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Abstract: Modern hydroponic substrates have contributed significantly to the popularity and progress
of hydroponic cultivations worldwide, nevertheless, their development, transportation, and disposal
often come at a significant environmental cost. Here we investigate the feasibility of partial to total
replacement of conventional organic growing media constituents, such as cocodust (C), in a 20%
perlite (P) and 80% cocodust substrate (hereafter control 8C), with compost from locally sourced
grocery waste (W). For this purpose, four treatment mixtures were developed (6C:2W, 4C:4W, 2C:6W,
8W), with the grocery waste-compost fraction ranging from 20 to 80%, respectively (perlite constant
at 20%). The new substrates were tested on hydroponic lettuce (Lactuca sativa var. Tanius) cultivation.
During the 35-day experiment, lettuce physiology was evaluated using chlorophyll concentration
[SPAD], chlorophyll fluorescence [Fv/Fm], number of leaves, and plant growth index. At harvest, the
plant yield was evaluated using leaf area [cm2], leaf fresh and dry weight [g], as well as leaf firmness
[g]. Results show that substrates with compost led to superior physiology and yield characteristics,
with 8W inducing a significant increase in leaf area, chlorophyll concentration, dry weight, and
firmness, by 11.6%, 5.4%, 19.8% and 12.8%, respectively, compared to the control treatment 8C.
Results indicate that grocery waste-based compost is an excellent sustainable alternative for the
soilless cultivation of lettuce. After its use in hydroponic cultivation, substrate material is safe to
dispose of or be used as a soil amendment, thus contributing to a circular agro-food economy model.

Keywords: grocery waste compost; growing media; hydroponic; lettuce; yield; firmness

1. Introduction

Today, 3.5% of agricultural production takes place under controlled systems of culti-
vation, and greenhouses are progressively moving to hydroponic solutions in an effort to
increase sustainability and optimize the use of natural resources [1,2], and also to minimize
their environmental footprint [3]. It is indicative that in the Netherlands, greenhouse
crops are the main production system [4], while in the USA, 95% of greenhouse tomato
production is soilless [5]. The advantages of soilless cultivation include efficient irriga-
tion [6], optimal nutrient and plant protection management [7], yield increase compared to
soil-bound systems due to higher plant densities and faster plant growth [8,9], and great
post-harvest conservation of the product [10]. Nevertheless, despite the great progress,
there is still ample space for improvement in this crop production system [3].

Part of this progress is due to modern hydroponic substrates (e.g., rockwool, perlite,
cocodust, peat), the physical, chemical, biological, and hydraulic properties of which pro-
vide a growth environment with ideal moisture and aeration conditions, free of pathogens
and weeds, at an affordable cost. For commercial soilless production of vegetables and
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cut flowers, several organic and inorganic materials, such as rockwool, perlite, peat, and
cocodust are used [11–14]. However, most of these substrates are considered unstable in
terms of mineral concentration, pH content, and hydraulic characteristics (unsaturated
hydraulic conductivity). In an effort to mitigate this physicochemical heterogeneity, organic
substrates are usually amended with different mixtures of inorganic growing media (e.g.,
rockwool, perlite, zeolite, vermiculite) [15,16], which nevertheless can pose important
health and environmental challenges [17]. At the same time, organic substrate production
is limited and is carried out in specific countries where raw materials are easily accessible,
while peat is a non-renewable natural resource, the high demand of which has adverse
effects on the environment [18]. Finally, the transport of substrates, often due to their
inelastic volume, increases their environmental footprint [19].

Moreover, when compared against open field cultivations, hydroponic crops face
several quality issues. For instance, several authors state that even though soilless systems
of cultivation significantly reduce lettuce (Lactuca sativa L.) plant growth period and increase
yield characteristics and nutrient availability [10,20], hydroponic lettuce has lower dry
matter and chlorophyll concentration, and increased leaf nitrate content compared to
soil-grown plants [21,22]. Furthermore, while leaf texture hardness (firmness) of leafy
vegetables typically depends on the cultivation period, plant variety, and nutrient status of
the plants [12–14], experiments have shown that it is also affected by the cultivation system
and is frequently reduced in hydroponic systems compared to conventional and organic
cultivation systems [23,24]. The cause of this effect on leaf texture firmness and, ultimately,
post-harvest quality, has been sought in the physicochemical properties of the growing
media [25–27].

