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Abstract: Rice (Oryza sativa L.) and Arabidopsis thaliana (L.) life cycles involve several major phase
changes, throughout which MADS-box genes have a variety of functions. MADS-box genes are well
recognized for their functions in floral induction and development, and some have multiple functions
in apparently unrelated developmental stages. For example, in Arabidopsis, AGL15 and AGL6 play
roles in both vegetative development and floral transition. Similarly, in rice, OsMADS1 is involved in
flowering time and seed development, and OsMADS26 is expressed not only in the roots, but also
in the leaves, shoots, panicles, and seeds. The roles of other MADS-box genes responsible for the
regulation of specific traits in both rice and Arabidopsis are also discussed. Several are key components
of gene regulatory networks involved in root development under diverse environmental factors
such as drought, heat, and salt stress, and are also involved in the shift from vegetative to flowering
growth in response to seasonal changes in environmental conditions. Thus, we argue that MADS-box
genes are critical elements of gene regulation that underpin diverse gene expression profiles, each of
which is linked to a unique developmental stage that occurs during root development and the shift
from vegetative to reproductive growth.

Keywords: MADS-box gene; root growth; floral transition; seed setting; inflorescence branching

1. Introduction

MADS-box genes are a family of transcription factors initially discovered in eukary-
otes [1]. All MADS-box proteins have a DNA-binding MADS domain that is ~60 amino
acids in length [2]. There are two types of MADS-domain proteins: Type I and Type II. The
functions of Type I proteins in plants are mostly unclear [3]. Type II proteins (also known as
MIKC-type proteins) are distinguished by the presence of four different domain structures
known as the MADS, keratin-like, intervening, and C-terminal domains [4]. MIKC-type
MADS-box genes are known to play roles in plant development from vegetative growth to
reproduction and to function in various stress responses [5].

The conserved MADS (M) domain and a substantial variable area at the C-terminus
are found in Type I proteins, also known as the M-type [6]. In addition to the MADS DNA
binding activity, the M domain contains an I domain, a K domain, and a C domain in
Type II proteins [7]. The I domain is required for DNA dimerization and specificity [8],
whereas the K domain is required for both dimer formation and tetramerization [9,10].
The C domain, a highly variable and largely unstructured domain based on secondary
structure prediction, is important in transcriptional activation and the development of
higher-order transcription factor (TF) complexes. The C domain also contributes to MADS-
box protein–protein interactions [10,11]. Based on the ABCDE model, M-type MADS-box
genes have been reported to be involved in plant reproduction, specifically the development
and functioning of female gametophytes, the embryo, and the endosperm; MIKC-type
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MADS-box genes are involved in meristem differentiation, flowering, the determination of
floral organ identity, and fruit development [11].

Genetic studies in rice and Arabidopsis have revealed the functions of several MADS-
box genes in plant development. The majority of these studies have shown that MADS-box
genes are engaged in a variety of important morphological and physiological functions,
including gametophyte cell division, root development, the floral transition, and floral
organ control [12–14]. A typical dicot flower is divided into four parts (whorls): petals,
sepals, pistils, and stamens. The generally accepted ABCDE model of floral organs is
based on research in dicot species such as Antirrhinum majus and Arabidopsis [15,16]. Dif-
ferent floral organ identities are regulated by various gene combinations, namely A + E
(sepals), A + B + E (petals), B + C + E (stamens), C + E (carpels), and D + E (ovules).
A great majority of these genes encode MADS-box TF that have been linked to floral organ
development [17–21].

In Arabidopsis and rice, MADS-box genes play roles in a variety of developmental pro-
cesses, including root development and elongation, meristem specification, the flowering
transition from vegetative to reproductive stage, endosperm and seed formation, flower
development and fertility, and fruit ripening. Several published reviews have reported on
their functions from vegetative transition to reproductive development [1,11,22–28].

2. MADS-Box Gene Expression Profiles during Root Development

MADS-box genes are involved in various components of root development [29], af-
fecting the formation of primary and lateral roots, root density, and root elongation. More
than 50 MADS-box genes have been reported to be expressed in Arabidopsis roots [30].
However, little is known about their role in root growth and development during en-
vironmental stress exposure. In Arabidopsis, many MADS-box genes of the MIKC type,
specifically AGL17-like clade genes, regulate root formation [31,32]. Three members of
the AGL17-like clade, namely AGL17, AGL21, and ANR1, are dominantly expressed in
Arabidopsis roots [30,33–35]. Expression of the nitrate transporter gene NRT2.1 is reduced
in the roots of an anr1 mutant line, demonstrating that ANR1 is a positive regulator of
NRT2.1 in Arabidopsis [36]. ANR1 stimulates lateral root elongation and increases the fresh
weight of shoots in the presence of nitrate by promoting lateral meristem activity [33,37].
In contrast, AtAGL21 increases auxin biosynthesis in the absence of nitrate, promoting
lateral root development and elongation [33,37,38]. Intriguingly, ANR1 expression was
drastically reduced in nrt1.1 mutants, and these mutants displayed reduced root elongation
in nitrate-rich conditions compared with ANR1-knockout plants [33,39]. These findings
demonstrate that NRT1.1 functions upstream of ANR1 in local nitrate-induced lateral root
development. The key roles of ANR1 in shoot development and in response to nitrate stress
remain to be investigated. Overexpression of miR444a decreases shoot development at the
seedling stage [40]. Future research should also focus on miR444a and ANR1 may work
cooperatively or independently to understand the function of ANR1 under nitrate stress
exposure in processes such as shoot development at the seedling stage. The MADS-box TF
AGL16 functions as a negative regulator under saline conditions. The agl16 mutants are
salt stress-resistant concerning root elongation in comparison to wild-type plants [41]. In
Arabidopsis, AGL42 expression has been utilized as a marker for quiescent center identity
cells [42], which are the cells at the apices of stele and cortex histogens. However, the
loss-of-function mutant has no clear abnormal phenotype in the root, demonstrating that
its role in root elongation is unknown. Furthermore, it has been shown that upregulation of
AGL42 in the quiescent center and the stele depends on expression of the Brassinosteroid
receptor BRI1 on epidermal cells [43].

