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Abstract: Abiotic stresses, such as salt and drought, significantly affect plant development and are the
major limiting factors for crop quality and productivity. The manipulation of genes involved in plant
stress response facilitates plant mitigation of adverse environments. In this study, we characterized
CgbZIP1, a differentially expressed gene under normal and salinity conditions in Chrysanthemum
grandiflora. CgbZIP1 was significantly upregulated by salt stress and also strongly responsive to
drought stress and ABA treatments. Bioinformatics and subcellular localization analyses revealed
that CgbZIP1 is a bZIP transcription factor and localized to the nucleus. Transgenic tobacco plants
overexpressing CgbZIP1 exhibited significantly enhanced salt and drought stress tolerance associated
with characteristic morphological and physiological indexes. The results demonstrate the important
role CgbZIP1 plays in plant stress response and suggest its potential use in other crops for improved
stress resistance.

Keywords: Chrysanthemum grandiflora; bZIP transcription factor; transgenic tobacco; gene expression;
abiotic stress

1. Introduction

Plants living in nature face a variety of environmental adversities, including biotic
(pests, diseases, weeds, among others) and abiotic (low temperature, drought, high salinity
among others) stresses. Saline soil accounts for about 10% of the global cultivated area [1].
High salinity can damage plants from the toxic effect of excess sodium (Na+) and chlorine
(Cl−) ions on critical biochemical processes. Sodium accumulation also leads to osmotic
stress, thus reducing plant water utilization efficiency. Salt stress inhibits plant growth and,
affects productivity and ornamental value of crops. For coping with saline environments,
plants have developed various molecular, physiological, and biochemical mechanisms
for adaptation [2–4]. For example, a recent study suggests that night-time transpiration
and expansive leaf growth may be a potential acclimation mechanism under salt stress [5].
Changes in different biochemical and physiological processes also contribute to plant
adaptation to a saline environment, such as regulated H+-ATPase activity in the plasma
membrane, increased γ-aminobutyric acid shunt activity [6], and development of more
effective N metabolism regulation [7].

The bZIP TFs are the most widely distributed and most conserved TFs in eukaryotes.
At present, a large number of bZIP TFs have been identified in the genomes of different plant
species, including Arabidopsis thaliana, tepary beans (Phaseolus acutifolius) and rice (Oryza
sativa). They participate in various biological processes, including seed maturation, flower
development, light signaling, pathogen defense and response to various stresses [8–11].
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Particularly, accumulating evidence has demonstrated their involvement in regulating
plant response to various environmental adversities. Overexpression of ZmbZIP72 TF in A.
thaliana enhanced drought tolerance of transgenic plants [12]. Constitutive expression of a
bZIP TF in tomato significantly increased plant tolerance to drought and salt stresses [13].
Overexpression of an endogenous bZIP TF gene, OsbZIP23, in O. sativa led to upregulation
of hundreds of stress-responsive genes, largely in ABA-dependent stress response pathway,
and thereby enhanced plant tolerance to salt and drought stresses [14].

Chrysanthemum includes traditional flower plants in China that are popular and widely
cultivated. Chrysanthemum grandiflora is an important ornamental chrysanthemum in
Northern China with many advantageous characteristics, including low plant height,
concentrated flowering period, multiple flowers, rich colors, easy to manage, and strong
resistance to certain stressful conditions. Despite its adaptation to the bitter winter in
Northern China, its susceptibility to other environmental adversities, including drought
and salinity, significantly impacts its ornamental value and wide application. Efforts have
been made to better understand genetic determinants governing plant response to salt stress
in Chrysanthemum and for the identification of different candidate genes which provide salt
stress resistance. For example, the overexpression of DgWRKY4 and DgNAC1 enhances
plant salt tolerance in both Nicotiana tabacum and Chrysanthemum [15–17].

