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Abstract: The occurrence of cucumber downy mildew in solar greenhouses directly affects the
yield and quality of cucumber. Chemical control methods may cause excessive pesticide residues,
endanger food quality and safety, pollute the ecological environment, etc. Therefore, it is very
important to predict the disease before its occurrence. To provide farmers with better and effective
guidance for the prevention and control work, minimize the loss of disease damage, this article took
cucumber ‘Lyujingling No. 2′ as the experimental material and acquired greenhouse environmental
factors data by wireless sensors, including Temp (Temperature), RH (Relative Humidity), ST (Soil
Temperature) and SR (Solar Radiation). LSTM (Long Short-Term Memory) neural network structure
was constructed based on Keras deep learning framework to develop a prediction model with
time-series environmental factors. Combined with the occurrence of downy mildew from manual
investigation and statistics, through debugging the parameters, this article developed an occurrence
prediction model for cucumber downy mildew and compared it with KNN (K-Nearest Neighbors
Classification) and ANN (Artificial Neural Network). In the prediction model, the forecasted results
of the four environmental factors were consistent with the true value distributions, and R2 (R-Squared)
were all above 0.95. Among them, the ST variable predicted the best results, e.g., R2 = 0.9982, RMSE
(Root Mean Square Error) = 0.08 ◦C, and MAE (Mean Absolute Error) = 0.05 ◦C. In the disease
occurrence prediction model, the training accuracy was 95.99%, the Loss value was 0.0159, the disease
occurrence prediction Accuracy was 90%, Precision was 94%, Recall was 89%, F1-score was 91%, the
AUC (Area Under Curve) value was 90.15%, and Kappa coefficient was 0.80. It also had obvious
advantages over other different models. In summary, the model had a high classification accuracy
and performance, and it can provide a reference for the occurrence prediction of cucumber downy
mildew in actual production.

Keywords: Pseudoperonospora cubensis; greenhouse; fruit cucumber; forecast model; deep learning

1. Introduction

Cucumber downy mildew is a devastating leaf disease caused by the oomycete Pseu-
doperonospora cubensis (Berk. & Curt.) Rostov., the pathogenic processes and epidemiology
are closely related to environmental conditions [1]. P. cubensis is spread via wind-borne
sporangia, which can be transported long distances and still maintain strong activity. The
climate environment in solar greenhouses is conducive to the dispersal of pathogens and
sporangia infection, leading to the serious occurrence and rapid spread of cucumber downy
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mildew [2,3]. If it is not controlled in time, it will cause major production and economic
losses [4]. At present, chemical agents are mainly used in production to prevent and control
cucumber downy mildew, which not only contradicts the concept of green development,
but also causes excessive pesticide residues, endangers food quality and safety, and pollutes
the ecological environment. Therefore, accurate and effective disease prediction is of great
significance to the meticulous management, intelligent decision-making of cucumbers, and
sustainable development of the agro-ecosystem.

In the past, disease prediction usually adopted the method of field investigation,
sampling analysis, and relied on experts’ experience to predict. However, this method had
disadvantages such as the labor intensity being high, the accuracy being low, and the time-
consuming being long, which might delay the best period of prevention and control [5,6].
To solve these problems, scholars respectively proposed the following predicting methods.
Pouzeshimiyab et al. [7] evaluated the sporangia concentration in the air and used climate
variable factors as the predictors of the downy mildew linear regression model to reduce the
risk of disease infestation in northwestern Iran. In the research of indoor cucumber downy
mildew, Neufeld et al. [8] took the hours of daily temperature and relative humidity ≥80%
as the input, developed a cucumber downy mildew infection risk prediction model to
predict the risk of squash, and cantaloupe infestation within 24 and 48 h. The authors [9,10]
used threshold data such as temperature and humidity, developed an early warning model
and early warning system to predict the infection and occurrence of unheated greenhouses
cucumber downy mildew in China. The above methods together show that it is feasible and
effective to predict cucumber downy mildew through environmental factors. However, they
are the main form of logic-based learning, which all belong to inductive logic programming
into methods in principle. It is worth mentioning that this method is more complicated,
and if used incorrectly, it will reduce the credibility and accuracy of disease prediction. On
the other hand, because the changes of environmental factors in greenhouses are affected
by many factors, each change is different and has no fixed rate, which is nonlinear [11].
The increase in data categories and scale will affect the definition of model variables and
modeling efficiency.

