a result of external efforts 0.01 [23]
θ Insect conversion efficiency 0.6 [23]
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Table 1. Cont.

Parameter Representation Value Source

δ Insect mortality owing to intra-specific competition 0.05 [22]
φ Insecticide spray rate 0.1 [23]
φ0 Insecticide depletion rate 0.01 [23]
φ1 Insecticide uptake rate 0.05 [23]
λ Insects depletion rate because of insecticides 6 [23]
µ External effort application rate 0.1 [8]
µ0 External efforts’ depletion rate 0.01 [8]

3. Design Methodology

Artificial neural networks (ANN) are examined in this part, which presents a unique
machine learning approach focused on the supervised methods of neurons. An ANN is an
interconnected fundamental components network known as neurons that receives various
inputs and produces only one output. The sum of a neuron’s inputs dictates its output.
In this study, a multilayer perceptron (MLP) is used to optimize the number of hidden units.
The connection weights and biases were also optimised. The standard MLP construction
with one hidden layer is as follows:

Aj =
n

∑
i=1

WijTi + bj, (2)

where the inputs are represented by Ti, bj and Wij represent biased vectors and connection
weights, respectively. The Feed-forward neural network model uses a log-sigmoid as an
activation function given as,

f j(x) =
1

1 + e−Aj
. (3)

It also explains how the design soft computing technique works. The proposed
approach involves two phases.

• The “NDSolve” function in Mathematica is used to solve the model (1) numerically
for the initial data collection.

• For different cases of the problem, the Levenberg Marquardt method uses neural
networks with 20 hidden neurons to approximate answers. Figure 1 depicts the
NN’s-LMT approach as a single neuron model.
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Input
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Figure 1. Architecture of artificial neural networks with single neuron.
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The Levenberg–Marquardt method uses the first step’s reference data set for super-
vised learning to process data for training, validation and, testing. Table 2 illustrate the
parameter settings for the proposed approach.

Table 2. Parameters settings for the execution of the design NN-LMT.

Index Description

Training samples 80.00%

Validation samples 10.00%

Testing samples 10.00%

Hidden Neuron 20

Maximum Iteration 1000

Max. Validation fails 6

Learning methodology Lavenberg-Marquardt

Performance measurements include mean square error, regression analysis, absolute
and histograms errors to assess the design scheme’s convergence and accuracy. Figure 2
illustrate the working mechanism and a stepwise methodology for NN-LM technique.

Modeling

Single layer Neural Network Model

Mathematical Model

Methodology

Supervised Machine 

Learning

An initial solution is 

generated by a Mathematica 

built in function ‘ND Solve’

Step 1: Solution generation

Step 2: Parameter Settings for 

‘nftool’

80% 10% 10%

Training Validation Testing

Neural Network Architecture

Figure 2. The NNs–LM method for a mathematical model (1).

4. Results and Discussions

We did experiments in this section to see if the technique was correct and how the
insecticide spraying rate affects a crop model. This model includes agricultural production,
the concentration of insecticides, the density of insects, and the efforts. The cases are based
on variation in the spraying rate of insecticides, i.e., the φ parameter. We consider the first
case as φ = 0.1 [23]; to make the second and third cases, we slightly decrease the value of φ.
Figure 3 illustrates the model and its different cases.
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Nonlinear model of crop production

Model Cases

Variation in spraying 

rate of insecticides. 

1. φ = 0.1

2. φ = 0.05

3. φ = 0.01

Analysis

Error Histogram MSE Regression Numerical solution

Figure 3. Nonlinear model of crop production and its different cases.

The numerical technique gives data set values that can be used to train, validate,
and test data with 80%, 10%, and 10% probability. Each example’s mean square error (MSE)
function convergence is shown graphically. Figure 4 shows the performance values for
the case 1 which are in the range of 7.68× 10−8, 1.48× 10−6, 1.94× 10−11 and 3.48× 10−8.
Similarly Figures 5 and 6 illustrate the performance values for case 2 and 3 respectively,
which are in the range of 2.79× 10−7, 1.48× 10−6, 1.94× 10−11, 7.07× 10−8, 4.38× 10−7,
2.98× 10−8, 4.31× 10−11 and 3.52× 10−8.
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Figure 4. Mean square error of NNs-LMT for crop production, insects density, insecticides concentra-
tion, and external effort of case 1.
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Figure 5. Mean square error of NNs-LMT for crop production, insects density, insecticides concentra-
tion, and external effort of case 2.