Compost deriving from a mixture of horticultural and fruit residues could be a promis-
ing alternative composting technique. Mazuela et al. [28] report that a mixture of pepper,
cucumber, runner bean, and almond shell residues (2:1:1:1), after physico-chemical property
adjustment for melon soilless cultivation, was found to be a viable and ecologically friendly
alternative to the conventional rock wool and coconut coir growing substrate. Additionally,
Pant et al. [29] demonstrate that in an experiment conducted on pak choi (Brassica rapa var.
Bonsai), the peat–perlite medium and food waste compost positively impacted plant growth
and plant tissue nutrient content. Another study showed that agro-industrial compost
could be considered a promising alternative for use as an organic substrate in a sustainable
soilless cultivation system for baby leaf red lettuce (Lactuca sativa L., cv. ‘Ligier’), able to
improve the yield and quality of the product [30]. Likewise, De Falco et al. [31] highlight
that compost derived from the recovery cultivation residues of green leafy vegetables, used
as a partial growing substrate, provides a good opportunity to obtain baby leaf species with
well-developed root systems. However, to our best knowledge, literature investigating the
production of growing media from grocery waste compost is not available.

Grocery waste presents a great environmental challenge since, only in 2010, the USDA
reported that food losses in the US retail sector amounted to almost 2.7 Mt of fruit and
3.2 Mt of vegetables [32]. In the same year, food waste in the EU grocery retail sector was
estimated at almost 4.4 Mt, which accounts for 5% of the overall food waste in the European
food supply chain [33]. In Mediterranean countries, due to consumer behaviour and dietary
particularities, the amount of fruit and vegetable waste is even higher. Although reported
values have great variability, it is indicative that in 2015, an Italian supermarket reported
food waste that amounted to 49 t, of which fruit and vegetables accounted for 60–70% of
the total weight and about 20% of the total value of discarded products [34]. While easily
discarded, this resource presents a great opportunity, as compost can be produced close to
the source of waste and utilized in neighbouring agricultural systems, thus minimizing
transportation which comprises one of the main financial and environmental hurdles [35].

During the last decade, megacities such as Paris and London, have been actively
seeking alternative food production systems and strategies that simultaneously satisfy
the increasing food demand of the developing urban population, contribute to a reduced
carbon footprint, promote food self-sufficiency, and have a high potential of social and
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cultural integration [36,37]. As such a system, urban farming has to establish cultivation
practices that allow the recovery of waste coming directly from their source of production,
and render circular economy more efficient [38]. On this aspect, several scientific reports
contemplate alternative methods of urban organic waste valorization to produce a “green-
based” compost aimed at replacing common commercial growing media. For instance,
Parada et al. [38] evaluated the performance of compost from urban vegetable waste in
three consecutive crop cycles of lettuce (Lactuca sativa L. var. crispa), demonstrating its
feasibility in urban agriculture, as they attained significantly increased yield compared
to a conventional substrate. Similarly, Dorr et al. [39] evaluated the environmental and
economic impacts of rooftop gardening practices, focusing on crop rotations of tomato
and lettuce grown showing that compost substrate performed better environmentally and
economically than the potting soil, having 17–47% less greenhouse gas emissions per kg
of product.

In this context, the present study focuses on the feasibility of the partial replacement
of soilless cultivation non-sustainable growing media by compost derived from grocery
(i.e., vegetable and fruit) waste. Here we move beyond the standard or fully controlled
compost mixes and develop a compost from actual grocery waste. The resulting compost
was tested on lettuce and the evaluation of yield and physiological characteristic during
the cultivation period.