At present, a large number of functional genes in many ornamental plants, such as
Paeonia lutea [18], Helianthus annuus [19], Rose chinensis Jacq. [20], Rhododendron pulchu-
rum [21], and Phalaenopsisi aphrodite [22] have been annotated by transcriptome sequencing,
and explored to understand molecular mechanisms underlying ornamental plant growth
and development, flower formation, and stress response. Understanding molecular mech-
anisms in plant response to various abiotic stresses in Chrysanthemum is the key to the
development of novel biotechnology approaches to genetically improve Chrysanthemum
species for enhanced performance under adverse environmental conditions. In this study,
we analyzed TFs using transcriptome of C. grandiflora in response to salinity [23]. The
whole-genome transcriptome profiling led to the identification and cloning of a bZIP TF
gene, CgbZIP1 that was significantly induced by salt stress. Transgenic tobacco plants
constitutively expressing CgbZIP1 exhibited significantly improved tolerance to salt and
drought stresses, indicating the importance of the CgbZIP1 gene for use in genetically
engineering new cultivars in Chrysanthemum and other crops with enhanced performance
under environmental adversities.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The wild-type seedlings of the C. grandiflora ‘9717’ preserved in the tissue culture
room of the College of Landscape Architecture of Northeast Forestry University in Harbin
were used as the plant material of this experiment, which originally came from Flower
Research Center of Northeast Forestry University. The seedlings of the C. grandiflora were
grown to a root length of about 2–3 cm in MS solid medium and then transplanted into a
sterilized matrix prepared by mixing nutrient soil and vermiculite in a 1:1 ratio. Salt stress
was applied 40 days after transplanting. According to the pre-experimental results, the
NaCl concentration of 200 mmol·L−1 was selected, and the treatment was carried out every
5 days for 20 days. The untreated plants were used as controls. Each group consisted of
three biological replicates, and the leaves were quickly placed in liquid nitrogen and then
stored in a −80 ◦C refrigerator for RNA extraction.

2.2. Gene Expression Analysis

The six-leaf seedlings of the C. grandiflora plants grown in the MS solid medium were
transferred to Hoagland nutrient solution, grew hydroponically for one week, and subjected
to stress. Salt stress, drought stress and ABA stress were simulated in Hoggar culture
medium with 200 mmol·L−1 NaCl, 20% PEG 6000 and 200 µmol·L−1 ABA, respectively.
Samples were collected at 0 h, 1 h, 2 h, 4 h, 6 h, 12 h and 24 h with three biological



Agronomy 2022, 12, 556 3 of 14

replicates at each time point. The salinity and drought treatment, ABA concentration
and treatment time duration were determined according to previous publications with
minor adjustment [24–26]. RNA was extracted and analyzed by real-time quantitative PCR
(RT-qPCR) using the SYBR Green Real-Time PCR Master Mix Kit from Beijing Dixon.

2.3. Cloning of CgbZIP1 Gene and Construction of Expression Vector

Total RNA was extracted from C. grandiflora leaves, and reverse transcription reaction
was conducted using the ReverTra Ace® qPCR RT Master Mix with gDNA Remover Reverse
Transcription cDNA Synthesis Kit (TOYOBO). The upstream and downstream primers,
5′-GGAAACCTTATGCTTCACAC-3′ and 5′-ACGGAGGGTA TCTAAATGCT-3′, designed
based on the EST sequence of CgbZIP1 gene (accession number of MK986728) from the C.
grandiflora transcriptome database, were used to amplify CgbZIP1 by PCR. The amplified
CgbZIP1 gene was ligated to the pMD-18 T vector. The cloned CgbZIP1 gene was then
inserted in a pBI121-GFP binary vector after a cauliflower mosaic virus 35S gene promoter
(CaMV35S), linked to a CaMV35S-driven kanamycin resistance selectable marker gene
(Kan), generating a plant expression vector, p35S/CgbZIP1-35S/Kan.