0 100 200 300 400 500 600 700

789 Epochs

10
-6

10
-4

10
-2

10
0

10
2

10
4

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Validation Performance is 4.383×10-07 at epoch 783

Train

Validation

Test

Best

(a) A(t)

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

10
-8

10
-6

10
-4

10
-2

10
0

10
2

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Validation Performance is 2.9757×10-08 at epoch 1000

Train

Validation

Test

Best

(b) S(t)

0 50 100 150 200

231 Epochs

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Validation Performance is 4.3108×10-11 at epoch 231

Train

Validation

Test

Best

(c) P(t)

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

10
-5

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
 (

m
s
e
)

Best Validation Performance is 3.5167×10-08 at epoch 1000

Train

Validation

Test

Best

(d) N(t)

Figure 6. Mean square error of NNs-LMT for crop production, insects density, insecticides concentra-
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Further the statistical performance of gradient for case 1 are illustrated in Figure 7 and
its gradient values are in the region 1.51× 10−3, 2.99× 10−6, 9.78× 10−8 and 2.91× 10−4.
Similarly for case 2 and 3 the statistical performance of gradient are illustrated in
Figures 8 and 9 respectively. Their gradient values are in the range of 4.71 × 10−3,
7.89× 10−5, 5.70× 10−8, and 4.81× 10−4 for case 2 and 3.68× 10−4, 1.81× 10−4, 9.96× 10−8

and 3.30× 10−5 for case 3. These figures also illustrate the mu, a control parameter for the
algorithm to train the neural network and validation failure for all the cases of non-linear
model of crop production. For all the cases the values of mu lies in between 10−5 to 10−12.

10-5

100

105

g
ra

d
ie

n
t

Gradient = 1.5103×10-03, at epoch 1000

10-10

10-5

100

m
u

Mu = 1×10-08, at epoch 1000

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

0

0.5

1

v
a

l 
fa

il

Validation Checks = 0, at epoch 1000

(a) A(t)

10-10

100

1010

g
ra

d
ie

n
t

Gradient = 2.9868×10-06, at epoch 1000

10-10

10-5

100

m
u

Mu = 1×10-08, at epoch 1000

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

0

1

2

v
a

l 
fa

il

Validation Checks = 0, at epoch 1000

(b) S(t)

10-10

100

1010

g
ra

d
ie

n
t

Gradient = 9.7813×10-08, at epoch 480

10-20

10-10

100

m
u

Mu = 1×10-11, at epoch 480

0 50 100 150 200 250 300 350 400 450

480 Epochs

0

0.5

1

v
a

l 
fa

il

Validation Checks = 0, at epoch 480

(c) P(t)

10-5

100

105

g
ra

d
ie

n
t

Gradient = 2.9156×10-03, at epoch 1000

10-10

10-5

100

m
u

Mu = 1×10-07, at epoch 1000

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

0

0.5

1

v
a

l 
fa

il

Validation Checks = 0, at epoch 1000

(d) N(t)

Figure 7. Performance based on validations failure, mu, and gradient of NNs-LMT for case 1.
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Figure 9. Performance based on validations failure, mu, and gradient of NNs-LMT for case 3.

The regression analysis for case 1 is shown in Figure 10 and its value is 1, which shows
a close relationship between outputs and targets. Similarly the regression analysis for case 2
and 3 are shown in Figures 11 and 12 respectively, and they also shows a close relationship
between the outputs and the targets by giving the value, R = 1.
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Figure 10. Regression analysis of nonlinear model of crop production for case 1.20 40 60 80
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Figure 11. Regression analysis of nonlinear model of crop production for case 2.
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Figure 12. Regression analysis of nonlinear model of crop production for case 3.

The tables below illustrate the data details discussed above, given by the computing
system. Table 3 shows the details of the data for case 1, where Tables 4 and 5 show the
details of the data for cases 2 and 3, respectively. These tables also indicate the data details
of validation, testing, the number of hidden neurons, and iterations and time spent by the
computing system.

Table 3. Gradient, MSE, number of iterations, mu, and time spent by the computing system to get
solutions for Case 1.