In rice, AGL17-like clade genes such as OsMADS57 regulate root growth and elonga-
tion [29,44,45]. OsMADS57 promotes seminal and adventitious root elongation as well as
root to shoot nitrate translocation by influencing the expression of NRT2 [46,47], whereas
overexpression of OsMADS57 in rice increases the rate of seed germination and root
elongation in response to salt stress conditions [48]. It remains to be determined whether
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OsMADS57 overexpression promotes tolerance to other environmental stress factors such as
drought or heat. Additional research should be conducted to understand the OsMADS57-
mediated stress signaling pathway to ultimately strengthen crop tolerance to adverse
environmental factors through genome editing technology.

OsMADS50/OsSOC1 (Oryza Sativa SUPPRESSOR OF OVEREXPRESSION OF CO 1)
was shown to be important in the control of crown root growth [49]. Plants overexpress-
ing ANR1 showed increased lateral root density and longer lateral roots under control
conditions and high nitrogen levels [37]. Furthermore, the rice ANR1 gene family mem-
bers OsMADS27, OsMADS25, and OsMADS61 are expressed in the root vasculature, and
their transcription is modulated differentially in response to NO3

− deficiency, NO3
− re-

supplementation, and a variety of environmental conditions [35,44]. In the presence of
nitrate, OsMADS25-overexpression lines showed increases in the number and density of
lateral roots while producing significantly larger primary roots; knocking down OsMADS25
had the opposite effect on transgenic rice plants. In addition, OsMADS25 is involved in
the regulation of nitrogen transporter genes, demonstrating that this TF is a key regulator
of primary and lateral root formation in rice [29]. In the absence of NO3

−, overexpres-
sion of OsMADS25 resulted in increased lateral root number and primary root length
in Arabidopsis compared with wild-type plants. OsMADS27-overexpression lines of rice
produced more lateral roots but had shorter primary roots in a NO3

− dependent manner.
Surprisingly, OsMADS27 overexpression improved salt tolerance, most likely via changes
in ABA signaling [50]. Similarly, phosphate deficit and phosphorus supplementation de-
creased the expression of OsMADS23, OsMADS25, and OsMADS27, but sulphur deficiency
increased the expression of these genes significantly [35]. In a yeast two-hybrid experiment,
OsMADS27 was shown to bind to a protein implicated in ABA signaling (ABI5; [50]). Os-
MDP1 encodes a rice AG-like MADS-box protein found in vegetative tissues such as the
coleoptile, mature leaf, culm internode, root-elongation zone, and most significantly, the
joining area between the leaf blade and the sheath [51]. These findings indicate that several
MADS-box genes are critical in root development in many species, and that they respond
to environmental conditions through complicated regulatory mechanisms.

Expression of the XAANTAL1 (XAL1; formerly known as AGL12) ortholog OsMADS26
increases with age in rice, and overexpression of this MADS-box gene produces a variety of
stress-related responses, including decreased root growth and development [52]. Further-
more, another XAL1 ortholog, LOC_Os08g02070, is expressed preferentially in the rhizome
tips in another rice species, Oryza longistaminata [53]. Analysis of the root transcriptome
in wild emmer wheat (Triticum turgidum ssp. dicoccoides (Körn.) Thell.) showed that the
OsMADS26 ortholog MADS26 was upregulated in a drought-resistant genotype compared
to a drought-susceptible line, implying that XAL1 homologs contribute to varying degrees
to stress responses and plant development [54]. XAL1 is expressed during the develop-
ment of various organs, suggesting that it is a key component in complex networks that
affect multiple aspects of plant development. Furthermore, it is likely to be implicated in
both vegetative and reproductive epidermal cell patterning under different environmental
circumstances. However, additional research is required to test this hypothesis. Future
research should also focus on protein–protein interactions to understand the function of
XAL1 in processes such as root growth.

3. MADS-Box Gene Expression Profiles during Leaf Development in Rice

It has been shown that OsMADS22 and OsMADS55 encode negative regulators of
brassinosteroid responses, although their functions differ significantly by developmental
stage. OsMADS47 is expressed at high levels in seedling leaves, whereas the transcription
of OsMADS55 is highest in mature leaves. As a result of these contrasting expression
patterns, OsMADS55 and OsMADS47 are the primary negative regulators of brassinos-
teroid responses in leaves [55]. In the lamina joint of flag leaves in osmads22 osmads47
osmads55 triple mutant plants, two genes downstream of brassinosteroid synthesis (OsXTR1
and OsBLE3) were upregulated, whereas expression of two brassinosteroid biosynthesis
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genes (DWARF2 and BRD1) did not significantly change. These findings suggest that
genes in the short vegetative phase group interfere with the downstream signaling of
OsXTR1 and OsBLE3. Further studies into the interactions between proteins encoded by
brassinosteroid-responsive genes and downstream target genes are needed to verify this
hypothesis. Transgenic plants with reduced levels of OsMADS55 or OsMADS47 expression
show brassinosteroid-related aberrant phenotypes [51].