To construct a CgbZIP1–GFP fusion gene, we amplified the CgbZIP1 gene without
the stop codon using 3′ and 5′ specific primers, 5′- GGTACCATGTCGAGGCAACCT
CGACT -3′ and 5′- ACTAGTGTTAATATGAAGCTTGCCCA -3′ (underlined are restric-
tion sites added, KpnI and SpeI). The amplified CgbZIP1 gene without a stop codon was
ligated to the 5′ terminal of the GFP coding region in a pBI121-GFP binary vector after
a cauliflower mosaic virus 35S gene promoter (CaMV35S), linked to a CaMV35S-driven
kanamycin resistance selectable marker gene (Kan), generating a plant expression vector,
p35S/CgbZIP1–GFP-35S/Kan.

2.4. Subcellular Localization of CgbZIP1 Protein

The CgbZIP1–GFP recombinant gene construct, p35S/CgbZIP1–GFP-35S/Kan and the
control vector, p35S/GFP-p35S/Kan were introduced into the onion epidermis by the gene
gun method, and the fluorescence was observed by a confocal laser scanning microscope
(LSM 700, Zeiss, Germany).

2.5. Production and Identification of Transgenic Tobacco

Transgenic tobacco plants (Nicotiana tabacum cv K326) harboring p35S/CgbZIP1-
35S/Kan were generated using Agrobacterium-mediated transformation of the leaf discs
as previously described [27]. Putative transgenics were selected in a rooting screening
medium supplemented with kanamycin, and the leaves of different transgenic lines were
sampled for DNA and RNA extraction to confirm transgene insertion and expression.

2.6. Assessment of Stress Resistance in Transgenic Tobacco

Plant salt stress response was first evaluated by testing seed germination in culture
medium. To this end, the seeds of the WT and transgenic lines T9, T10, and T11 were
disinfected in sterile console, and uniformly seeded on the divided four areas in 1

2 MS
solid medium supplemented with 150 mM NaCl. Seed germination and plant growth were
observed and photographed 20 d after treatment.

Evaluation of plant response to salt and drought stresses in soil was started by first
transplanting the well-grown seedlings of the WT and transgenic plants with 5–6 leaves
from MS solid medium to soil and maintaining them for two weeks. Salt stress was then
conducted by applying 200 mmol·L−1 NaCl every 5 days, and drought stress was applied
by water withholding. Three biological replicates in each line for both salt and drought
stresses were taken. Plant phenotypic changes were recorded by photograph.

Samples of stressed plants were taken as described above to measure the physiological
parameters of both transgenic and WT tobacco plants. Superoxide dismutase (SOD), perox-
idase (POD), and malondialdehyde (MDA) were measured using Superoxide Dismutase
Activity Assay Kit, Peroxidase Activity Assay Kit, and Micro Malondialdehyde Assay Kit,
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respectively, following manufacturer’s instruction (Beijing Solarbio Science & Technology
Co., Ltd., Beijing, China).

For stress treatment, there were six replicates for each line in every experiment for salt
and drought stress test. Every experiment was repeated twice.

3. Results
3.1. Identification of Differentially Expressed TF Genes in C. grandiflora in Response to Salt Stress

In search for salinity-responsive TFs (TFs) among unigenes in the transcriptome of C.
grandiflora previously obtained by RNA-seq [22], we identified a total of 1049 putative TFs.
The TF gene families with five or more unigenes identified in the C. grandiflora transcriptome
are displayed in Figure 1A, of which the top five are MYB-like (256), AP2/ERF (135), bHLH
(120), WRKY (111), and bZIP (61).
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Figure 1. (A) Distribution of transcription factors (TFs) in C. grandiflora’s transcriptome. (B) Dis-
tribution of transcription factors (TFs) differentially expressed in salt-treated and control plants of
C. grandiflora.

Further analysis of the TFs identified in salt-treated and control plants revealed a
total of 159 differentially expressed genes (DEGs) classified in 20 categories, of which
the top five are bHLH (36.23%), AP2/ERF (27.17%), MYB (19.12%), WRKY (15.90%), and
bZIP (14.90%) as shown in (Figure 1B). Members of different TF gene families, such as
AP2/ERF, bHLH, MYB, WRKY, and bZIP play important regulatory roles in plant growth
and development, as well as plant response to biotic and abiotic stress. Some of them,
like NAC, WRKY, and MYB TFs, have previously been implicated in plant stress response
in Chrysanthemum [28–30]. However, the role of bZIP TFs in plant stress response in
Chrysanthemum remains largely unknown. The salt responsive DEGs in the bZIP TF gene
family identified in Chrysanthemum were listed in Table 1; c26412.graph_c0, one of the
bZIP TFs most significantly induced by salt stress, was chosen for further analysis and
named CgbZIP1.
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Table 1. Annotation of differentially expressed bZIP TFs in salt-treated and control plants of
C. grandiflora.