2. Materials and Methods
2.1. Grocery Residues Composting

For the production of compost, disposed fruits and vegetable were sourced from the
grocery store of a supermarket in Heraklion, Crete, Greece. Special temporary biowaste
storage bins with dimensions 1.3 × 0.8 × 0.8 m and a working volume of 0.7 m3, were placed
outside of the supermarket where the raw materials were stored. The bins were supplied
with grocery waste on a daily basis and, at the same time, a bulking agent (chipped olive
tree prunings) was added at a volume ratio of 1:1 to 1:2 (grocery waste: chipped olive tree
prunings), depending on the moisture of the raw materials. The storage of the compostable
material in the bins lasted usually 5 to 6 weeks. Subsequently, bins were transferred to the
Hellenic Mediterranean University, to continue the process of composting in open trapezoid
windrows (1.2 m × 0.6 m). During the open composting process, chipped olive tree prunings
were added as a bulking agent at a volume ratio of 1:1 (fruits and vegetables: olive tree
prunings). Temperature at the core of the windrows was measured daily and compost
was sampled randomly to monitor moisture levels and other chemical characteristics (see
next section). Based on these measurements, windrows were turned using a BACKHUS
16.30 compost turner (Eggersmann Recycling Technology, Bad Oeynhausen, Germany) at
1–2-week intervals and irrigated manually to maintain moisture between 50% and 60%
(w/w). The composting process lasted for 40 days with 14 turnings in total.

2.2. Physicochemical Analysis of Compost Samples

Moisture content was estimated by determining the loss of weight of the sample
after drying at 105 ◦C [40]. pH and electrical conductivity (EC) were measured in 1/1.5
solid/liquid aqueous extract (extraction time equal to 24 h). Total volatile (VS) solids were
measured gravimetrically, and total nitrogen (TKN) was measured using the Semi—Micro—
Kjeldahl Method after [40]. Total organic carbon (TOC) of the materials was analysed using
a TC/TN analyser with a solid sample module (TOC-V, SSM-5000A, Shimadzu, Japan).
Chemical characteristics of the final product are summarized in Table 1.

2.3. Substrate Mixtures

Five experimental treatments (different mixtures of growing media) were assessed
against a control substrate with 80% cocodust and 20% perlite (hereafter 8C). In the treatments,
the perlite ratio remained constant (20%) and the fraction of cocodust was gradually replaced
by compost. Table 2 shows the control and treatment names and ingredients for all substrates.
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Table 1. Chemical characteristics of grocery waste-based compost.

Parameter Value

pH 4.20
EC [mS /cm] 1.95

TKN [%] 1.17
Ca [%] 3.50

TOC [%] 62.03
VS [g/kg] 962.82

Table 2. Mixtures of investigated growing media. P: Perlite, C: Cocodust, W: Green waste compost.
In all treatments, the perlite ratio is 20% and is thus omitted in treatment naming.

Treatment Mixing Ratios Bulk Density [g cm−3]

8C (Control) 20% P, 80% C 0.08
6C:2W 20% P, 60% C, 20% W 0.12
4C:4W 20% P, 40% C, 40% W 0.16
2C:6W 20% P, 20% C, 60% W 0.18

8W 20% P, 80% W 0.19

2.4. Experimental Setup

Lettuce (Lactuca sativa var. Tanius) seedlings at the stage of four true leaves
(25 November 2021) were transplanted in plastic pots (10 L), in an open hydroponic system
within an unheated saddle roof double-span greenhouse covered with polyethylene film
in an area of 120 m2 (10 × 12 m). Plastic pots were arranged in three double rows spaced
3.0 m × 0.45 m apart, in a fully randomized design with six treatments of substrate ratios
and five replications per treatment (6 × 5 = 30 experimental units). Additional control units
were included but not discussed in this work (Figure 1).
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Figure 1. Experimental design (left) including all treatments (as shown in Table 2) and an additional
control treatment (Perlite: Coir 8:2). On the right, a photograph of the experimental greenhouse
during the experiment, with pot placement corresponding to the experimental design.