Gibberellic acid (GA) plays an important role in the regulation of seed germination,
leaf shape, and flowering. The gibberellic acid response element, the P-box, is present in
the promoter region of PvSOC1, but not in the promoters of SOC1/AGL20 or OsSOC1. The
expression of PvSOC1, from the bamboo Phyllostachys violascens, was found to be higher in
the leaves of seedlings after GA treatment, indicating a positive response to GA. PvSOC1
appears to be a multifunctional gene that influences leaf development and flowering [56].
PvSOC1 over-expression in Arabidopsis and rice resulted in early flowering, abnormal floral
organs, and deformed leaves. However, further research is required to identify the function
of PvSOC1 in rice and Arabidopsis.

4. MADS-Box Genes Are Responsible for Inflorescence Branching

The molecular processes driving the evolutionary and developmental dynamics of
inflorescences are largely unknown. This is in contrast to the relatively well-understood ge-
netic foundation of floral diversity, where MADS-box TFs have been revealed to play a key
role in reproductive processes [57,58]. Grasses (Poaceae), which include cereal crops such
as rice, have a different inflorescence design than eudicots such as Arabidopsis. Spikelets,
which are physically separate structural components, make up the inflorescence in grasses.
In Arabidopsis, it has been reported that both APETALA1 (AP1; formerly known as AGL7)
and LEAFY (LFY) inhibit inflorescence branching through interaction with the TERMINAL
FLOWER1 (TFL1) gene [59–61]. Furthermore, two AP1 homologs, CAULIFLOWER (CAL)
and FRUITFULL (FUL; formerly known as AGL8) repress the expression of TFL1. This
was verified in ap1 cal ful triple mutants, in which TFL1 functions in conversion of floral
meristems into inflorescences [62]. Four MADS-box TFs, SOC1, SVP, AGL24, and SEPAL-
LATA 4 (SEP4), suppress inflorescence branching by directly inhibiting TFL1 expression in
Arabidopsis [63]. It was further demonstrated that SVP, SOC1, AGL24, and SEP4 orthologs
in rice control panicle branching by modulating TFL1-like genes. These findings demon-
strate the existence of a conserved genetic mechanism in flowering plants that determines
inflorescence morphology. Studies of the gene expression programs downstream from
LFY and AP1 have shown that LFY and AP1 share several target genes and frequently
bind to contiguous locations in the Arabidopsis genome [59,64–67]. The findings of a meta-
analysis of existing genome-wide data sets for the two TFs confirmed a common set of
target genes [66]. LFY and AP1 regulate the expression of ~200 genes, many of which are
known regulators of floral development and branching. These common targets most likely
form the molecular foundation of the partial redundancy observed between AP1/CAL and
LFY in floral development. However, it is still unknown whether LFY and AP1/CAL work
independently or cooperatively in regulating the common target genes. MADS-box genes
reported participating in different developmental processes of Arabidopsis are tabulated in
Table 1.

TFL1 has an apparently conserved function; mutant rice plants ectopically expressing
TFL1 orthologs exhibit massive inflorescence branching [63,68]. It is therefore unknown
how TFL1-like genes are expressed in flowering plants to define specific types of inflo-
rescence design. In eudicots and monocots, TFL1-like genes are needed for meristem
indeterminacy [68–71]. Upregulation of the TFL1 homologs RCN1 and RCN2 in rice and
ZCN1 to ZCN6 in maize results in a branched inflorescence [68,70]. Future research should
examine the relationships between these MADS-box genes and other inflorescence charac-
teristics. For example, a study of OsMADS34, FLORAL ORGAN NUMBER4 (FON4), and
LAX PANICLE1 (LAX1) showed superior phenotypes of osmads34 fon4 and osmads34 lax1
double mutants compared with the single mutants; OsMADS34 interacts with LAX1 and
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FON4 to regulate many features of inflorescence shape, branching, and meristem activity.
Furthermore, a double mutant combining the sterile lemma-defective and osmads34 mutants
had longer and wider sterile lemmas, indicating that ELONGATED EMPTY GLUME (ELE)
and OsMADS34 work together to control sterile lemma development. OsMADS34 and
OsMADS15 may also cooperate to control the development of sterile lemmas [72].

Table 1. Roles of MADS-box genes in the development of Arabidopsis thaliana (L.).

