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Abstract: The fungus Macrophomina phaseolina is the causal agent of charcoal rot in many crops,
such as strawberries and beans. Symptoms include stem and root rot and chlorotic foliage. This
disease’s management is complicated because the pathogen forms resistant microsclerotia. This work
aimed to obtain bacterial isolates for the biocontrol of M. phaseolina in arid regions. Two strains
that grew well under low pH and high salinity, named BsA3MX and BsC11MX, were isolated and
identified as B. amyloliquefaciens, based on their morphology and analysis of the 16S ribosomal RNA.
Both strains inhibited M. phaseolina up to 66.8% in vitro through the combined action of volatile and
diffusible compounds. Furthermore, they produce siderophores and indole-3-acetic acid (IAA), have
ACC-deaminase activity, solubilize phosphate and zinc, and decrease microsclerotia germination.
Moreover, in greenhouse assays using cowpea plants (Vigna unguiculata L.), strain BsA3MX reduced
lesions caused by M. phaseolina and induced a significant increase in foliage and root biomass. Overall,
these results suggest B. amyloliquefaciens BsA3MX and BsC11MX can be used as biological control
agents against M. phaseolina in arid zones.

Keywords: biocontrol; soil microorganisms; charcoal rot; PGPR

1. Introduction

Macrophomina phaseolina is an Ascomycete from the Botryosphaeriaceae family, pri-
marily soil-inhabitant, and widely distributed in warm areas [1,2]. This organism is the
causal agent of charcoal-rot and root-rot diseases in more than 500 cultivated and wild
plant species [3,4]; several of them are economically relevant crops such as maize, sorghum,
strawberry, cotton, soybean, cowpea, sesame, and sunflower [5–8]. Symptoms in plants
infected with M. phaseolina include stem and root rot, chlorotic foliage, and senescence of
leaves. Disease incidence is favored by hot and dry weather, or when plants face adverse
environmental conditions [9]. This fungus produces resistance structures called microscle-
rotia, which can survive in soil, crop residues, and seeds for 2–15 years and can be detected
in root and stem tissues in advanced stages of the disease [10,11]. The microsclerotia ger-
minate under high temperature (30–35 ◦C) and low soil moisture (below 60%) on the root
surface [2], producing appressoria and penetrating epidermic cell walls through natural
openings, which affects the vascular system. Besides, during seed emergence, this pathogen
infects through cotyledons or via root surface injuries, and infects legume seeds during
storage, resulting in substantial losses [12].

The management of M. phaseolina is complicated because microsclerotia provide
resistance to fungicide application and even solarization [13]. Some fungicides such as
carbendazim, difenoconazole, benomyl, azoxystrobin, and dazom have been evaluated
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against M. phaseolina; however, there are no systemic fungicides, and the use of chemicals
applied in large quantities and repeatedly is harmful to humans and the environment [2,14].
Moreover, the pathogen is a competitive saprophyte, capable of circumventing cultural
practices such as soil tillage and crop rotation, securing its prevalence in soils [15,16]. Given
these characteristics, the use of biological control agents prevailing in soil and in plants that
suppress the pathogen at different stages of its life cycle is an alternative to counteract the
environmental resilience of M. phaseolina.

Soil microorganisms are considered an essential factor for fertility and plant health.
Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that, when ap-
plied to seeds or roots, benefit crops by stimulating plant growth or by reducing the damage
caused by soil-borne pathogens [17]. Bacillus is the most widely distributed genus of bac-
teria in agro-systems, and one of its main applications is the control of phytopathogenic
fungi in crops [18]. Species from this genus are Gram-positive, rod-shaped bacteria of the
Bacillaceae family that produce endospores [19]. Bacillus spp. synthesize a great variety
of antibiotics, toxins, siderophores, and lytic enzymes, and induce systemic resistance
and plant growth [20,21]. Lipopeptides from iturin, surfactin, and fengycin families are
the most studied antibiotic compounds synthesized by Bacillus spp. Such as B. subtilis, B.
amyloliquefaciens, B. licheniformis, B. pumilus, and B. coagulans. These molecules interact at
the target cells’ membrane level, affecting their structure and permeability by inducing
disruption or formation of ion channels and pores [22].

Worldwide, M. phaseolina causes high economic yield losses and reduces seeds qual-
ity [12,23,24]; for example, in charcoal rot of soybean, losses have been estimated at around
1.9–2.0 million tonnes [25]. In Mexico, M. phaseolina has been reported in maize, common
beans, sesame, sorghum, soybeans, eggplant, sugar cane, thyme, and peanut in arid, sub-
tropical, and tropical regions [26–29]. In strawberries, M. phaseolina has not been reported,
but plants with disease symptoms have been observed recently in Baja California. World-
wide, Mexico ranks sixth in sorghum, seventh for common beans, and third in strawberry.
Baja California is the state with the second-highest production of strawberries and the
seventh in the production of sorghum [30]. Yield losses caused by M. phaseolina have been
estimated at around 30%, 60%, and 20% for sorghum, common beans, and strawberries,
respectively [31–33]. This highlights the potential economic problem of this fungus for Baja
California. Due to the difficulty in controlling diseases caused by M. phaseolina, this study
aimed to obtain bacteria from the Baja California region with potential for the biocontrol of
M. phaseolina.