A(t) S(t) P(t) N(t)

Hidden Neuron 20 20 20 20

Training 7.5× 10−8 1.13× 10−6 1.72× 10−11 3.19× 10−8

Validation 7.68× 10−8 1.48× 10−6 1.94× 10−11 3.48× 10−8

Testing 6.72× 10−8 1.22× 10−6 1.80× 10−11 3.25× 10−8

Gradient 1.51× 10−3 2.99× 10−6 9.78× 10−8 2.92× 10−4

Mu 1.00× 10−8 1.00× 10−8 1.00× 10−11 1.00× 10−7

Epochs 1000 1000 480 1000

Regression 1 1 1 1

Time ≤10 s ≤10 s ≤10 s ≤10 s
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Table 4. Gradient, MSE, number of iterations, mu, and time spent by the computing system to get
solutions for Case 2.

A(t) S(t) P(t) N(t)

Hidden Neuron 20 20 20 20

Training 2.70× 10−7 1.13× 10−6 1.72× 10−11 7.28× 10−8

Validation 2.79× 10−7 1.48× 10−6 1.94× 10−11 7.07× 10−8

Testing 2.74× 10−7 1.22× 10−6 1.80× 10−11 6.99× 10−8

Gradient 4.71× 10−3 7.89× 10−5 5.70× 10−8 4.82× 10−4

Mu 1.00× 10−8 1.00× 10−9 1.00× 10−10 1.00× 10−8

Epochs 1000 1000 27 1000

Regression 1 1 1 1

Time ≤10 s ≤10 s ≤10 s ≤10 s

Table 5. Gradient, MSE, number of iterations, mu, and time spent by the computing system to get
solutions for Case 3.

A(t) S(t) P(t) N(t)

Hidden Neuron 20 20 20 20

Training 4.86× 10−7 3.07× 10−8 4.02× 10−11 3.71× 10−8

Validation 4.38× 10−7 2.98× 10−8 4.31× 10−11 3.52× 10−8

Testing 5.36× 10−7 2.83× 10−8 4.14× 10−11 3.79× 10−8

Gradient 3.68× 10−4 1.81× 10−4 9.96× 10−8 3.30× 10−5

Mu 1.00× 10−6 1.00× 10−8 1.00× 10−11 1.00× 10−7

Epochs 789 1000 231 1000

Regression 1 1 1 1

Time ≤10 s ≤10 s ≤10 s ≤10 s

Approximate solution and targeted data fit together well and have the fewest absolute
errors shown in the Figures 13–15. The absolute error values of A(t) lie in the region of 10−4

to 10−5, 10−3 to 10−6 and 10−3 to 10−5; for S(t) the values are in the range 10−3 to 10−4,
10−4 to 10−5 and 10−4 to 10−6. Similarly, for P(t) and N(t), the values are in between 10−5

to 10−7, 10−5 to 10−6, 10−5 to 10−7, 10−4 to 10−5, 10−3 to 10−6 and 10−4 to 10−6.
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Figure 13. Cont.
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Figure 13. Error histogram analysis in relation to the target data and the approximate solutions for
case 1.
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Figure 14. Error histogram analysis in relation to the target data and the approximate solutions for
case 2.
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Figure 15. Error histogram analysis in relation to the target data and the approximate solutions for
case 3.

After solving the model (1) numerically for variation in spraying rate of insecticides,
we see that the decrease in the spraying rate affects the crop production and concentra-
tion of insecticides directly and inversely affects the density of insects population and
external efforts. The numerical solutions for different insecticide spraying rates are shown
graphically in Figure 16.
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Figure 16. Numerical solution of crop model for different insecticides spraying rate.
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Tables 6–8 provide a comparison of the numerical solutions of the design algorithm
with the results obtained from numerically solving the model using the “NDSolve” tool
in Mathematica for cases 1, 2, and 3, respectively. The numerical simulations in the first
two rows of each table represent comparisons of numerical solutions for agricultural crop
production, followed by insect population density, insecticide concentration, and exter-
nal efforts.

Table 6. Comparative analysis of numerical solutions by NDSolve tool in Mathematica with the
solutions obtained from NN-LMA for case 1.