A nutrient solution (NS) was calculated according to Savvas and Adamidis [41]
using the software NUTRISENSE [42] and prepared using the ALAGRO IQ60 (Athens,
Greece) automatic nutrient mixing system. Macro- and micro-nutrient concentrations in
the nutrient solution are shown in Table 3. The solution was delivered to the plants via drip
irrigation, and each plant was supplied from an individual emitter at a flow rate of 4 L h−1.
The fraction of the drainage solution released after each irrigation event was maintained
within the range 0.30–0.40 by adjusting the frequency and duration in accordance with
the climatic conditions. This resulted in three to four irrigation applications per day in
each experimental unit. The experimental crop lasted until 30 December, 2021, i.e., for
35 days after transplanting (DAT). Throughout the experiment, plants were grown without
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the application of pesticides, and pest control was limited to the removal of weeds from
the pot to avoid competition. Air temperature T [◦C] and relative humidity RH [%] were
monitored at 30-min intervals throughout the cultivation period (Figure 2).

Table 3. Nutrient concentration in the nutrient solution (NS).

Nutrients Concentration
[mmol lt−1]

M
ar

co
-n

ut
ri

en
ts

NH4
−-N 1.82

K+ 9.13
Ca2+ 5.64
Mg2+ 1.29

NO3
−-N 18.33

SO4
2−-S 1.00

Cl− 2.80

H2PO4
−-P 1.66

Tr
ac

e
el

em
en

ts Fe 0.3370
Mn 0.0445
Zn 0.0545
Cu 0.0010
B 0.0362

Mo 0.0005
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irradiance in the visible (Vis) and ultraviolet (UV) spectrum [W m−2] during the cultivation.

2.5. Plant Physiology and Biomass Measurements

On 8, 16, 28, and 35 DAT (between 07:00–09:00 a.m.), the four most recent fully ex-
panded leaves of each experimental unit were chosen to measure relative chlorophyll
fluorescence (Fv/Fm) and relative optical chlorophyll concentration (SPAD). Chlorophyll
fluorescence (dark-adapted Fv/Fm) has been considered a useful tool for the relative esti-
mation of the maximum quantum yield of photosystem II photochemistry in a wide range
of plant species [26]. Optical chlorophyll concentration was measured with a SPAD-502 (Mi-
nolta, Osaka, Japan) and chlorophyll fluorescence was measured using an OS-30p fluorom-
eter (Opti-Sciences, Hudson, NH, USA) after Baker and Rosenqvist [43] and Jiang et al. [44].
Additionally, the number of leaves (>10 cm) and plant growth measurements were per-
formed by determining the growth rate (growth index) at 5, 12, 16, 20, 26, 30, and 35 DAT.
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On the same days after transplant, the growth index was calculated from the average of the
three dimensions of each plant [45]:

G.I. =
H + L + W

3

where H is the plant height [cm], L is the crown’s larger dimension [cm] and W is the
dimension of the crown which is perpendicular to B. At 35 DAT, lettuce plants at the stage
of commercial maturity were harvested. Leaf area [cm2] was measured for each plant
through digital image analysis. All leaves were detached from plants (five plants per
treatment) and after capturing flat on a white plastic surface of known dimensions (1 m2),
leaf area was measured after Valle et al. [46] using ImageJ 1.52v (National Institutes Health,
Bethesda, MD, USA). Figure 3 shows an example of the process. Leaf fresh weight (WFL)
[g] was measured directly and leaf tissues were dried in a forced air oven at 65 ◦C for
72 h for dry leaf WDL determination. Leaf firmness [g] was measured with the Lutron
FG-5000 digital force tester (Lutron Electronic Enterprise Co., Ltd., Taipei, Taiwan) at both
sides of the mid-rib of the external leaf (three leaves per plant and five plants per substrate
treatment) using a pressure tester (8 mm diameter pressure tester needle).
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Figure 3. Processing of a leaf samples with ImageJ. Leaf areas are enveloped in black solid lines
and area values are denoted in cm2. Treatment name in the photograph includes 2P to denote
perlite fraction.