2. Materials and Methods
2.1. Isolation and Morphological Characterization of Microorganisms

M. phaseolina was isolated from strawberry plants with charcoal-rot symptoms. Twenty
plants were collected from a farm located in San Quintin, Ensenada, Baja California. Small
pieces of symptomatic plant tissue were surface-sterilized by flaming and then incubated
on potato dextrose agar plates (PDA Difco) at 30 ◦C until fungal or bacterial growth was
observed. Plates were screened for bacterial isolates growing in contact with fungi and
showing visual evidence of mycelial growth inhibition. Only bacteria showing strong
inhibition were recovered. These fungi and bacteria were subsequently subcultured to
purity on PDA and trypticase soy agar (TSA) plates, respectively, and stored at −4 ◦C in
20% glycerol.

2.2. DNA Extraction and Phylogenetic Analysis

The fungal isolates were grown in potato dextrose broth (PDB) media for 5 days at
30 ◦C with shaking at 120 revolutions per minute (rpm), and mycelia were recovered
using a sterile wood stick. Bacterial strains were grown on trypticase soy broth (TSB) at
30 ◦C, 120 rpm for 48 h, and cells were recovered by centrifugation. Genomic DNA was
extracted using cetyltrimethylammonium bromide (CTAB) as described previously [34],
and adjusted to 30 ng/µL. For fungal isolates, primers ITS1 and ITS4 were used to amplify
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the Internal transcribed spacer (ITS) region of the nuclear ribosomal DNA [35], and EF1-
728F and EF1-986R to amplify part of the translation elongation-factor (tef -1α) gene [36].
For bacteria characterization, primers 27F and 1492R [37] were used to amplify the 16Sr
RNA gene region. Each PCR reaction was carried out in a total volume of 25 µL, containing
1 µL of genomic DNA (30 ng/µL), 2.5 µL of Taq Buffer 10x, 0.5 µL of dNTP mix (20 mM),
0.625 µL of each primer (10µM), and 0.125 µL of Taq DNA polymerase (GoTaq® DNA
polymerase, Promega, Madison, WI, USA, 5 units/µL), and adjusted to the final volume
with ultrapure water.

Amplification reactions were carried out in a Bio-Rad T-100 thermal cycler (Bio-Rad,
Hercules, CA, USA) set to the following conditions. For ITS region, an initial step of 94 ◦C
for 2 min, followed by 35 cycles of 94 ◦C for 1 min, 58 ◦C for 1 min, and 72 ◦C for 1.5 min;
for tef -1α, an initial step of 95 ◦C for 3 min, followed by 35 cycles of 95 ◦C for 30 s, 55 ◦C for
30 s, and 72 ◦C for 1 min; for 16S rRNA region, an initial step of 95 ◦C for 2 min, followed
by 35 cycles of 95 ◦C for 30 s, 55 ◦C for 1 min, and 72 ◦C for 1.5 min. All programs ended
with a final cycle of 72 ◦C for 10 min. PCR reactions were purified using a GeneJet PCR
purification kit (Thermo Scientific, Waltham, MA, USA) and sequenced. The sequences were
analyzed using BioEdit Sequence Alignment Editor and deposited in the National Center for
Biotechnollogy Information GenBankFor bacterial phylogenetic analysis, a nucleotide Basic
Local Alignment Search Tool (BLASTn) was performed against the GenBank 16S Ribosomal
RNA sequences database, and those with the highest similarity for each phylogenetic
marker were used (Tables S1 and S2) to construct the alignment using ClustalW. In the case
of fungal isolates, the analysis was performed using a concatenated sequence alignment
of ITS and tef -1α. Maximum Likelihood (ML) and Maximum Parsimony (MP) analyses
were performed using Molecular Evolutionary Genetics Analysis (MEGA-X) software with
Bootstrap values based on 1000 replicates. Gaps were treated as missing data. The tree was
visualized in MX: Tree Explorer [38].

2.3. Characterization of Growth Conditions for Bacterial Isolates

For bacterial isolates, cultural, physiological, and biochemical characteristics were
determined as follows. Bacterial colonies were grown on TSA (g·L−1: 15.0 tryptone,
5.0 soytone, 5.0 NaCl, 15.0 agar, pH was adjusted to 7.0) at 30 ◦C for two days then examined
for Gram reaction and endospore formation. Activities for hemolysis, oxidase, catalase,
protease, and urease, and the use of citrate and motility, were evaluated as described
elsewhere [39]. Acid production from sugars (glucose, dextrose, arabinose, mannitol,
xylose, lactose, trehalose, amylose, and methyl-α-D-glucoside) was evaluated following
standard procedures [39]. Then, isolates were grown in trypticase soy broth (TSB) (g·L−1:
15.0 tryptone, 5.0 soytone, 5.0 NaCl, pH 7.0) varying salt concentration (0–15% NaCl),
incubation temperature (4–55 ◦C), and pH (4–10).

For biofilm formation, B. amyloliquefaciens isolates were grown in 96-well polystyrene
microplates in TSB medium. The plates were incubated at 30 ◦C and 50 rpm for 48 h. Biofilm
formation was evaluated by adding 75 µL of 10% crystal violet to each dish well, incubating
at room temperature for 15 min, and then removing the excess dye by rinsing with distilled
water. The formation of a violet ring on the well indicated biofilm formation [40].