Gene Locus ID Function Reference

STK/AGL11 At4g09960 Ovule development [19,30]

XAL1/AGL12 At1g71692 Root development; transition to flowering [73]

AGL15 AT5g13790 Embryogenesis; sepal and petal longevity; flowering repressor with AGL18;
fruit maturation [74–76]

AGL18 At3g57390 Flowering repressor with AGL15 [77]

AGL16 At3g57230 Number and distribution of stomata [78]

AGL17 At2g22630 Root formation; Flowering activator [31,32,79]

AGL6 At2g45650 Flowering activator; lateral organ development [80]

FLC/AGL25 At5g10140 Juvenile-to-adult transition; flowering repressor; flowering initiation,
flower organ development [81,82]

MAF2/AGL31 At5g65050 Flowering repressor [83]

AGL19 At4g22950 Flowering activator [84]

FUL/AGL8 At5g60910 Meristem identity specification; annual life cycle regulator with SOC1; fruit
development [62,85]

AP1/AGL7 At1g69120 Homeotic A-class gene; meristem identity specification [62]

AGL24 At4g24540 Flowering activator [86]

AGL23 At1g65360 Embryo sac development [87]

AGL28 At1g01530 Flowering activator [88]

AGL42 At5g62165 A marker for quiescent center identity cells [42]

AGL62 At5g60440 Central cell development [89]

5. Communicating Role from Vegetative to Flowering Transition

One of the most basic developmental alterations in the life cycle of flowering plant
species is the change from the vegetative to the reproductive stage [90]. Several investi-
gations have shown that flower growth in higher eudicot angiosperms is controlled by
a hierarchical network of regulatory genes [91]. Late- and early-flowering genes, which
are regulated by diverse environmental factors such as light quality, day length, and heat,
are at the top of the hierarchy. These genes may regulate the conversion from vegetative to
flowering development by activating meristem identity genes in response to environmen-
tal factors.

In Arabidopsis, SPLs are upstream activators and downstream targets of the floral-
transition MADS-box genes. Photoperiod strongly affects transcription of three miR156-
targeted SPLs (SPL3, SPL4, and SPL5), which are downregulated in short-day (SD) con-
ditions and upregulated in long-day (LD) conditions [92]. Another study demonstrated
that SPL3, SPL4, and SPL5 act in a dependent manner upon two related BELL1-like home-
odomain proteins, PENNYWISE (PNY) and POUND-FOOLISH (PNF), which act to specify
floral meristems through downregulation of miR156 [93]. This effect was verified in pny pnf
double mutants, in which expression levels of AP1 and three SPLs were drastically reduced
and plants were not able to produce flowers in response to inductive conditions. Further
research is needed to determine whether miR156 regulation of flowering is dependent on
the expression of PNY and PNF. SPL3 is regulated directly by SOC1 [94]; SPL4 expression is
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greatly decreased in soc1 ful double mutants in the SAM [94,95]. This interconnected feed-
forward loop may promote the transition from vegetative to reproductive development.
The reduction in miR156 accumulation in agl15 agl18 double mutants demonstrates that
AGL15 and AGL18 function as co-regulators with miR156 in the determination of flowering
time in Arabidopsis. AGL15 and AGL18 interact with putative CArG motifs in the MIR156
promoter both in vitro and in vivo [96–98].

In Arabidopsis, GA enhances the transition from vegetative to flowering development
by degrading transcriptional repressors DELLAs. However, the underlying processes are
still unknown. DELLA proteins interact with microRNA156-targeted SPL TFs to repress
transcriptional activation of MADS-box genes such as AP1, SOC1, and FUL, plant-specific
LEAFY (LFY) TFs, and miR172 [99–102].

In rice, the MADS protein family has 75 members, which are mainly divided into
five categories: MIKCC, MIKC, Mα, Mβ, and Mγ. Most are involved in regulating the
formation of floral organs [103] but MADS-box TFs are also related to several processes in
vegetative plant growth and development. There have been no reports of rice genes with
substantial similarity to FLOWERING LOCUS C (FLC; formerly known as AGL25) outside
of the MADS genes; however, the MADS-box gene OsMADS50/OsSOC1 has a similar
sequence to that of AtSOC1. It has been shown that OsMADS50/OsSOC1 is transcribed at
a somewhat higher level during the floral transition than during vegetative growth, and
that OsMADS50/OsSOC1 over-expression causes transgenic Arabidopsis plants to flower
early [104].

OsMADS50 and OsMADS56 encode MIKCC-type proteins that are homologs of Ara-
bidopsis SOC1, and the expression of both is affected by the circadian clock [105,106]. Under
LD conditions, OsMADS50 and OsMADS56 have opposing effects on flowering time in
rice. OsMADS56 is a flowering suppressor gene, whereas OsMADS50 can promote flow-
ering. In Arabidopsis, SOC1 is a downstream target gene of CONSTANS (CO), whereas
OsMADS50 and OsMADS56 are upstream of the flowering time regulatory network in rice.
In addition, expression analyses and interaction experiments for related genes have shown
that they also control flowering in rice by forming an antagonistic complex to regulate the
common downstream gene OsLFL1-Ehd1 (Early heading date 1). They are also independent
of flowering regulation by Hd1, SE5, and RID1/OsId1/Ehd2 [107].

Rice flowering time is determined by the expression levels of three additional SEP-like
MADS-box genes, OsMADS7, OsMADS5, and OsMADS8 [108,109]. TaMADS1, a wheat ho-
molog of rice OsMADS24, regulates floral development, and ectopic expression of TaMADS1
induces early flowering in Arabidopsis [5]. Overexpression of TaMADS1 also induces early
flowering and abnormal floral organ development in Arabidopsis [110]. Furthermore,
TaAGL6 overexpression also promotes early flowering in Arabidopsis [111]. Several studies
have shown that specific MADS-box genes in wheat affect flowering; however, compared
to species such as Arabidopsis and rice, there is still a great deal to be uncovered.

OsMADS14, OsMADS15, and OsMADS18 are all AP1/FUL genes that encode flower-
ing promoting factors that function downstream of OsMADS50 [105,112]. RNAi-mediated
suppression of these three genes results in a slight delay in the reproductive transition [112].
OsMADS51 and OsMADS65 are MADS-box genes of the MIKCC type, and OsMADS51
encodes a TF that promotes flowering under SD conditions [113].