With the development of machine learning, the Internet of Things, big data technology,
and high-performance computing provides higher accuracy and application range for the
prediction of agricultural diseases [12]. Jia [13] determined the input factors of the model
by reading and analyzing a large number of documents, and used the support vector
machine and decision tree algorithms to develop a greenhouse cucumber downy mildew
prediction model. Bhatia et al. [14] realized the prediction of tomato powdery mildew
with the extreme learning machine algorithm based on various meteorological parameters
such as solar radiation, wind speed, humidity, temperature, and leaf humidity acquired in
real-time by sensors. Xu et al. [15] established a crop disease prediction framework based on
ensemble learning and spatio-temporal recurrent neural network (STRNN). Hsieh et al. [16]
built a rice blast prediction model based on Auto-Sklearn and neural network algorithms
combined with the weather data and rice blast disease (RBD) data. The above methods
are part of the classic algorithm of machine learning and have a good prediction effect.
However, they have poor ability to extract long-term sequence data, that is, they cannot
be well correlated with previous data features information during prediction. Due to the
lack of memory ability, the robustness of these models will be limited when predicting data
based on the learning process.

Long Short-Term Memory (LSTM) is a neural network model proposed to solve the
long-term dependency problem and is commonly used for the prediction of time-series
data [17]. It optimizes the gradient disappearance and gradient explosion problems in
the iterative process of RNN by changing the internal structure and has been widely used
in trajectory prediction [18], air pollution prediction [19], electricity load forecasting [20],
traffic flows prediction [21], stock market prediction [22], and other fields, and has achieved
good results. Poornima et al. [23] developed a drought index prediction model based on
LSTM to predict standardized precipitation index, standardized precipitation evapotran-
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spiration index, and severity. Shin et al. [24] used LSTM to analyze the impact of natural
disasters on agricultural products prices, used rice, onions, spring onions, spinach, and
zucchini as the target agricultural products, developed a model for predicting agricultural
products prices. Cao et al. [25] used satellite data, climate data, and soil properties to build
three statistical-based methods included LASSO, RF, and LSTM for rice yield prediction.
Kim et al. [26] proposed a prediction model of rice blast based on artificial intelligence, and
long-term memory networks (LSTMs) were used to predict the incidence of rice blast one
year in advance. Xiao et al. [27] used LSTM to develop a pest occurrence prediction model
based on cotton disease, insect pest data, and weather factor change data in India. To our
knowledge, the application of LSTM to cucumber disease prediction in solar greenhouses
has not been reported yet.

This article used IoT sensors to acquire time-series environmental data during the
growth of cucumbers in the solar greenhouse. The LSTM neural network structure was
constructed based on the Keras deep learning framework. Then, we developed an environ-
mental factors prediction model to assess the predictive ability of the model. Combined
with the occurrence of downy mildew from manual investigation and statistics, through
debugging the parameters, we developed an occurrence prediction model for cucumber
downy mildew. The performance of the model was evaluated. The development of the
disease prediction model can provide farmers with better and effective guidance for the
prevention and control work, minimize the loss of disease damage, and provide a reference
for the prediction research of cucumber downy mildew in solar greenhouses.

2. Materials and Methods
2.1. Cucumber Cultivation Experiment and Data Acquisition

The experiment was carried out at the No. 16 greenhouse of Beijing Xiaotangshan
National Experiment Station for Precision Agriculture, in Changping District, Beijing, PR
China (40.18◦ N, 116.47◦ E) from March to July 2021. The greenhouse type was a single-roof
solar greenhouse, which faced south from the north and extended from east to west. The
specification was 38 × 7 m and covered with polyethylene films, without heating devices.
The cucumber variety was ‘Lyujingling No. 2′, purchased from the Vegetable Research
Center of Beijing Academy of Agriculture and Forestry Sciences. The cucumber seedlings
were transplanted on 4 March 2021, and were disinfected by spraying chlorothalonil before
transplanting. The ridge width was 80 cm, the ridge spacing was 80 cm, and the row
spacing was 40 × 40 cm. The irrigation method was drip irrigation under the films, and
the agricultural operations were carried out following the requirements of pollution-free
production. The production process was recorded with field management measures such
as ventilation, irrigation, and fertilization. The harvest season was ended on 7 July 2021.