2.6. Statistical Analysis and Visualization

The data were analysed using R statistical software (R Development Core Team, 2017).
One-way analysis of variance (ANOVA) was performed to assess the effect of compost
substrates on yield and physiological characteristics and Student’s t-test (α = 0.05) was
employed to determine differences among treatments means. To reject the null hypothesis,
we selected a p-value threshold of 0.05. While measurements were made on various
intervals (i.e., 5, 8, 16, 28 and 35 DAT), for simplicity, only the first and last measurements
(i.e., 5 or 8 DAT and 35 DAT) are shown in the Results section. In subsequent figures,
vertical bars denote standard errors of means.
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3. Results

Compost phytotoxicity assays are commonly evaluated by using seed germination
techniques as described by Wang et al. [47] and Tiquia [48], however, in the present study,
seedlings at the stage of four true leaves were chosen to be transplanted in the final growing
positions. Therefore, phytotoxicity was evaluated by daily inspection of the leaves, aiming
to locate any symptoms that could be attributed to phytotoxic effects, likely associated with
the grocery-based compost used as the growing medium [49,50]. The experiment ended
on 30 December, 2021, without any plant losses or any visible symptoms on the leaves,
suggesting a complete lack of phytotoxicity of the compost-based substrates. Figure 4
shows samples from all treatments.
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Figure 4. Treatment samples on DAT35. From left to right 8W, 2C:6W, 8C, 4C:4W, 6C:2W. Treatment
names in the photograph include 2P to denote perlite fraction.

Moreover, as shown in Figure 5, treatments 8W, 2C:6W, 4C:4W, 6C:2W did not induce
any significant effect on the number of leaves from 5 until 35 DAT (20.66 ± 0.89, 20.50 ± 0.67,
20.66 ± 0.48 and 20.33 ± 0.42, respectively), compared to that of treatment 8C (20.33 ± 0.42).
Correspondingly, no significant effect of coir and compost was detected on plant growth
index from seedlings transplant until 35 DAT (Figure 6).
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The measurement of relative chlorophyll fluorescence [Fv/Fm] did not indicate any sig-
nificant differences associated with the substrate treatments from 5 until 35 DAT (Figure 7).
On the contrary, the relative optical chlorophyll content [SPAD] significantly increased in
the substrate treatment of 8W, 8 DAT (36.13 ± 1.02) until 35 DAT (38.88 ± 0.3) compared to
the substrate of 8C (33.75 ± 0.76 and 36.78 ± 0.40, respectively) (Figure 8).
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Figure 7. Leaf relative chlorophyll fluorescence (Fv/Fm), 8, 16, 28 and 35 DAT. Vertical bars denote
standard errors of means.

WFL remained unaffected by substrate ratios of 8W (283.85 ± 17.27 g), 2C:6W
(283.97 ± 10.11 g), 4C:4W (287.1 ± 9.13 g), 6C:2W (303.52 ± 11.25 g) and 8C (286.11 ± 6.50 g),
35 DAT (Figure 9). Additionally, WDL was significantly reduced only in the substrate treat-
ment of 8C (11.63 ± 0.55 g) compared to the treatments of 8W (14.5 ± 0.50 g), 2C:6W
(13.1 ± 0.64 g), 4C:4W (13.08 ± 0.54 g) and 6C:2W (13.63 ± 0.65 g), 35 DAT (Figure 10).
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of means. Different letters denote significant differences among treatments according to the Student’s
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Agronomy 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 9. Effect of growing media ratio on WFL [g], 35 DAT. Vertical bars denote standard error. 

 

Figure 10. Effect of growing media ratio on leaf dry weight [g], 35 DAT. Vertical bars denote stand-

ard error. Different letters denote significant difference according to the Student’s t-test at p ≤ 0.05. 