6. Molecular Events at the Shoot Apical Meristem in Response to Photoperiodic Induction

Arabidopsis Florigen gene FLOWERING LOCUS T (FT) transcription and migration of
the encoded protein to the apical meristem are induced by inductive photoperiods, which
alter the regulation of genes involved in inflorescence formation. The FT–FD complex
in Arabidopsis shoot apical meristems is directed to the promoter of AP1, which encodes
a MADS-box TF required for flowering initiation and flower development [114]. Additional
MADS-box TFs that are necessary for FT-stimulated flowering, such as SOC1, is upregulated
early in the floral conversion. In Arabidopsis, SOC1 is regulated by two flowering regulators,
CO and FLC, which function as a floral activator and repressor, respectively [100,115,116].
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Other genes, such as FD PARALOGUE (FDP), may share FD function [114,117]. TWIN
SISTER OF FT (TSF) and FD activation by N6-benzylaminopurine treatments and physical
interaction between TSF and FD or FDP proteins [118] demonstrated that a TSF/FD(P)
complex is involved in promoting flowering [119]. Expression levels of both TSF and FDP
increased simultaneously in the leaves after N6-benzylaminopurine application, suggesting
that the TSF/FD complex may function in leaves. This was a surprising finding because FD
is primarily expressed in Arabidopsis root and shoots apices [114,117]. However, it has also
been reported that FD is necessary for FT to increase gene expression in leaves [120], and the
FD homolog SPGB (an AG-box factor called SPGB with a specific 14-3-3 adapter protein) is
expressed in both leaves and shoot apices in tomato [121]. The discovery of the TSF protein
in phloem sap [122] demonstrates that it could be a systemic signal. This indicates that
N6-benzylaminopurine initiates flowering by promoting transcription of TSF, which then
travels to the meristem and stimulates SOC1 and AP1 transcription by contact with FD or
FDP. Prior to the floral transition, flowering repressors are also present in the meristem. FLC
and SVP encode MADS-box proteins that significantly delay flowering [99,123–125]. These
proteins form a heterodimer that is hypothesized to suppress SOC1 transcription [126,127].
However, a study revealed that the flowering time was increased in flc svp double mutants
compared with either single mutant, implying that these proteins have both unique and
overlapping functions. Both proteins delay flowering by suppressing FT and TSF or SOC1
transcription in the leaf and meristem, respectively [118,128,129]. The MADS-box floral
activator FUL functions redundantly with SOC1, as demonstrated by the phenotypes of soc1
and ful single mutants [62,85,95]. The soc1 ful double mutants had increased abnormalities
in floral initiation and reproductive growth maintenance.

Both Hd3a and OsFD1 expression are necessary in rice protoplasts to stimulate the
expression of OsMADS15, a homolog of AP1. The hd3a mutants that cannot bind to
14-3-3 proteins and 14-3-3 knockouts are unable to stimulate OsMADS15 transcription [130].
Rice has a counterpart to SOC1 that is regulated by OsMADS50 and has been found to be
necessary for flowering induction [105]. The MADS-box genes OsMADS14, OsMADS18,
and OsMADS34 are required for normal inflorescence development, and their expression
is elevated in the SAM during the flowering transition [112]. These findings point to the
presence of a conserved floral initiation strategy in plant apical meristems, in which flori-
gens interact with FD-like TFs to induce transcription of several MADS-box genes slightly
earlier in the transition from vegetative growth to flowering. This core developmental plan
is linked to additional regulatory layers in order to fine-tune and sustain the floral transi-
tion [131,132]. Figure 1 includes several MADS-box genes responsible for root, seedling,
flowering, ovule, and pollen grain development of Arabidopsis.
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tative and reproductive tissues of the model plant Arabidopsis thaliana. Many MADS-box genes 

mediate the transition to flowering. Some MADS-box genes are involved in flowering time, such as 

AGL2 [133,134], AGL6 [80], FUL/AGL8 [62,85], XAL1/AGL12 [73], AGL15 [74–76], AGL17 [79], AGL18 

[77], AGL19 [84], SOC1/AGL20 [100], AGL24 [135], FLC/AGL25 [81,82], AGL28 [88], and 

MAF2/AGL31 [83]. MADS-box genes are also involved in root growth (e.g., XAL1/AGL12, AGL16, 

AGL17, AGL21, and AGL42) [31,32,42,73,78,79,136], pollen maturation and tube growth 

(AGL65/66/104) [137], ovule development (e.g., STK/AGL11, AGL23, AGL62) [19,30,87,89], and seed 

development (e.g., AGL23, AGL80) [87,138]. 
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Figure 1. The biological roles of MADS-box genes in controlling the development of various
vegetative and reproductive tissues of the model plant Arabidopsis thaliana. Many MADS-box
genes mediate the transition to flowering. Some MADS-box genes are involved in flowering
time, such as AGL2 [133,134], AGL6 [80], FUL/AGL8 [62,85], XAL1/AGL12 [73], AGL15 [74–76],
AGL17 [79], AGL18 [77], AGL19 [84], SOC1/AGL20 [100], AGL24 [135], FLC/AGL25 [81,82], AGL28 [88],
and MAF2/AGL31 [83]. MADS-box genes are also involved in root growth (e.g., XAL1/AGL12,
AGL16, AGL17, AGL21, and AGL42) [31,32,42,73,78,79,136], pollen maturation and tube growth
(AGL65/66/104) [137], ovule development (e.g., STK/AGL11, AGL23, AGL62) [19,30,87,89], and seed
development (e.g., AGL23, AGL80) [87,138].