The indoor environmental monitoring nodes (EnviroMonitor Node, Davis Instruments,
Hayward, CA, USA) were placed at a height of 1.5 m. The wireless temperature and
humidity sensors were at a height of 2.5 m, and the soil temperature and water potential
sensors were buried in the soil layer of 0.15–0.2 m below the second node in each column
(Figures 1 and 2a). The weather station Davis Vantage Pro2 (Davis Instruments, Hayward,
CA, USA) was located in an open space near the southeast boundary of the greenhouse,
and it could automatically communicate with monitoring nodes in the greenhouse under
the wireless LAN connection to realize the upload and storage of data (Figures 1 and 2b).
The data acquisition interval was 15 min, and the data was downloaded from the server
once a month. Meanwhile, it could acquire data on various outside environmental factors
such as wind speed, rainfall, atmospheric pressure, etc.

Taking the occurrence of cucumber downy mildew in the solar greenhouse as the
research object, we conducted weekly surveys and observations until the early symptoms
of cucumber downy mildew (light yellow water-stained polygonal disease spots on the
leaves) appear, determined the center of the disease occurrence, and recorded the time of
the first onset. After that, the cycle was changed to a 3~4 d survey interval. According to
the Pesticide-Guidelines for the Field Efficacy Trials (I)—Fungicides Against Downy Mildew of
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Cucumber (GB/T 17980.26-2000) [28], the diagonal five-point sampling method was adopted
for the fixed-point plant investigation.

Figure 1. The schematic diagram of the experiment sensors equipment installation. represents the
1.5 m high environmental monitoring nodes, represents the 2.5 m high wireless temperature and
humidity sensors, represents the soil temperature and water potential sensors in the soil layer of
0.15–0.2 m, ♦ represents the weather station; N means north.
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2.2. Dataset Construction
2.2.1. Model Variables Selection

According to the law of cucumber downy mildew occurrence and spread, it can be
known that the air temperature and relative humidity are the important factors affecting
the occurrence of the disease. In addition, the wet leaves will accelerate the infection of
pathogens [1,2,10,29,30] when the relative humidity is too high. The solar radiation [2,30]
will affect the activity of sporangia, and cause the soil temperature change. The pathogens
that are dormant in the soil begin to disperse, causing the primary infection of the disease.
Through reading and comparing a large number of references and combining them with
the actual situation, we selected the temperature, relative humidity, soil temperature, solar
radiation, and the situation of leaf wetness as the input independent variables of the model.
The situation of disease occurrence was used as the output dependent variable of the model.
Among them, the situation of leaf wetness was converted from the relative humidity at
2.5 m through the threshold, and 89% was selected as the relative humidity threshold [31],
that is, if the relative humidity was greater than or equal to 89%, the leaves were defined as
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wet, and less than 89% was defined as the leaves were not wet. Model variables setting,
units or descriptions, and symbols definition are shown in Table 1.

Table 1. Model variables setting, units or descriptions, and symbols definition.

Variables Units or Descriptions Symbols

Temperature ◦C 1 Temp
Relative Humidity % 1 RH
Soil Temperature ◦C 2 ST
Solar Radiation W/m2 1 SR

The Situation of Leaf Wetness Not Wet: 0(RH’ < 89%);
Wet: 1(RH’ ≥ 89%) 3 LW

The Situation of Disease
Occurrence

Not Occurrence: 0;
Occurrence: 1 Disease

1 The average value of environmental monitoring nodes at 1.5 m each 15 min. 2 The average value of soil
temperature sensors each 15 min. 3 The average value of the temperature and humidity sensors at 2.5 m (RH’)
each 15 min.