Inputs 1 2 3 4 5 6 7 8 9 10

Numerical solutions 1.231999 1.600315 2.184486 3.122899 4.656205 7.198827 11.43996 18.42872 29.45704 45.33719
NN-LMA 1.23214 1.600123 2.184666 3.122719 4.656247 7.198916 11.43973 18.4289 29.4569 45.33731

Numerical solutions 0.718154 0.520317 0.381155 0.283382 0.215257 0.168978 0.139796 0.125909 0.129818 0.163819
NN-LMA 0.717992 0.520488 0.38101 0.283403 0.21541 0.168843 0.139648 0.126113 0.130011 0.163525

Numerical solutions 1.031674 1.050653 1.061166 1.065945 1.066816 1.065051 1.061585 1.057178 1.052588 1.048885
NN-LMA 1.031675 1.050653 1.061167 1.065943 1.066818 1.065049 1.061586 1.05718 1.052586 1.048888

Numerical solutions 5.854973 10.63225 15.31545 19.87775 24.27422 28.42849 32.21092 35.40698 37.68503 38.60243
NN-LMA 5.855071 10.63231 15.31542 19.87763 24.27445 28.42841 32.21072 35.40719 37.68505 38.60219

Table 7. Comparative analysis of numerical solutions by NDSolve tool in Mathematica with the
solutions obtained from NN-LMA for case 2.

Inputs 1 2 3 4 5 6 7 8 9 10

Numerical solutions 1.231945 1.599908 2.183103 3.119391 4.64842 7.182779 11.40845 18.36951 29.35154 45.16059
NN-LMA 1.232365 1.599246 2.183918 3.118602 4.649011 7.182732 11.40773 18.37041 29.35108 45.1601

Numerical solutions 0.722854 0.532449 0.399239 0.305263 0.239264 0.194265 0.166499 0.155516 0.16636 0.217773
NN-LMA 0.722864 0.532416 0.399263 0.305272 0.239222 0.194298 0.166512 0.155474 0.166413 0.217726

Numerical solutions 0.990247 0.980835 0.971617 0.962519 0.953504 0.94456 0.935694 0.926928 0.918317 0.909981
NN-LMA 0.990207 0.980864 0.971587 0.96255 0.953471 0.94458 0.935701 0.926895 0.918334 0.910002

Numerical solutions 5.854975 10.63227 15.31555 19.87808 24.27509 28.43049 32.21519 35.4156 37.70158 38.63262
NN-LMA 5.85497 10.63235 15.31552 19.87813 24.27513 28.43043 32.21524 35.41562 37.70151 38.63267

Table 8. Comparative analysis of numerical solutions by NDSolve tool in Mathematica with the
solutions obtained from NN-LMA for case 3.

Inputs 1 2 3 4 5 6 7 8 9 10

Numerical solutions 1.231901 1.599577 2.181964 3.116445 4.641767 7.168801 11.38041 18.31555 29.2526 44.9884
NN-LMA 1.232696 1.598347 2.183202 3.115144 4.643025 7.167724 11.38085 18.31672 29.25189 44.99043

Numerical solutions 0.726644 0.542418 0.4145 0.324321 0.260921 0.217946 0.1925 0.185519 0.204918 0.277033
NN-LMA 0.726608 0.542258 0.414658 0.324249 0.260798 0.218211 0.192249 0.185623 0.20494 0.276839

Numerical solutions 0.956984 0.924296 0.898302 0.876817 0.858437 0.842199 0.827383 0.81337 0.799473 0.784613
NN-LMA 0.956987 0.924286 0.898311 0.876807 0.858447 0.842192 0.827382 0.813377 0.799465 0.784617

Numerical solutions 5.854976 10.63229 15.31563 19.87836 24.27582 28.4322 32.2189 35.42322 37.71655 38.66066
NN-LMA 5.855104 10.63241 15.3153 19.87845 24.27608 28.43191 32.21896 35.4234 37.71626 38.66098

5. Conclusions

In this paper, we investigated the non-linear dynamical model of crop production.
The model was based on agricultural crop production in the presence of density of insects
population, insecticides concentration, and some external efforts, which was given by a
system of nonlinear differential equations. Moreover, a soft computing technique based on
supervised learning of NNs-LM used to calculate the influence of variations in the spraying
rate of insecticide on the nonlinear model of crop production.
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• Results shows in the figure illustrate that the decrease in spraying rate of insecticides
causes decrease in crop production and insecticides concentration while increases the
insects density and external effort.

• To relate the sparing rate of insecticides with the given model is that it relates inversely
with crop production and insecticides concentration while directly relates to incests
density and external efforts.

• Thorough graphical analysis is performed using mean squared error, error histograms,
absolute errors, regressions, and computing complexity to demonstrate the resilience,
correctness, and efficiency of the developed system.
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