2.4. Evaluation of Plant Growth-Promoting Activities

Siderophore production was evaluated using the Chrome azurol S (CAS) agar
method [41]. Isolates were streaked on the CAS agar plates and incubated at 30 ◦C for
48 h. A yellow halo around the bacterial colonies indicated a positive result. Siderophore
production was also quantified using 1 × 106 CFU·mL−1 of the bacterial isolates inocu-
lated on MM9 medium (g·L−1: 10.0 glucose 5.0 ammonium acetate, 1.5 KH2PO4, 2.5 NaCl,
pH 5.8.) at 30 ◦C and 120 rpm for 48 h. Cultures were filtered using a 0.22 µm-pore sy-
ringe filter, and 100 µL of supernatant plus 100 µL of Fe-CAS solution [(7.5 mL 2 mM CAS,
1.5 mL 1 mM FeCl3·6H2O in 10 mM HCl, 21.9 mg Hexadecyltrimethylammonium (HDTMA)
and 9.76 g 4-Morpholineethanesulfonic acid, 2-(N-Morpholino)ethanesulfonic acid (MES)
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in 100 mL distilled water, pH 5.6)] were added in a 96-well microplate, and absorbance was
measured at 630 nm in a Thermo ScientificTM multiskan sky microplate spectrophotometer.
The percentages of siderophore units produced by each strain were determined using the
formula: % siderophore units = ((Ar − As)/Ar) × 100, where Ar is the reference absorbance,
and As is the sample absorbance [42].

Indole-3-acetic-acid (IAA) production was evaluated by growing bacteria in TSB
medium supplemented with 500 µg·mL−1 tryptophan [43], at 30 ◦C and 120 rpm for
48 h. Bacterial cells were harvested at 10,000 rpm for 3 min, and 200 µL of the free-cell
supernatant was placed in microplates of 96 wells, followed by the addition of 100 µL of
Salkovsky reagent (50 mL distilled water, 30 mL H2SO4, 1 mL 0.5 M FeCl3) [44]. Appearance
after 25 min of a pink–orange color indicated IAA synthesis. To quantify the production of
IAA, bacteria were inoculated at 1 × 106 CFU·mL−1 in TSB medium supplemented with
500 µg·mL−1 tryptophan, and incubated at 30 ◦C, 110 rpm for 48 h. Supernatants were
filtered using a 0.22 µm-pore syringe filter, and 200 µL of supernatant, plus 100 µL of
Salkovsky reagent, were added in a 96-well microplate. Absorbance was measured at
540 nm in a Thermo ScientificTM multiskan sky microplate spectrophotometer. The IAA
concentrations were calculated according to a calibration curve of IAA (0, 5, 10, 20, 50,
100 mg·mL−1).

The production of hydrogen cyanide (HCN) was analyzed using TSA medium in
96-well microplates. Bacteria were inoculated, and a filter paper soaked in a solution of
0.5% sodium carbonate in 0.5% of Picric acid was placed on top. Microplates were sealed
with parafilm and incubated for 48 h at 30 ◦C. The development of orange–red color in the
filter paper indicated HCN production [43].

The production of 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase was evalu-
ated using minimum medium DF [(g·L−1: 4.0 KH2PO4, 6.0 Na2HPO4, 0.2 MgSO4·7H2O,
2.0 glucose, 2.0 gluconic acid, 2.0 citric acid), 1.0 mL trace element solution (mg·100 mL−1:
1.0 FeSO4·7H2O, 10.0 H3BO3, 11.19 MnSO4·H2O, 124.6 ZnSO4·7H2O, 78.22 CuSO4·5H2O,
10.0 MoO3) 15.0 agar, pH was adjusted to 7.2)] supplemented with a 0.5 M ACC solu-
tion [45]. DF medium supplemented with (NH4)2SO4 (2 g·L−1) was used as the positive
control and DF medium as the negative control [46]. Bacteria were plated on each medium
and incubated at 30 ◦C for 4 days. Uniform growth of the isolates on the DF medium
supplemented with ACC was considered a positive result [47].

Nitrogen fixation was evaluated according to Baldani et al. (2014) [48]. Solution A
(950 mL: 5 g malic acid, 0.5 g K2HPO4, 0.5 g FeSO4, 0.010 g MnSO4, 0.2 g MgSO4, 0.1 g NaCl,
0.002 g Na2MoO4, 0.02 g CaCl2, 0.002 g bromothymol blue, 1.75 g agar) and Solution B
(4 g KOH in 50.0 mL) were sterilized separately and mixed when they reached a temperature
between 45 ◦C and 50 ◦C. The medium supplemented with NH4Cl (2.5 g·L−1) as a nitrogen
source was used as the positive control. Plates containing each medium were inoculated
with 10 µL of bacterial culture of 24 h, and incubated at 30 ◦C for 8 days. A change of color
of the medium from yellow to green was considered positive for nitrogen fixation.

Phosphorus solubilization was determined using Pikovskaya medium (1 L: 5 g yeast
extract, 10 g glucose, 5 g Ca3(PO4), 0.5 g (NH4)2SO4, 0.2 g KCl, 0.1 g MgSO4, 0.0001 g
MnSO4, 0.0001 g FeSO4, 0.01 g of bromocresol purple, 15 g agar; pH 7.2) [49,50]. Plates
containing the medium were inoculated with 10 µL of bacterial culture of 24 h, incubated
at 30 ◦C for 72 h. A change of color from purple to yellow was considered a positive result.