7. Floret Pattern Initiation and Development

Although key aspects related to the genesis and diversity of flowers remain largely
unknown, the genetic control of flower shape has been widely investigated in diverse crop
species [139].

MADS-box proteins regulate inflorescence development by establishing a higher-order
combination, and rice has a large number of MADS-box genes [140]. The four putative
A-class genes in rice are OsMADS14, OsMADS18, OsMADS15, and OsMADS20 [140,141].
The double knockouts osmads14 osmads15 exhibit genuine homozygous genetic variation,
with abnormalities in the first and second whorls. The A-class gene OsMADS15 has been
demonstrated to be involved in palea development in a previous study [142]. Triple mutant
osmads14 osmads15 osmads18 plants show no phenotypic changes in floral development [112].
Rice also has two B-class orthologs, OsMADS2 and OsMADS4. It was demonstrated
that osmads4 mutant plants have normal lodicule and stamen characteristics, whereas
transgenic plants in which OsMADS2 silenced show differences in the lodicules but not
in the stamens. Instead of lodicules and carpel-like organs, transgenic plants lacking both
OsMADS4 and OsMADS2 have palea-like structures [143–146]. The C-class gene OsMADS3
is associated with meristem function in early and late floral development [147], whereas
the D-class gene OsMADS13 is required for ovule identity [148]. OsMADS3 is mainly
involved in the presumptive region of stamen and ovule primordia just before the initiation
of these organs [148]. Furthermore, OsMADS58 is upregulated in reproductive organs.
However, loss-of-function mutants for OsMADS3 have abnormal stamens but normal
carpel development. The osmads58 mutant has decreased floral meristem determinacy
instead of floral organ abnormalities. When OsMADS3 and OsMADS58 were silenced, the
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male and female reproductive organs were homeotically transformed into palea/lemma-
like organs and lodicules [148]. It is possible that differences in the proteins that interact
with OsMADS3 and OsMADS58 resulted in functional diversity. The precise molecular
mechanism behind the functional diversification of OsMADS3 and OsMADS58 remains
an interesting subject for future study. Overexpression of SVP-group MADS-box genes
produces flower deformities and floral reversion in Arabidopsis and barley [135,149], and
Sentoku et al. [150] showed that OsMADS22-overexpressing plants exhibit comparable
traits. Fertility and panicle length were also affected in OsMADS22-overexpressing plants.
Similarly, OsMADS55 overexpression lines showed reduced fertility, shorter panicles, and
malformed flowers [55].

OsMADS1, a SEP-like subfamily homolog, is expressed in the lemma and palea and
affects floral meristem identity [151]. The interaction of OsMADS1 with B-, C-, and D-
class proteins has been confirmed by yeast two-hybrid analysis; this interaction produces
a heterodimeric complex that influences floral meristem determinacy. The interaction of
OsMADS1 with OsMADS3 and OsMADS58 to determine stamen identity and prevent
spikelet meristem reversion has been demonstrated both in vitro and in vivo. Furthermore,
OsMADS1 is a positive regulator of OsMADS17 during floral development, whereas Os-
MADS1 and OsMADS13 function in meristem determinacy through partially independent
pathways. These findings suggest that OsMADS1 collaborates with another unknown
regulator to modulate meristem determinacy. OsMADS1 and OsMADS34 are involved
in the development of the four whorls of the floral organs as well as the development of
spikelet meristems [152]. This finding has been verified in osmads34 osmads1 double mu-
tants, demonstrating that OsMADS34 determines rice floral organ identity in combination
with OsMADS1.

The S-clade genes OsMADS62 and OsMADS63, as well as the P-clade gene OsMADS68,
are MIKC-type genes in rice. All three MIKC-type genes were found to be expressed in
the late developmental stages of pollen. Proteins from the different sub-clades form
heterodimers, which is very similar to the process that occurs in Arabidopsis [153,154].
OsMADS62, OsMADS63, and OsMADS68 transcripts are found in pollen but not in the
anther walls. These findings show that rice MIKC-type genes are only expressed in pollen
at late developmental stages, implying that they participate in pollen maturation [153]. The
osmads62 osmads63 osmads68 triple knockout mutants have a male-sterile phenotype [155],
similar to that of the rice immature pollen 1 (rip1) mutant. RIP1 functions in normal pollen
development, and rip1 mutants have a male-sterile phenotype and abnormal intine lay-
ers [156]. Furthermore, RIP1 is not expressed in osmads62 osmads63 osmads68 triple mutants.
It has been predicted that RIP1 may function upstream of OsMADS62, OsMADS63, and
OsMADS68, or in a different pathway containing those three MADS genes. Further study
is required to verify this prediction. MADS-box genes reported participating in different
developmental processes of rice are tabulated in Table 2.

In Arabidopsis, several genes play critical roles in floret development. TM5, FBP2,
and other AGL2-like genes are expressed in the petals and stamens [133,157,158]. In
addition, the AGL2-like genes serve as facilitators between the floral organ identity and
floral meristem genes in Arabidopsis [133,134]. SEEDSTICK (STK; formerly known as
AGL11), SHATTERPROOF (SHP) 1, and SHP2 are three D-class genes in Arabidopsis that
have overlapping functions in regulating ovule development [19,159,160]. This redundancy
has been verified through phenotyping single and triple mutants. XAL1/AGL12, the sole
member of the subfamily in Arabidopsis, is expressed in flowers [34].
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Table 2. MADS-box genes have different functions in different parts of the rice plant.