Gene #ID log2FC Pfam_annotation nr_annotation

c26412.graph_c0 3.98 bZIP TF; Basic region leucine zipper predicted protein [Hordeum vulgare subsp.
vulgare]

c38401.graph_c0 1.18 – PREDICTED: TF VIP1 isoform X2 [Nelumbo
nucifera]

c39230.graph_c0 −3.49 bZIP TF; Basic region leucine zipper hypothetical protein JCGZ_11804 [Jatropha
curcas]

c43517.graph_c0 2.29 bZIP TF PREDICTED: TF RF2a-like [Solanum
tuberosum]

c44927.graph_c0 −2.56 Homeobox domain; bZIP TF hypothetical protein CISIN_1g0032502mg,
partial [Citrus sinensis]

c45723.graph_c0 −1.39 Basic region leucine zipper; bZIP TF PREDICTED: uncharacterized protein
LOC103705064 [Phoenix dactylifera]

c48234.graph_c0 1.11 Basic region leucine zipper; bZIP TF unnamed protein product [Vitis vinifera]

c48785.graph_c1 7.80 bZIP TF; Basic region leucine zipper PREDICTED: ocs element-binding factor
1-like [Sesamum indicum]

c51234.graph_c0 1.33 –
PREDICTED: ABSCISIC

ACID-INSENSITIVE 5-like protein 5
[Sesamum indicum]

c54119.graph_c1 −1.33 Basic region leucine zipper; bZIP TF bZIP TF FD homolog [Chrysanthemum
seticuspe f. boreale]

c54748.graph_c0 3.13 G-box binding protein MFMR; bZIP
TF; Basic region leucine zipper

hypothetical protein PRUPE_ppa006173mg
[Prunus persica]

c55167.graph_c0 1.23 bZIP TF; Basic region leucine zipper BnaC04g52230D [Brassica napus]

c56024.graph_c0 1.21 bZIP TF; Basic region leucine zipper PREDICTED: G-box-binding factor 4 [Vitis
vinifera]

c59327.graph_c0 1.05 bZIP TF; Basic region leucine zipper PREDICTED: probable TF PosF21 [Nicotiana
tomentosiformis]

3.2. Molecular Characterization of CgbZIP1

We cloned CgbZIP1 by RT-PCR based on its EST sequence from the C. grandiflora
transcriptome database. Its ORF is 867 bp long encoding a protein of 288 amino acids. The
deduced polypeptide has a molecular weight (MW) of 32.32 kd and an isoelectric point
(pI) of approximately 8.21. Protein sequence analysis revealed that CgbZIP1 has a coiled-
coil domain, the primary and leucine zipper (bZIP) conserved region located at positions
162–206 (Figure 2A,B). Phylogenetic analysis based on the amino acid sequences of the
CgbZIP1 protein and bZIP proteins from other plant species classifies CgbZIP1 protein to
the group E Figure 2C [7], in the same branch with AtbZIP79 from Arabidopsis and close
to SlbZIP64 from tomato (Solanum lycopersicum), and IbbZIP1 from (Ipomoea batatas). Of the
bZIP proteins belonging to this group, StbZIP61, a TF in potato, involves in plant defense
against Phytophthora infestans infection by regulating the biosynthesis of salicylic acid [31],
and the sweet potato IbbZIP1 improves plant tolerance to drought and salt stress when
overexpressed in Arabidopsis plants [32].
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Figure 2. Sequence analysis of CgbZIP1. (A). Prediction of the conserved domain of CgbZIP1. Con-
served Domain Search Service on NCBI was used to identify the conserved domain of CgbZIP1.
(B). Amino acids sequence alignment between CgbZIP1 and six homologous bZIP proteins from Ara-
bidopsis, tomato, and sweet potato, including AtbZIP79 (NM120566.6), AtbZIP78 (NM001340558.1),
SlbZIP64 (SGN-U572343), AtbZIP76 (NM001036128.2), IbbZIP1 (XP_019169177.1), and AtbZIP77
(NM001333158.1). The red frame shows the conserved basic leucine zipper (bZIP) domain. (C). Phy-
logenetic relationship of CgbZIP1 with other bZIP proteins. MAGA7 and DNAMAN software were
used to compare multiple sequences and construct the phylogenetic tree by the Neighbor-Joining
method [33].