Potassium solubilization was determined using a modified Pikovskaya medium (5 g
yeast extract, 10 g glucose, 5 g KNO3, 0.5 g (NH4)2SO4, 0.2 g KCl, 0.1 g MgSO4, 0.0001 g
MnSO4, 0.0001 g FeSO4, 0.002 g bromocresol green, 15 g agar; pH 7.2) [49,51]. Plates con-
taining the medium were inoculated with 10 µL of bacterial culture of 24 h, and incubated
at 30 ◦C for 72 h. A change from blue to yellow was considered a positive result.

Zinc solubilization was determined using modified Pikovskaya medium (5 g yeast
extract, 10 g glucose, 5 g KNO3, 0.5 g (NH4)2SO4, 0.02 g KCl, 0.1 g MgSO4, 0.0001 g
MnSO4, 0.0001 g FeSO4, 12 g ZnO, 0.25 g bromothymol blue, 15 g agar; pH 7.0) [49,52,53].
Plates containing the medium were inoculated with 10 µL of bacterial culture of 24 h, and
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incubated at 30 ◦C for 48 h. A change in the medium from blue to yellow was considered a
positive result.

2.5. Production of Cell Wall-Degrading Enzymes

For chitinase production, bacterial isolates were grown on a basal medium supple-
mented with colloidal chitin (1 L: 0.3 g MgSO4·7H2O, 3 g (NH4)2SO4, 2 g KH2PO4, 1 g citric
acid monohydrate, 200 µL Tween-80, 4.5 g colloidal chitin, 0.15 g bromocresol purple, and
15 g agar; pH 4.7) [54]. Plates were incubated at 30 ◦C for 48 h. A change in the medium
from yellow to purple was considered a positive result.

For cellulase production, bacterial isolates were grown on minimal medium (MM)
supplemented with carboxymethyl-cellulose (CMC) (1 L: 1 g glucose, 2.5 g yeast extract, 1%
CMC, 15 g agar) [55]. Plates were incubated at 30 ◦C for 48 h and stained with Congo red
dye. The formation of a yellow halo (8 mm or more) against red background was positive
for cellulose production.

For pectinase activity, bacterial isolates were grown on pectin agar (1 L: 1 g NaNO3,
1 g KCl, 1 g K2HPO4, 0.5 g MgSO4, 0.5 g yeast extract, 10 g Pectin, 15 g agar; pH 7.0) [56].
Plates were incubated at 30 ◦C for 48 h. Results were positive when observing clear zones
around the colonies after 5 min of adding Lugol’s iodine solution.

For amylase activity, bacterial isolates were grown on starch agar (g·L−1: 10.0 peptone,
5.0 yeast extract, 5.0 NaCl, and 2.0 starch, 15.0 agar; pH 7.0) [57]. Plates were incubated at
30 ◦C for 48 h and flooded with Lugol’s iodine solution. A positive result was the observa-
tion of a clear zone around the colony after 5 min.

2.6. In Vitro Fungal Antagonism

A loop of each bacterial strain was inoculated on PDA, approximately 2 cm from
the plate’s edge in a straight line of around 4 cm. Next, one fungal plug of 5 mmø was
placed in the center. Control plates were inoculated with the bacterial strains and the
pathogen separately. The plates were incubated at 30 ◦C until the fungal pathogen covered
the control plates. Mycelial growth was monitored every 24 h by marking the colony’s
edge, and phenotypic characteristics such as pigmentation and microsclerotia formation
were recorded. The percentage of inhibition of mycelial growth was calculated as described
before [58] using the formula: Inhibition percentage (%) = ((R1 − R2)/R1) × 100, where
R1 is the radial growth of M. phaseolina in control plates, and R2 is the radial growth of M.
phaseolina in the presence of bacterial isolates.

2.7. Fungal Growth Inhibition by Bacterial Volatile Organic and Diffusible Compounds

The effect of volatile organic compounds (VOCs) on fungal growth was evaluated
through the two-sealed-base-plates method. Briefly, each bacterial isolate was spread on
a base plate containing PDA and incubated until the formation of a bacterial lawn. Then,
the lid was replaced by another PDA plate with an M. phaseolina mycelial plug of 5 mmø
at the center. The two plates were sealed with tape and incubated at 30 ◦C for five days,
registering mycelium growth every 24 h. As a control, a non-inoculated PDA plate was
used as a cover.

The production of bacterial diffusible compounds was evaluated by growing the
strains in TSB media at 30 ◦C with shaking at 120 rpm for 72 h. Afterward, cultures
were centrifuged, and the supernatant was filtered through a 0.22 µm-pore syringe filter.
Volumes of 0.1, 0.5, and 1 mL of the resulting cell-free supernatant from each bacterium
were spread on PDA plates and left to dry. Then, a mycelial plug of 5 mmø of M. phaseolina
was inoculated at the plates’ center. The plates were incubated at 30 ◦C for 5 days, and
mycelial growth observed every 24 h.

2.8. Effect of Bacteria Isolates on the Germination of M. phaseolina Microsclerotia

Microsclerotia of M. phaseolina were collected under a stereoscopic microscope from a
5-day-old culture growing onto cellophane over MM9 agar [59]. The inhibition of microscle-
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rotia germination by the bacteria was evaluated by spreading 0.1 mL of a 24 h culture of
each bacterium onto PDA plates. The inhibition of microsclerotia germination by bacterial
diffusible compounds was evaluated using cell-free supernatant of the bacterial isolates
obtained from a 48 h culture grown in TSB at 30 ◦C with shaking (120 rpm); subsequently,
the cultures were centrifuged, and the supernatant filtered through a 0.22 µm-pore syringe
filter, then PDA media was supplemented with 30% of cell-free supernatant of each bac-
terium. Thirty microsclerotia were inoculated in each treatment by triplicate. Plates were
incubated at 30 ◦C, and the percentage of germinated microsclerotia was evaluated after
24 h under a light microscope (Nikon Eclipse E200, Minato, Japan). Images of microsclerotia
were taken with a camera AxioCam HRc from Zeiss (Oberkochen, Germany) and analyzed
using AxioVision 4.8.2.