Gene Genomic Identity Function Reference

OsMADS1 LOC_Os03g11614 Involved in the early stages of rice floret development [161]

OsMADS3 LOC_Os01g10504 Meristem function in early and late floral development, involved in the
formation of stamens and ovules [147]

OsMADS5 LOC_Os06g06750 Expressed strongly across a broad range of reproductive stages and tissues [162]

OsMADS7 LOC_Os08g41950 Improves the stability of rice amylose content at high temperature [163]

OsMADS8 LOC_Os09g32948 Inflorescence branch meristems [152]

OsMADS13 LOC_Os12g10540 Ovule identity [148]

OsMADS14 LOC_Os03g54160 Flowering activator [112]

OsMADS15 LOC_Os07g01820 Flowering activator [112]

OsMADS16 LOC_Os06g49840 Regulation of floral organ development and pollen formation [164]

OsMADS17 LOC_Os04g49150 Regulates hormone signaling and floral identity [103]

OsMADS18 LOC_Os07g41370 Flowering activator [112]

OsMADS25 LOC_Os04g23910 OsMADS25 overexpression results in more lateral roots [29]

OsMADS26 LOC_Os08g02070 Expressed in rice leaves and inflorescences [165]

OsMADS27 LOC_Os02g36924 Produced more lateral roots [50]

OsMADS29 LOC_Os02g07430 Involved in programmed cell death (PCD) in the developing embryonic
cell nuclear region [166,167]

OsMADS34 LOC_Os03g54170 Involved in development of the inflorescence [152]

OsMADS50 LOC_Os03g03100 Flowering activator [107]

OsMADS51 LOC_Os01g69850 Flowering activator [113]

OsMADS56 LOC_Os10g39130 Flowering suppressor [107]

OsMADS57 LOC_Os02g49840 Expressed in root vasculature [35,44]

OsMADS61 LOC_Os04g38770 Expressed in root vasculature [35,44]

OsMADS62 LOC_Os08g38590 Rice anther development [168]

OsMADS63 LOC_Os06g11970 Rice anther development [168]

OsMADS68 LOC_Os11g43740 Pollen development [153]

OsMADS77 LOC_Os09g02780 Endosperm development [169]

OsMADS87 LOC_Os03g38610 Endosperm development [170]

OsMADS89 LOC_Os01g18440 Endosperm development [170]

8. MADS-Box Genes Play an Important Role in Seed Setting and Development

There are several key reproductive phases in the life cycle of an angiosperm that lead
to sufficient seed setting. Pollination and subsequent fertilization of the ovules in the flower
are key events to produce viable seeds. A large number of MADS-box mutants in flowering
plant species implies that members of this gene family perform important regulatory
functions in diverse conditions during seed development [34,171]. AGL21 inhibits seed
germination in Arabidopsis under osmotic stress conditions in addition to its function in
lateral root development [172]. Seeds of AGL21 loss-of-function lines germinate at a lower
rate than wild-type plants under salt stress (150 mM NaCl), severe osmotic stress (300 mM
mannitol), and ABA treatment. AGL21 controls the activity of ABI5, which is required for
ABA signaling, and ABI5 is required for AGL21-regulated seed germination. AGL15 is
involved in seed formation, and overexpression lines show delayed silique maturity and
seed desiccation [14].
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In the rice genome, the MADS-box genes are members of a large TF family contain-
ing almost 75 members [103]. The majority have reported involvement in floral organ
development, and some are important for endosperm development [63,173]. For example,
OsMADS29 is involved in seed development [166,167,174]; OsMADS87 is involved in en-
dosperm cellularization and seed size regulation [175]. Heat treatment (from moderate to
severe) for 48 h after fertilization reduces the expression of three rice MADS-box genes,
OsMADS82, OsMADS87, and OsMADS89, leading to reduced size and viability of rice
seeds [175]. This observation led researchers to investigate OsMADS87 in mutant rice
lines [175]. They discovered that RNAi lines maintained under ideal conditions showed
increased endosperm cellularization (the process during which the endosperm exits the
multi-nucleate stage and initiates cytokinesis) and decreased grain size due to reduced
OsMADS87 expression. However, OsMADS87 overexpression was found to have no effect
on endosperm cellularization but resulted in larger mature seeds. When heat-stressed
plants (35 ◦C) were compared to control plants, the overexpression and wild-type lines
had smaller seeds, but the RNAi lines were unaffected. It has also been reported that
OsMADS87 expression is temperature sensitive and negatively associated with increased
expression of OsFIE1, the only PRC2 complex member with heat sensitivity in ripening
rice seeds [176]. The Arabidopsis homolog PHE1 is responsible for early endosperm devel-
opment, although its role in seed size development is unknown. Moreover, rice plants
with both stable amylose concentration at high temperatures and spikelet fertility can be
obtained by inhibiting OsMADS7 function during endosperm development [163]. These
findings suggest that OsMADS7 is a promising candidate gene for maintaining stable
amylose contents in rice at high temperatures. Specifically reducing the expression of
OsMADS7 during rice endosperm formation may be an effective strategy for breeding
high-quality rice that is tolerant of temperature stress.