Leaf area was significantly increased in the 8W substrate ratio (299.21 ± 13.63 cm2) 

compared to 8C, 4C:4W, 2C:6W and 6C:2W (268.15 ± 6.90, 267.94 ± 10.10, 263.69 ± 7.65 and 

262.55 ± 5.10 cm2, respectively) substrate treatments, 35 DAT (Figure 11). Accordingly, the 

results of leaf texture hardness (leaf firmness) indicate a range of leaf puncture values of 

1150 to 1350 g force, with substrate 8W causing a significant increase in leaf hardness by 

12.8 % compared to the 8C substrate, 35 DAT. In more detail, leaf texture hardness demon-

strated a significantly reduction in the substrate ratio of 8C (1188 ± 93.38 g) compared to 

the substrate treatments of 8W (1339.83 ± 74.99 g), without any statistical difference being 

observed between 2C:6W, 4C:4W and 6C:2W (1315.33 ± 92.58, 1228.66 ± 86.41 and 1280.83 

± 103.24 g, respectively), 35 DAT (Figure 12). 

0

50

100

150

200

250

300

350

8W 2C:6W 4C:4W 6C:2W 8C

L
e
a

f 
fr

e
s
h

 w
e
ig

h
t 

[g
]

a

a a

a

b

8

9

10

11

12

13

14

15

16

8W 2C:6W 4C:4W 6C:2W 8C

L
e
a
f 

d
ry

 w
e
ig

h
t 

[g
]

Figure 9. Effect of growing media ratio on WFL [g], 35 DAT. Vertical bars denote standard error.

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 9. Effect of growing media ratio on WFL [g], 35 DAT. Vertical bars denote standard error. 

 

Figure 10. Effect of growing media ratio on leaf dry weight [g], 35 DAT. Vertical bars denote stand-

ard error. Different letters denote significant difference according to the Student’s t-test at p ≤ 0.05. 

Leaf area was significantly increased in the 8W substrate ratio (299.21 ± 13.63 cm2) 

compared to 8C, 4C:4W, 2C:6W and 6C:2W (268.15 ± 6.90, 267.94 ± 10.10, 263.69 ± 7.65 and 

262.55 ± 5.10 cm2, respectively) substrate treatments, 35 DAT (Figure 11). Accordingly, the 

results of leaf texture hardness (leaf firmness) indicate a range of leaf puncture values of 

1150 to 1350 g force, with substrate 8W causing a significant increase in leaf hardness by 

12.8 % compared to the 8C substrate, 35 DAT. In more detail, leaf texture hardness demon-

strated a significantly reduction in the substrate ratio of 8C (1188 ± 93.38 g) compared to 

the substrate treatments of 8W (1339.83 ± 74.99 g), without any statistical difference being 

observed between 2C:6W, 4C:4W and 6C:2W (1315.33 ± 92.58, 1228.66 ± 86.41 and 1280.83 

± 103.24 g, respectively), 35 DAT (Figure 12). 

0

50

100

150

200

250

300

350

8W 2C:6W 4C:4W 6C:2W 8C

L
e
a
f 

fr
e

s
h

 w
e
ig

h
t 

[g
]

a

a a

a

b

8

9

10

11

12

13

14

15

16

8W 2C:6W 4C:4W 6C:2W 8C

L
e
a
f 

d
ry

 w
e
ig

h
t 

[g
]

Figure 10. Effect of growing media ratio on leaf dry weight [g], 35 DAT. Vertical bars denote standard
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Leaf area was significantly increased in the 8W substrate ratio (299.21 ± 13.63 cm2)
compared to 8C, 4C:4W, 2C:6W and 6C:2W (268.15 ± 6.90, 267.94 ± 10.10, 263.69 ± 7.65 and
262.55 ± 5.10 cm2, respectively) substrate treatments, 35 DAT (Figure 11). Accordingly, the
results of leaf texture hardness (leaf firmness) indicate a range of leaf puncture values of 1150
to 1350 g force, with substrate 8W causing a significant increase in leaf hardness by 12.8%
compared to the 8C substrate, 35 DAT. In more detail, leaf texture hardness demonstrated a
significantly reduction in the substrate ratio of 8C (1188 ± 93.38 g) compared to the substrate
treatments of 8W (1339.83 ± 74.99 g), without any statistical difference being observed
between 2C:6W, 4C:4W and 6C:2W (1315.33 ± 92.58, 1228.66 ± 86.41 and 1280.83 ± 103.24 g,
respectively), 35 DAT (Figure 12).
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Figure 11. Effect of growing media ratio on leaf area (cm2), 35 days after transplant. Vertical bars
denote standard error. Different letters denote significant difference according to the Student’s
t-test (p ≤ 0.05).
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Figure 12. Effect of growing media ratio on leaf firmness (g), 35 days after transplant. Vertical bars
denote standard error. Different letters denote significant difference according to the Student’s t-test
at p ≤ 0.05.
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4. Discussion
4.1. Biomass Production