2.9. Biocontrol Assay in Planta

Bacterial antagonistic effect against M. phaseolina was evaluated in planta using cowpea
plants (Vigna unguiculata L.). Cowpea seeds were germinated in a tray for three weeks, and
then the seedlings were inoculated with the bacterial isolates by immersing the root for 2 h
in a bacterial suspension of 1 × 106 CFU and then transferred to 1 L pots. Macrophomina
phaseolina was inoculated by mixing the substrate with two grams of rice colonized with the
pathogen’s microsclerotia. Ten plants were inoculated for each treatment, and pots were
arranged in a completely randomized design and kept in greenhouse conditions. After
two months, plants were removed from pots, and the roots were washed with tap water to
remove the substrate. Charcoal-rot symptoms were evaluated, and root and stem length
and root and dry foliage weight were measured. No external fertilization was provided to
the plants during the experiment process.

2.10. Statistical Analysis

All in vitro experiments were carried out in triplicate. The plant experiment was
conducted twice using ten replicates per treatment. The assumption of normality was
confirmed using Kolmogorov–Smirnov test (p value ≥ 0.05), then a one-way ANOVA
followed by a post hoc Fisher LSD analysis, with an α < 0.05 for significance, was performed
for each variable using STATISTICA 8.0.

3. Results and Discussion
3.1. Isolation and Identification of Macrophomina phaseolina from Strawberry Crown Rot

From twenty samples, fungal isolates with morphological characteristics well-matched
with Macrophomina were obtained from the crown of strawberry plants with charcoal-rot
symptoms; two of them, named FDe13MX and FDe23MX, were characterized (Figure 1).
Isolates were initially gray on PDA plates and became black with microsclerotia production
(Figure 1A,B). Production of pycnidia in the fungal colonies was not observed. Fungal
isolates were identified based on their ITS region and tef -1α locus; obtained sequences
were approximately 522 and 249 bp, respectively. The combined dataset comprised 696
characters, including gaps, after alignment (439 corresponded to ITS gene and 257 to tef -1α
gene), and 15 taxa. Dothiorella viticola (STE-U 6139) was used as the outgroup. Maximum
likelihood analysis using Kimura’s two-parameter model resulted in a tree with a log-
likelihood value of −1440.94. The phylogenetic analysis of the ITS region and tef -1α
revealed that both isolates belong to M. phaseolina (Figure 2A).
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with the highest log likelihood (−1440.94) obtained from the ITS and tef-1α concatenated dataset.
The tree was rooted with Dothiorella viticola (STE-U 6139). (B) Maximum likelihood tree with the
highest log likelihood (−3201.92) obtained from the 16S ribosomal RNA gene dataset. The tree was
rooted with Alicyclobacillus acidocaldarius (DSM 446). Bootstrap values greater than 50 are indicated at
the nodes, and the isolates from this study are indicated in bold. Scale bar refers to a phylogenetic
distance of 0.02 (A) and 0.05 (B) nucleotide substitutions per site.

Macrophomina phaseolina has been reported as a pathogen of strawberry plants in sev-
eral countries including Israel [6], Spain [60], Argentina [61], Chile [62], and Australia [63].
In California, USA, which neighbors Baja California, Mexico, this fungus has also been
reported as the causal agent of dieback and crown rot in strawberries [64,65]. In Mexico,
M. phaseolina is an important pathogen of several crops including common bean, sorghum,
sugar cane, and maize [27], but this is the first report where it has been identified in straw-
berries showing charcoal-rot disease. With a production above 200,000 tonnes per year [30],
the state of Baja California is the second-largest producer of strawberries in Mexico. The
losses of charcoal-rot disease have not been evaluated, but affected plants can be often
found in organic commercial fields.

3.2. Bacterial Isolate Identification

From twenty strawberry samples, several bacterial colonies grew on the PDA plates
together with M. phaseolina. Two attracted our attention due to the formation of an inhibition
halo against M. phaseolina mycelium. Both colonies, found in independent plates, were
picked and isolated to purity (Figure 1C,D). The phylogenetic analysis of their 16S ribosomal
RNA (approximately 1168 bp) clustered the two bacteria within the B. amyloliquefaciens
clade (Figure 2B). Bacillus amyloliquefaciens is part of the Bacillus subtilis complex commonly
isolated from soil. It was reported as a novel Bacillus species in 1987 and is recognized
for producing α-amylase and protease [66]. This bacterium is closely related to the plant-
associated B. siamensis and B. velezensis, forming a monophyletic group [67].