Several key genes are expressed in Arabidopsis during seed development. AGL62
controls the timing of endosperm cellularization; this process occurs prematurely in loss-
of-function of agl62 mutants, limiting normal embryo development [89]. AGL23 has been
linked to the formation of both female gametophytes and seeds. After megasporogenesis,
agl23 mutant ovules are partially inhibited, implying that AGL23 plays a function in early
embryo sac development [87]. AGL28 is a unique type I MADS-box gene because, in
addition to the embryo sac development, it is expressed in a variety of organs during seed
development [88].

It is worth mentioning that B-sister genes, a novel collection of MIKC MADS-box genes,
are close relatives of B-type genes [31]. B-sister proteins are found in both gymnosperm
and angiosperm species [166,177–179]. B-sister genes are important for ovule and seed
establishment in Arabidopsis [31,180,181]. An Arabidopsis B-sister gene, ARABIDOPSIS
BSISTER (ABS), controls endothelial growth and proanthocyanidin (PA) accumulation
in the seed coat [181–183]. GORDITA (GOA), another Arabidopsis B-sister gene, regulates
ovule coat production and fruit longitudinal development in a novel and non-redundant
manner [184].

The MADS-domain TF STK is involved in ovule identity determination [183] and
transmission tract development [185,186], and also plays a pivotal role in seed abscis-
sion [187,188]. The stk mutants are reported to have smaller seeds compared with wild-type
plants [19]. STK increases cell cycle progression in seeds via E2Fa, a pathway that is consid-
ered critical for seed size regulation [189]. It has also been reported that STK is necessary
for endothelium differentiation in conjunction with ABS [181]. In Arabidopsis thaliana,
mutations in XYLOSIDASE1 (XYL1) have a significant impact on seed germination, seed
size, and fruit development. The MADS-box TF STK regulates XYL1 expression, which is
directly involved in developing seeds and fruit [190]. Figure 2 includes several MADS-box
genes responsible for root, seedling, flowering, ovule, and pollen grain development of rice.
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Figure 2. The biological roles of MADS-box genes in controlling the development of various vege-
tative and reproductive structures in the rice plant. Many MADS-box genes mediate the transition
to flowering induction (e.g., OsMADS1 [161], OsMADS3 [147], OsMADS5 [162], OsMADS7 [163],
OsMADS8 [152], OsMADS14 [112], OsMADS15 [112], OsMADS17 [103], OsMADS18 [112], Os-
MADS26 [165], OsMADS34 [152], OsMADS50 [107], OsMADS51 [113], and OsMADS56 [107]).
MADS-box genes involved in tiller development include OsMADS26 [191] and OsMADS57 [50].
Those involved in root development include OsMADS25 [44], OsMADS26 [191], OsMADS27 [50],
OsMADS50 [49], OsMADS57, and OsMADS61 [38,44]; in ovule growth, OsMADS1 [161] and Os-
MADS13 [148]; in pollen grain maturation, OsMADS3 [147], OsMADS16 [164], OsMADS62, Os-
MADS63 [168], and OsMADS68 [153]; and in seed and endosperm development, OsMADS1 [161],
OsMADS29 [166,167,174], OsMADS77 [169], OsMADS82 [175], OsMADS87 [170,175], and Os-
MADS89 [170,175].

9. Concluding Remarks and Future Perspectives

Alterations in gene regulation are one of the most significant routes leading to pheno-
typic changes. Due to their capacity to affect gene expression, TFs can cause developmental
shifts. TFs have also been shown to function in regulating responses to environmental
stress throughout the plant life cycle. Furthermore, small changes in the expression of
a few key TFs have been shown to impact the development of numerous processes and
structures. Specific mutants have shown that TFs from the MADS-box gene family are
important regulators of Arabidopsis development at all growth stages. Multiple studies
have also shown that MADS-box genes play important roles in controlling plant responses
and tolerance to a wide variety of abiotic stimuli, highlighting their relevance as integrators
of environmental signals and endogenous hormones in a taxonomically diverse range of
plant species.

Several functional investigations have been undertaken into the developmental roles
of MADS-box genes in rice; however, a great deal remains unknown. Gene knockdown mu-
tants (single and higher-order) should be identified to expose the functional characteristics
of MADS-box genes throughout the development of rice plants. In addition, the interac-
tions of MADS-domain proteins with other proteins will aid in determining the molecular
functions of MADS-box genes in rice. The functional diversification process of duplicated
MADS-box genes, including OsMADS2, OsMADS3, OsMADS4, and OsMADS58, should
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also be addressed. Such an investigation, along with analogous observations in other
grass species, will contribute to the understanding of how grass flowers and inflorescences
evolved and diversified.

The significance of MADS-box genes has mainly been investigated in the model
plant Arabidopsis thaliana. The literature reviewed here, however, demonstrates that our
understanding is quickly evolving with respect to MADS-box genes that govern flower
development in rice due to the novel functional genomics methods now possible. The
rapid advances in this area were primarily a result of knowledge gained in Arabidopsis [192].
Many mutant populations based on transposons and T-DNA insertions are accessible
for functional investigations of rice genes [193,194]. CRISPR-Cas9 systems have been
widely exploited today as tools for genome editing in a variety of plant species [195,196].
A technique that uses chemical mutagens such as ethyl methanesulfonate (EMS) can also
be used to study gene function via reverse genetics [197–199].
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