3.3. Spatiotemporal Expression Pattern of CgbZIP1 Gene under Abiotic Stresses and
ABA Treatment

The CgbZIP1 gene expression in the leaves of the C. grandiflora was significantly
induced by salt stress. CgbZIP1 expression increased sharply 1 h after treatment, then
declined, and increased again at 4 h and eventually became stabilized, but remained twice
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as high as that in the untreated control. Interestingly, CgbZIP1 expression in the roots was
down-regulated compared with that in untreated control Figure 3A.
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Figure 3. (A). Expression pattern of CgbZIP1 under salt stress. (B). Expression pattern of CgbZIP1
under PEG drought stress. (C). Expression pattern of CgbZIP1 under ABA stress. Error bars represent
SE. Asterisks (*, ** or ***) indicate a significant difference of relative expression level between different
stress time points and controls at p < 0.05, 0.01, or 0.001, respectively, by the Student’s t-test.

Under drought stress simulated by PEG treatment, CgbZIP1 was upregulated 1h after
treatment in leaves, then declined. It was significantly induced again 6 h after treatment,
and then gradually went down but remained higher than the control 24 h after treatment.
Similarly, CgbZIP1 was also upregulated in roots 1 h after treatment, then declined. Its
expression rose again significantly 4 h after treatment, and then dropped sharply to the
levels comparable to that in the controls Figure 3B.

When treated with the hormone ABA, the expression of CgbZIP1 gene was upregulated
in the leaves of the C. grandiflora, and the trend was to rise first, then flatten and eventually
increase steadily. At 2 h, the expression level was equivalent to that in the control and
then continued to grow steadily at the following time points, reaching a peak at 24 h. The
expression of CgbZIP1 in the roots was initially down-regulated compared with the control,
dropping to the lowest at 1 h, only 1/5 of that in the control. At 2 h, the expression rose to
the same level as that in the control, then declined to about half of that in the control for the
remaining time points Figure 3C. Intriguingly, there was a discrepancy in gene expression
between leaves and roots, induced vs. declined, triggered by various environmental stimuli,
especially by salt stress Figure 3A and ABA treatment Figure 3C for the CgbZIP1 gene. This
may be associated with different requirements of plant organs in CgbZIP1-mediated target
gene expression responding to environmental stimuli. Similar observations have also been
reported in other genes and plant species. For example, HKT Na+ transporter genes play
an important role in plant salt stress response. The levels of expression of the different rice
HKT Na+ transporter genes exhibit differentiated expression patterns in leaves and roots
upon salt stress [34].

3.4. Subcellular Localization of CgbZIP1

The CgbZIP1 gene, registered in NCBI with an accession number of MK986728, has
an open reading frame (ORF) of 867 bp encoding 288 amino acids. To examine the sub-
cellular localization of the CgbZIP1 protein, the CgbZIP1–GFP fusion gene construct,
p35S/CgbZIP1–GFP-p35S/Kan, and the control vector, p35S/GFP-p35/Kan were intro-
duced into the onion epidermis. As shown in Figure 4, the fluorescent signal of the
PBI121-CgbZIP1–GFP protein was only found in the nucleus, however, the fluorescent
signal of the positive control was present throughout the cell. This confirmed that the
CgbZIP1 protein localizes to the nucleus.
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Figure 4. Subcellular localization of CgbZIP1 in onion epidermal cells. Genes encoding GFP and
CgbZIP1–GFP fusion proteins were driven by the CaMV35S promoter. Nuclear localized signals of
the CgbZIP1–GFP fusion protein were indicated by arrows. Bars = 100 µm.