3.3. Characterization of Bacillus amyloliquefaciens Isolates

Bacterial isolates BsA3MX and BsC11 of B. amyloliquefaciens are Gram-positive, motile,
and endospore-forming rods. They formed irregular, flat, dry, dull creamy–white, with
rough surface colonies on TSA plates, and a thin biofilm at the surface on TSB after 24 h of
incubation at 30 ◦C. Both isolates were halotolerant since they grew in the presence of NaCl
up to 10% (w/v), and in a pH range of 5–9. In addition, they were able to grow up to 50 ◦C
(Table 1). The ability of both isolates to survive and even thrive in harsh environmental
conditions could be explained by their isolation from a field located in the arid region of
Baja California, often exposed to drought and high temperatures and being irrigated with
water from wells with high salinity levels. While the ability to form endospores makes them
resistant to different types of stress [18], the application of endospore-forming bacterial
also has a beneficial effect on plant growth [68].

Tests for hemolytic activity, and urease and citrate utilization, were negative in both
isolates, while oxidase and catalase activities and indole use were positive. The preferential
utilization of carbohydrates was different for each isolate (Table 1). BsA3MX preferred
glucose, trehalose, dextrose glycogen, followed by xylose, mannitol, lactose, arabinose, and
amylose, while BsC11MX preferred glucose, arabinose, dextrose, mannitol, and glycogen,
followed by lactose, xylose, amylose, and trehalose. The use of methyl-α-D-glucoside was
negative for both bacteria isolates.
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Table 1. Characteristics of B. amyloliquefaciens isolated from strawberry plants.

Characteristic BsA3MX BsC11MX

Gram stain + +
Colony morphology Irregular, flat, dry, and dull colonies creamy-white on TSA
Form Single rod-shaped Single rod-shaped
Motility + +
Endospore formation Two-terminal Two-terminal
Biofilm formation + +
NaCl

Maximum 10% 10%
Temperature

Maximum 50 ◦C 50 ◦C
pH

Minimum 5 5
Maximum 9 9

Hemolytic activity - -
Urease - -
Oxidase + +
Catalase + +
Protease + +
Citrate utilization - -
Indole test + +
Acid from:

Glucose +++ +++
Lactose + ++
Arabinose + +++
Trehalose +++ +
Dextrose +++ +++
Amylose + +
Xylose ++ ++
Mannitol ++ +++
Glycogen +++ +++
Methyl-α-D-glucoside - -

- indicates a negative result. + indicates a positive result/less preference for carbon source. ++ indicates average
preference for carbon source. +++ indicates higher preference for carbon source.

3.4. Characterization of B. amyloliquefaciens as Plant Growth Promoters

Both Bacillus amyloliquefaciens isolates were positive for siderophore and indole-3-
acetic acid (IAA) production, and ACC-deaminase activity, and were able to solubilize
phosphate and zinc (Table 2). Siderophores are Fe3+-chelating compounds, and their
production by beneficial bacteria facilitates the uptake of iron for plants [69]. The auxin IAA
is produced by several microorganisms through L-tryptophan metabolism, and in plants
it facilitates cell and tissue differentiation, the production of longer roots, and nutrient
uptake [70,71]. Although the strains did not fix nitrogen, produce cyanohydrin acid, or
solubilize potassium, the other characteristics make them suitable for their use as plant
growth-promoting agents.

Table 2. Plant growth-promotion characteristics and hydrolytic activity of B. amyloliquefaciens isolates.

Characteristic BsA3MX BsC11MX

Siderophore production 69.3% 54.7%
IAA production 7.2 mg·mL−1 6.2 mg·mL−1

ACC-deaminase production + +
Nitrogen fixation - -
Cyanhydric acid production - -
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Table 2. Cont.

Characteristic BsA3MX BsC11MX

P solubilization + +
K solubilization - -
Zn solubilization + +
Biofilm formation + +
Chitinase - -
Cellulase - -
Pectinase - -
Amylase + +

- indicates a negative result. + indicates a positive result.

3.5. Production of Hydrolytic Enzymes

Strains BsA3MX and BsC11MX were positive for the production of proteases and
amylases (Table 2) but negative for chitinase. These results suggest that the antagonistic
properties of these isolates must be related to the production of antifungal compounds,
either volatile or diffusible, instead of hydrolytic enzyme activity. Importantly, these strains
tested negative for the production of pectinases and cellulases, since pectin and cellulose
are essential components of the cell wall of plants. Proteases participate in several processes
in plants such as development, defense response to phytopathogens, and photosynthesis,
while amylase-producing bacteria enable plants to use starch more efficiently [72].

3.6. Two Bacillus amyloliquefaciens Isolates Inhibit Fungal Growth of Macrophomina In Vitro

The two B. amyloliquefaciens strains showed antagonism against M. phaseolina by
inhibiting mycelial growth in vitro. Isolate BsA3MX showed 66.8% growth inhibition at
5 days of incubation on PDA, while BsC11MX showed 62.8% (Figure 3).
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Figure 3. Antagonism assay on PDA at 30 ◦C for 5 days of incubation. Macrophomina phaseolina
FDe13MX (A), M. phaseolina FDe13MX + B. amyloliquefaciens BsA3MX (B), and M. phaseolina FDe13MX
+ B. amyloliquefaciens BsC11MX (C).