One major challenge for the countries of the Mediterranean basin is to implement
nature-friendly (or even nature-based) solutions on crop production systems that promote
sustainability and optimize the use of natural resources, leading to a more self-sufficient
economy. The results of the present study indicate that yield and physiological charac-
teristics of hydroponic lettuce grown in a grocery waste-based compost substrate were
comparable to commercial organic substrates such as cocodust, and superior to the inor-
ganic substrate of perlite which was examined in a separate treatment (not shown here).
However, WFL did not appear to be significantly affected by the nature of the organic
substrate, since no significant differences were observed between compost and cocodust
treatments in any of the examined ratios. Contrarily, the substrate ratio of 8W significantly
increased WDL (19.8%) of the plants compared to the 8C treatment, which could be related
to the increased relative chlorophyll content (SPAD) observed in the 8W treatment. Another
interesting finding is that leaf area [cm2] was significantly increased in the 8W treatment
compared to 2C:6W, 4C:4W, 6C:2W and 8C by 13.5%, 11.7%, 13.9% and 11.6%, respectively.
Giménez et al. [51] demonstrate that during summer cultivation cycle, agro-industrial com-
post increased the root length (cm) of baby leaf red lettuce (Lactuca sativa L., cv. ‘Ligier’), and
that during the autumn cultivation period, the quality (antioxidant capacity and vitamin C
content of leaves) increased by reducing nitrate accumulation compared to peat substrate.
In another experiment conducted to evaluate tomato and leek by-product compost on the
growth and quality of red baby leaf lettuce (Lactuca sativa L.), yield increased by about
23% with respect to peat (control treatment) substrate [47]. Moreover, the results of the
study conducted by De Falco et al. [31] designate a significant effect of 25% and 50% of
green compost obtained from green leafy vegetable residues, on leaf number (102.5% and
98%, respectively), shoot (110% and 94%, respectively) and root dry weight (163.4% and
138.4%, respectively) of lettuce (Lactuca sativa var. Batavia verde Falstaff) compared to peat
substrate, however, these effects of green compost on plant growth must be considered
to be species-specific due to drawbacks associated with the content of salt in the growing
media [31].

4.2. Physiological Parameters

The physiological effects of growing media on vegetable crops are frequently reported.
Our results designate that even though a grocery-based substrate did not induce any
significant effect on leaf relative chlorophyll fluorescence (Fv/Fm), a substrate treatment
of 8W significantly increased the relative optical chlorophyll content (SPAD) compared
to the substrate of 8C from 8 until 35 DAT (6.5% and 5.4%, respectively). Nerlich and
Dannehl [47] investigated the effect of three organic materials (wood chips, sphagnum
moss, and hemp fibres) in relation to an inorganic growing media, rockwool substrate,
on plant growth and quality of lettuce. According to the results of the study, the plants
grown in hemp substrate presented the lowest relative optical chlorophyll content (SPAD).
In contrast, the highest SPAD values of lettuce leaves were obtained on the rockwool
substrate, 55 DAT. Accordingly, Alu’datt et al. [48] reports that green waste-derived compost
significantly increased leaf relative chlorophyll content (SPAD) in lettuce plants compared
to vermicompost substrate, 49 DAT. According to the literature, the numerical SPAD value
measures the absorbance of a leaf in the red and near-infrared regions, and is proportional
to the concentration of chlorophyll present in the leaf, which indicates variations in nitrogen
uptake from the plants [49].