3.5. Production of Transgenic Tobacco Overexpressing CgbZIP1

To examine whether or not CgbZIP1 is involved in plant stress response, we gener-
ated transgenic tobacco plants harboring the CgbZIP1 expression vector, p35S/CgbZIP1-
35S/Kan. PCR analysis of genomic DNA from a total of 9 putative transformation events
confirmed the integration of the transgene into the host genome (see example in Figure 5A),
and RT-PCR analysis demonstrated the expression of CgbZIP1 in all transgenic lines (see
example in Figure 5B). There were no observable differences between transgenics and
wild-type controls in plant morphology and development under normal conditions. Four
homozygous TG lines, T9, T10, T11 and T17, representative of all the independent TG lines
obtained, were chosen for further analysis.
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Figure 5. (A) PCR analysis of plant genomic DNA to confirm the presence of CgbZIP1 in transgenic to-
bacco genome. M: Molecular-weight standard; W: water; WT: wild-type; P: pBI121-CgbZIP1–GFP plas-
mid DNA. (B) RT-PCR analysis of CgbZIP1 expression in transgenic lines and wild-type (WT) controls.
M: Molecular-weight standard; T9,10,11,17,18: CgbZIP1 transgenic lines; P: pBI121-CgbZIP1–GFP.

3.6. Transgenic Plants Overexpressing CgbZIP1 Exhibit Enhanced Tolerance to Salt Stress

To investigate how CgbZIP1 expression would impact plant response to salt stress,
we first examined seed germination in 1

2 MS solid medium prepared using 150 mM NaCl
solution instead of water. The seeds from transgenic tobacco lines 9, 10, and 11 and the wild-
type controls were simultaneously sown in the same medium divided into different regions.
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Although the germination rates and growth of the three transgenic lines were slightly
different, they all performed significantly better than wild-type controls (Figure 6A).
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Figure 6. Comparison of the seed germination and growth between wild-type (WT) and transgenic
(TG) plants under salinity stress. (A). Germination of WT and TG seeds on 1

2 MS medium containing
150 mM NaCl for 20 d. (B). Comparison of the WT and TG tobacco seedlings from (A) 20 d after
salt stress. (C). Phenotypic characteristics of the TG and WT control plants under salt stress. (a): 0 d,
top view; (b,c): 10 d after salt stress, top view and side view, respectively; (d,e): 20 d after salt stress,
top view and side view, respectively. (D). Physiological parameters associated with plant stress
response measured at various time points after salt treatment. (a) Effect of salt stress on plant SOD
activity. (b) Effect of salt stress on plant POD activity. (c) Effect of the salt stress on plant MDA
content. (d) Effect of salt stress on leaf width of the tobacco seedlings. (e) Effect of the salt stress
on root length of the tobacco seedlings. Each column represents mean of three biological replicates.
Error bars represent SE. A significant difference between WT and each TG line at p < 0.05, 0.01 or
0.001 by Student’s t-test was represented as “*”, “**” or “***”, respectively.

Under salt stress, the growth of wild-type plants was significantly inhibited, the root
length was significantly shorter than that of the transgenic plants, and the roots had no
branches. Wild-type controls had only two true leaves, whereas the transgenic plants had
four true leaves. The wild-type leaves were yellow, whereas the leaves in transgenic plants
were green and significantly larger than the wild-type controls Figure 6B.