The antagonistic activity of PGPR against M. phaseolina has been reported before. Iso-
lates from B. subtilis [73–75], Bacillus spp. [76], B. altitudinis, Pseudomonas spp., Brevibacterium
antiquum, and Acinetobacter tandoii [77], have an inhibitory effect on this pathogen as well.
B. amyloliquefaciens isolate PGPBacCA1 showed above 50% inhibitory activity against M.
phaseolina [78] and the isolate B14 between 60 and 66% [17]; these results are comparable
to those reported in the present study. Bacillus amyloliquefaciens has been studied as a
biocontrol agent against other phytopathogenic fungi such as Fusarium [79], Sclerotinia scle-
rotiorum [80,81], B. cinerea, Colletotrichum orbiculare [81,82], Botrytis pelargonii, and Alternaria
alternata [83].
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3.7. B. amyloliquefaciens BsA3MX and BsC11MX Inhibit M. phaseolina by the Combined Action
of Volatile Organic Compounds and Diffusible Compounds

The effect of volatile compounds and cell-free supernatant on M. phaseolina was
evaluated to determine the mechanisms used by B. amyloliquefaciens strains. Volatile com-
pounds from BsA3MX and BsC11MX inhibited both the mycelial growth of M. phaseolina
(Figure 4) and the production of microsclerotia in comparison to the controls, where the
fungal pathogen covered the entire plate after five days of incubation (Figure 4). On the
other hand, the cell-free supernatants of BsA3MX and BsC11MX not only inhibited the
growth of M. phaseolina but also induced morphological changes (Figure 5). M. phaseolina
grew irregularly in the presence of cell-free supernatant, presenting a brown color in the
center with white-cream edges and reduced production of microsclerotia (Figure 5B,C).
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Figure 4. Effect on Macrophomina phaseolina of volatile organic compounds produced by isolates of
Bacillus amyloliquefaciens on PDA at 30 ◦C for 5 days. In the control plates, M. phaseolina FDe13MX
was inoculated only in the down plate. Bacterial isolates BsA3MX and BsC11MX were inoculated in
an up plate facing M. phaseolina FDe13MX in the down plate.
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Several secondary metabolites have been reported against plant pathogens from
different isolates of B. amyloliquefaciens. The production of volatile organic compounds
such as benzenes, alkyls, alcohols, ketones, and aldehyde compounds by different B.
amyloliquefaciens isolates inhibits the growth of Fusarium oxysporum [84,85], Rhizoctonia
solanacearum [86], Botrytis cinerea, Sclerotinia sclerotiorum, Verticillum longisporum [87,88],
Monilinia laxa, M. fructicola, and V. longisporum [84,86–89]. Among the diffusible com-
pounds produced by B. amyloliquefaciens, lipopeptides such as bacillomycin D, macrolactin,
iturin A, surfactin, and fengycin have shown high antagonistic activity against M. phase-
olina [78], F. oxysporum, R. solanacearum [79], B. cinerea, and Colletotrichum orbiculare [82].
These secondary metabolites have antifungal, antibacterial, and nematocidal activity;
therefore, B. amyloliquefaciens is considered a potential biocontrol agent and plant growth
promoter [21,90,91].

3.8. Effect of B. amyloliquefaciens on the Germination of M. phaseolina Microsclerotia

Next, the effect of cell-free supernatant on microsclerotia germination was evaluated.
The use of 30% cell-free bacterial supernatant affected the development of M. phaseolina
microsclerotia. While 100% of microsclerotia inoculated in PDA medium germinated after
24 h of incubation, when exposed to the BsA3MX and BsC11MX cell-free supernatants, only
79% and 71% germinated, respectively. Moreover, significant differences were observed
in the germination of microsclerotia treated with B. amyloliquefaciens cell-free extract. The
control treatment showed higher mycelium density (Figure 6A,B) and more branched
hyphae (Figure 6C). In contrast, the germinated microsclerotia exposed to the cell-free
supernatants displayed stunted growth, reduced mycelium density (Figure 6D,G), and less
branched hyphae (Figure 6F,I). Additionally, non-germinated microsclerotia were observed
in the treatments with both bacteria’s cell-free supernatant (Figure 6E,H). Notably, when
bacteria were present in the culture medium, the germination of M. phaseolina microsclerotia
was inhibited entirely (Figure 6J–L).
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Figure 6. Macrophomina phaseolina on PDA medium (control) (A–C); germinating microsclerotium
(A,B); mycelial growth (C). M. phaseolina in the presence of BsA3MX 30% cell-free supernatant (CFS)
(D–F); germinated microsclerotium (D); non-germinated microsclerotium (E); growing hyphae (F). M.
phaseolina microsclerotia on PDA with BsC11MX 30% CFS (G–I); germinated microsclerotium (G); non-
germinated microsclerotium (H); hyphae of M. phaseolina (I). M. phaseolina non-germinated microscle-
rotium in the presence of B. amyloliquefaciens BsA3MX (J,K) and B. amyloliquefaciens BsC11MX (L).

The microsclerotia of M. phaseolina are the primary source of inoculum since they
can survive in the soil for up to 15 years [2,11] and attach to the roots’ surface. Then,
microsclerotia germinate repeatedly during the crop-growing season, producing a mass of
hyphal thread colonizing the root’s intercellular spaces [4,92]; consequently, the intensity of
the disease on a crop is related to the amount of viable microsclerotia in soil [93]. Therefore,
the inhibition of microsclerotia production and germination is important in searching for
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control strategies for this pathogen, increasing the value of B. amyloliquefaciens strains
isolated here as biological control agents.