4.3. Leaf Firmness

Firmness is frequently estimated in lettuce plants as a harvest maturity and shelf-life
index, because firm leaves are more suitable for long distance transportation with minimum
postharvest losses and constitute a quality characteristic associated with freshness and
crispy texture [35,50]. According to the literature, the values of lettuce leaves hardness-
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firmness, vary significantly and are strongly related to the cultivation system (conventional,
organic, or hydroponic cultivation systems), the growing season, the variety of the plant
and the nature of the growing medium [23,52,53]. Zhang and Yang [54], conducted an
experiment to evaluate the effect of organic compatible sanitisers on organic and conven-
tional fresh-cut lettuce (Lactuca sativa L. var. crispa) and the results of the study reveal that
leaf firmness ranged between 1499 and 1917 g for conventional cultivation and 1346 and
1437 g for organic cultivation. Furthermore, Lei and Engeseth [55] compared the growth
characteristics and texture of hydroponically grown and soil-grown lettuce and concluded
that leaf firmness was 2187 g in soil-grown lettuce, while in hydroponic lettuce the force to
break middle leaves was 952 g, a value which was significantly reduced compared to the
soil-grown lettuce. Leaf firmness was also studied by Pernice et al. [56] who performed
texture analysis on three commercial lettuce cultivars (“Montego”, “Great Lakes 118”, and
“Salad Bowl”) cultivated in xerofluvent soil in December. The highest firmness values were
observed in “Montego” (3110 g) and “Great Lakes 118” (3161 g), while the firmness level
of the “Salad Bowl” cultivar appeared significantly lower (1162 g). On the other hand,
Tong et al. [57] found that post-harvest quality characteristics (fruit firmness) of bell pepper
(Capsicum annuum cv. King Arthur) was significantly reduced when cultivated in organic
“bokashi” growing medium (compost consisting of oil cake, wheat bran, molasses, and
chicken manure) compared to conventional hydroponic substrates such as vermicompost
and perlite in soilless cultivation systems. In the present study, the range of leaf puncture
values recorded in 8W substrate corresponded to the values obtained in the organic system
of cultivation according to Zhang and Yang [54] and were respective to “Salad Bowl” but
substantially lower than the “Montego” and “Great Lakes 118” lettuce varieties examined
by Pernice et al. [56]. Moreover, our results indicate that grocery-based compost signifi-
cantly increased the post-harvest quality of lettuce compared to the commercial growing
medium of 8C, results that contradict the findings of Tong et al. [57] and suggest that
further research must be carried out, to evaluate the impact of “green-based” composts on
the post-harvest life of lettuce.

5. Conclusions

During this study, grocery waste was transformed to compost, which was then used
as a quality hydroponic substrate constituent for lettuce cultivation. The transformation of
grocery waste to compost and its use in the indicated ratios (up to 80% of the substrate)
was successful, as during the experiment there were no losses due to phytotoxicity. Fur-
thermore, all treatments including compost showed equal or superior physiology and
yield characteristics compared to the control. According to the results of the study, entire
replacement of cocodust by grocery waste-based compost led to a significant increase in
leaf area, leaf relative chlorophyll content, leaf dry weight and leaf firmness at the time of
harvest. Moreover, at the end of its life, the new substrates were safe to dispose of or use as
soil amendment.

These results indicate that grocery waste-based compost is a viable and sustainable
alternative for soilless cultivation of lettuce by replacing commercial organic substrates such
as cocodust without deteriorating yield characteristics and whilst increasing post-harvest
shelf-life of the product. Further research must be carried out to examine the effect of the
seasonality of grocery waste on the produced substrates, as well as the exact mechanism
that leads to the improved physiology and yield characteristics, such as additional nutrients
and hydraulic characteristics. Our findings confirm the valorization potential of fruit and
vegetable waste-based compost as a hydroponic media and support the mainstreaming
of the circular utilization grocery waste, which is especially interesting in the context of
urban farming.
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