The involvement of CgbZIP1 gene in plant salt tolerance was further studied by
assessing the performance of both the CgbZIP1 transgenic plants and wild-type controls
grown in soil and subjected to 200 mmol·L−1 NaCl treatment every 5 d. As shown in
Figure 6C, the CgbZIP1 transgenic plants were largely similar to wild-type under normal
conditions, but significantly superior to wild-type controls in both plant height and growth
status under salt-stressed conditions.
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In order to study the role CgbZIP1 plays in plant response to salt stress, several
physiological parameters including SOD, POD, MDA were analyzed as shown in Figure 6D.
The three physiological parameters showed similar trends in change between normal
and salt stress conditions. In the absence of stress, the SOD activity was similar between
wild-type and transgenic plants. When subjected to stressful conditions, however, with
the prolonged stress time, the SOD activity in wild-type controls increased first and then
rapidly declined, whereas that of the transgenic plants increased steadily. Similar patterns
of the change in the POD activity between wild-type and transgenic plants were also
observed. The MDA content in wild-type controls gradually increased with the prolonged
stress time and was always higher than that in transgenic plants. The leaf width and root
length in transgenic lines were both significantly higher than those in wild-type controls.

3.7. Transgenic Plants Overexpressing CgbZIP1 Exhibit Enhanced Tolerance to Drought Stress

To study how overexpression of CgbZIP1 would impact plant response to water
deficiency, drought stress was applied to both wild-type and CgbZIP1 transgenic plants
by water withholding for 20 days. As shown in Figure 7A, although both impacted by the
stressful condition, transgenic plants performed much better than wild-type controls. Most
transgenic plants grew normally, whereas the wild-type controls all wilted.
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Figure 7. (A). Performance of transgenic (TG) and wild-type (WT) control plants under drought
stress. (a): 0 d, top view; (b,c): 10 d after water withholding, top view and side view; (d): 20 d after
water withholding, top view. (B). Physiological parameters associated with plant stress response
measured at various time points after drought stress. (a) Effect of the drought stress on plant SOD
activity. (b) Effect of the drought stress on plant POD activity. (c) Effect of drought stress on plant
MDA content. Each column represents the mean of three biological replicates. Error bars represent
SE. A significant difference between WT and each TG line at p < 0.05, 0.01 or 0.001 by the Student’s
t-test was represented as “*”, “**” or “***”, respectively.

We further compared several physiological parameters, including SOD, POD, and
MDA, between wild-type and transgenic plants. As shown in Figure 7B. The three phys-
iological parameters displayed similar trends in change between normal and drought
stress conditions. In normal conditions, the SOD activity, POD activity and MDA content
were all similar in both wild-type and transgenic lines. After 5, 10 and 15 d of drought
treatment, the activities of SOD, POD in transgenic lines were significantly higher than
those in wild-type controls, while the content of MDA was lower in transgenic lines than in
wild-type control plants.

4. Discussion
4.1. TF Analysis Based on Transcriptome in Plants under Salt Stress

Based on high-throughput transcriptome sequencing data analyzing global gene
expression in salt-stressed C. grandiflora plants and their controls, we have compared
differentially expressed regulatory genes in the control group and the salt-stressed group,
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revealing the possible involvement of several families of TFs in plant response to salt stress
in C. grandiflora. We found 159 DEGs can be classified in 20 TF families. While genes from
most of these families, including MYB, bHLH, and AP2/ERF have been demonstrated to
be involved in plant response to salinity [35–39], less study has been conducted on genes
from the TF families like BRX, Dof and GRAS. In our transcriptome data, a high percentage
of DEGs enriched in the plant hormone signaling pathway was found by comparing the
DEGs between the control and salt-stressed groups. This indicates that the plant hormone
signal transduction pathway plays an important role in the plant stress response, and is
worth further investigation into related genes. In the plant hormone signal transduction
pathway, the largest number of differentially expressed genes are related to abscisic acid
(ABA) signaling. In the ABA signal recognition and transduction pathway, seven PYR/PYL
genes and three genes in SnRK2 family were down-regulated, while seven PP2C genes
and two ABF genes were upregulated. PYR/PYL proteins are a type of ABA receptors
and signal regulators at the most upstream of the ABA signaling pathway [40]. Type
2C protein phosphatases (PP2C) are negative regulators of ABA signal transduction, and
SnRK2 protein kinases are positive regulators of ABA signal transduction. These three core
components constitute a double negative regulator in the ABA signal transduction system.
By regulating these three signal factors in the ABA signaling pathway, plants can adjust
hormone levels to respond when they are under stress [41]. Type 2C protein phosphatases
negatively regulate the ABA response. Almost all PP2C members in Arabidopsis and Oryza
sativa are upregulated in response to abiotic stresses such as cold, heat, PEG and salt
treatments [42], consistent with the observation in our research. ABFs, the ABRE-binding
proteins, are TFs in the Arabidopsis alkaline region leucine zipper (bZIP) TF family that
recognize and bind to the abscisic acid response element in the promoter and regulate the
expression of downstream stress response genes in ABA signaling. They demonstrated
a key role in salinity stress response in various plant species, such as cotton [43], Oryza
sativa [13] and rapeseed [44]. TFs that regulate the expression of different target genes thus
play an important role in plant abiotic stress control.