3.9. Bacillus amyloliquefaciens Isolates Promote Plant Growth and Suppress M. phaseolina in
Planta

Finally, assays to evaluate the ability of isolates BsA3MX and BsC11MX to reduce
the damage on cowpea plants elicited by M. phaseolina were performed. Plants inoculated
with M. phaseolina FDe13MX had lower foliage and root production when compared to the
negative control (Figure 7A,H), with a decrease of 64.2% and 38.3% in dry weight of roots
and foliage, respectively (Figure 8). Thus, this confirmed that the M. phaseolina isolate is
pathogenic.
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Figure 7. Antagonism and plant growth-promotion assay in planta. Control, without inoculation
of fungi or bacteria (A). Plants inoculated with B. amyloliquefaciens BsA3MX (B), B. amyloliquefaciens
BsC11MX (C), B. amyloliquefaciens BsA3MX and BsC11MX (D), B. amyloliquefaciens BsA3MX and M.
phaseolina FDe13MX (E), B. amyloliquefaciens BsC11MX and M. phaseolina FDe13MX (F), B. amyloliquefa-
ciens BsA3MX and BsC11MX, and M. phaseolina FDe13MX (G), M. phaseolina FDe13MX (H).
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Figure 8. Effect of the inoculation of B. amyloliquefaciens isolates BsC11MX and BsA3MX in cowpea
plants. Root and foliage dry weight (A), and root and stem length of cowpea plants (B) after two
months of bacteria and fungus inoculation. Mph: M. phaseolina FDe13MX. Bars indicate standard
deviations. Means accompanied by the same letters are not significantly different (α < 0.05).

On the contrary, plants treated with bacterial isolates, BsA3MX, BsC11MX, or both, and
inoculated with M. phaseolina, presented a 39.8% and 126.2% increase in root and foliage dry
weight, respectively, as well as up to a 15.6% increase in root length (Figures 7E–H and 8).
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Moreover, in the plants inoculated only with M. phaseolina, the presence of microsclerotia
and root and collar necrosis was evident. Treatments with bacterial isolates also reduced
the incidence of lesions. No lesions were observed in the control plants, as well as in those
inoculated only with bacteria.

Bacillus amyloliquefaciens has been reported as a biological agent against M. phaseolina
in common beans in Argentina, decreasing the incidence of charcoal root rot on seeds [17].

Bacillus spp. synthesize a wide variety of compounds such as growth hormones and
solubilize nutrients that help improve plant growth and are better adapted to crop plants
than organisms isolated from other sources [77]. The Bacillus genus is recognized as a
potential PGPR for the biocontrol of different phytopathogens due to the production of
a wide array of antimicrobials. Besides, the ability to form endospores allows them to
withstand adverse environmental conditions [17,20,94].

Results also show that both bacterial isolates have plant growth-promotion activity,
since cowpea plants inoculated with BsA3MX, BsC11MX, or with both, but not inoculated
with M. phaseolina, showed higher foliage and root production than the un-inoculated
control (Figure 7A–D), and an 82.7% and 162.5% increase in root and foliage dry weights,
respectively, as well as up to a 23.1% increase in root length (Figure 8). Both bacteria and
the fungal strain were reisolated from all the inoculated plants on PDA plates.

The observed increase in plant growth may be due to the production of siderophores,
indole-3-acetic acid (IAA), biofilm formation, and the solubilization of phosphate and
zinc. The ability to form biofilm in B. amyloliquefaciens has been correlated with plant root
colonization and drought-stress tolerance [95]. Baja California is bordered by the Pacific
Ocean and the Gulf of California; main crops are tomato, strawberry, cotton, grapes, and
wheat. The valley of San Quintin is located to the south of Ensenada along the Pacific
Ocean coast, where the climate becomes desert; thus, the vegetation is scarce, and the
temperature is very high during the summer. Due to the arid conditions, there is water
scarcity. Besides, the region has experienced harmful heat waves in recent years, increasing
maximum temperatures up to 50 ◦C [96]. The low rainfall and high evaporation gradually
increase the salinity of the soils, making agriculture in this area very difficult. Previously,
other isolates from arid zones with these characteristics have been shown to promote plant
growth in different crops and constitute a feasible alternative for the replacement of organic
fertilizers using these or similar PGPR [97,98].

Strains of B. amyloliquefaciens BsA3MX and BsC11MX also produce ACC-deaminase,
reported to impart drought tolerance [99] due to the up-regulation ACC-deaminase gene
(acdS), which cleaves the precursor of ethylene (ACC). The lower ACC levels lead to a
decrease in endogenous ethylene content and its effects on plants during stress condi-
tions [100–102]. Although stress tolerance was not tested here, the ability to produce
ACC-deaminase and to grow in low pH and high salinity indicates that both strains can
potentially improve plant growth in water-stress conditions. Agriculture in Baja California
is seriously affected by climate change, increasing temperature, and diminishing water
availability is common in the region. Since higher temperatures increase the survival and
spread of drought pathogens such as M. phaseolina, causing significant losses in production
and crop yields [12,103], it is important to continue searching for sustainable alternatives to
improve control strategies for these pathogens.

4. Conclusions

In conclusion, isolates BsA3MX and BsC11MX, identified as B. amyloliquefaciens, pro-
duce volatile and diffusible compounds that inhibited the mycelial growth of M. phaseolina
and decreased the production of microsclerotia. Biocontrol assays in planta showed that
BsA3MX and BsC11MX induce plant growth of V. unguiculata L. Moreover, the isolates grow
in conditions of low pH and high salinity that are often found in the agricultural regions of
Baja California. Overall, these results suggest that these isolates of B. amyloliquefaciens can
be used as biological control agents against M. phaseolina in arid zones. Future studies will
aim to determine the efficacy of the selected isolates in the field.
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