4.2. Molecular Mechanism of the bZIP TF-Mediated Plant Response to Abiotic Stress

Abiotic stress impairs plant growth by causing various damages at the cellular
level [45]. TFs play an important role in various plant biological processes. TFs such
as MYC/MYB, basic leucine zipper (bZIP), and WRKY interact with specific and conserved
DNA sequences (corresponding regulatory elements) in the promoter of abiotic stress-
responsive genes, regulating at the transcriptional level their expression. Plant-specific
bZIP TFs are among the transcriptional regulators associated with abiotic stress conditions.
A number of bZIP genes have previously been shown to be transcriptionally responsive to
drought and osmotic stress [46–48]. Some of them have been implicated in abiotic stress
response and ABA signaling in various species [49–51]. Consistent with this, in our study,
real-time quantitative PCR was used to examine the expression of CgbZIP1 gene in roots
and leaves of C. grandiflora under three different abiotic stresses revealed that the CgbZIP1
gene responded significantly to salt, drought and ABA stresses.

In this study, drought and salt treatments were applied to transgenic tobacco overex-
pressing the CgbZIP1 gene of C. grandiflora. Transgenic tobacco exhibited higher antioxidant
enzyme activity, lower MDA content, and better growth response under salt and drought
stress conditions, indicating an improved tolerance to salt and drought stress compared
to wild-type tobacco. Similar results that bZIP TFs positively regulate plant abiotic stress
response have also been reported in other species. For example, the transgenic Arabidop-
sis overexpressing a wheat bZIP TF gene, TabZIP showed healthier plant growth than
wild-type controls under both salt and drought stress conditions [52]. Heterologous over-
expression of the TF, ThbZIP1 from Tamarix hispida in transgenic tobacco led to changes in
stress-related parameters such as malondialdehyde, superoxide dismutase, peroxidase and
chlorophyll content and enhanced plant tolerance to salt and drought stress, but increased
ABA sensitivity [49]. Ying et al. [11] overexpressed the maize ZmbZIP72 TF in Arabidopsis
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and observed enhanced drought and salt stress resistance associated with changes in var-
ious physiological parameters, including electrolyte leakage, proline content, and water
retention capacity in transgenic lines. Our study in C. grandiflora provides new evidence
substantiating the role some bZIP TFs play in positively regulating plant response to salt
and drought stress. The fact that CgbZIP1 expression is spatiotemporally regulated by ABA
Figure 3C suggests that the CgbZIP1-mediated plant stress response likely involves an
ABA-dependent pathway.

5. Conclusions

In conclusion, we cloned and studied a bZIP TF gene, CgbZIP1, from C. grandiflora.
Heterologous expression of CgbZIP1 in tobacco led to enhanced plant tolerance to salt
and drought stress, suggesting its potential use as a candidate in other crop species for
genetically engineering new cultivars better adapting to adverse environments. To our
knowledge, this is the first bZIP TF from C. grandiflora implicated in plant stress response.
Its further characterization in unravelling the molecular mechanisms underlying CgbZIP1-
mediated plant response to abiotic stress would allow additional new strategies to facilitate
the molecular breeding of crops for improved plant stress resistance and enhanced agricul-
ture productivity.
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