2.2.2. Data Pre-Processing

We used PyCharm 2019.3 and Python 3.7.11 to perform mean value calculation, vari-
ables name definition, and data format processing on the original environmental data. For
missing data caused by equipment aging, damage, etc., linear interpolation was used to
process the missing values. The equation used was the following:

Y = Y0 +
Y1 −Y0

X1 − X0
(X− X0). (1)

where X0, Y0, X1, Y1 are known sample data. X is the data between X0 and X1. Y is the
missing data corresponding to X to be interpolated. The processing of missing values
through linear interpolation was a crucial step in data pre-processing, which not only
ensured the completeness of the data, but also reduced the errors that may be caused by
missing data.

After threshold conversion of the relative humidity, the disease occurrence data was
added, and the characteristic variables were divided and the labels were set as shown in
Table 1. As these environmental data had different dimensional units and the same category
data difference was small and the distribution was close, the Min-Max normalization
method was adopted. The normalization equation is the following:

X∗ =
Xi − Xmin

Xmax − Xmin
. (2)

where Xi is all sample data (i = 1, 2, 3, . . . , n). Xmin is the minimum value among all
sample data. Xmax is the maximum value among all sample data. X* is the normalized
results. The data was transformed into supervised data through normalization processing,
and the dimension data was transformed into dimensionless data between [0, 1], thereby
eliminating the influence between data dimensions and the inter-indices comparability,
to reduce the amount of calculation, increase the speed of calculation, and improve the
accuracy and performance of the model.

Among them, LW was the 0/1 classification feature of whether the leaves were wet or
not, and Disease was the 0/1 classification label of whether the Disease occurred or not. The
data had been in the range [0, 1], so normalization was not required. After normalization,
the model dataset was obtained. A total of 70% of the total data was divided into the
model training set (8279 pieces) for the model to learn the information in the data, and the
remaining 30% was the model test set (3548 pieces), used to test the effectiveness of the
validation model on data learning and made classification predictions.
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2.3. Disease Occurrence Prediction Model Development

Deep learning is the process of continuously adjusting the network and enabling the
model to perform various nonlinear transformations on the input variables to effectively fit
the output. The influence of different parameters on the gradient descent speed of the model
and the results may also be different, so it is necessary to continuously test the network, and
choose the best optimizer and learning rate to optimize and improve the model [32,33]. The
Keras deep learning framework is an advanced neural network Application Programming
Interface (API) written by Python, which included neural network layers, loss functions,
optimizers, activation functions, and other modules for model construction, training,
debugging, and evaluation. It was used for the rapid construction of the model framework.
KNN [34] (K-Nearest Neighbors Classification) is a commonly used classification algorithm
in data mining, it represents the data to be classified by its nearest K neighbors values, and
realizes the division of classification results. ANN [35] (Artificial Neural Network) is a
traditional neural network algorithm, and it is the simplest neural network structure, with
only a single hidden layer. This experiment was carried out in a GPU environment. The
Keras deep learning framework (TensorFlow as the backend) was used to complete the
construction of the model and debug the learning process, and compare it with the KNN
classification algorithm and the ANN algorithm. The model training environment and
parameters configuration are shown in Table 2 shown.

Table 2. The model training environment and parameters configuration.

Training Environment Configurations

Operating system Windows 10 (64-bit)
CPU Intel Core i7-11800H
GPU NVIDIA GeForce RTX 3050 Laptop

Development and compilation environment PyCharm 2019.3 & Python 3.7.11
Deep learning framework Keras 2.4.3 (tensorflow-gpu 2.4.0)
Accelerated environment CUDA 11.2 & cuDNN 8.1.1

This model consisted of two LSTM layers, a Dropout layer, and a Dense layer. Among
them, LSTM defined the three-dimensional shape (None, 1, 5) of the input dataset and
conducted preliminary learning on a large amount of input data by increasing the number
of neuron nodes (None, 1, 128). None (None, 1, 5) represents the number of every time input
data, 1 represents a label category (the situation of disease occurrence), and 5 represents
the number of five features (five independent variables we selected). Here, 128 represents
the number of defined network units. The dropout layer was a regularization operation
on the network, whose contained useless information network units will be randomly
hidden or discarded during the training process to prevent the model from overfitting. The
LSTM_1 had the same scale as the LSTM layer after regularization. It stored, memorized,
and classified information related to the features and labels of the training dataset and
saved the remaining network units for data dimensionality reduction (None, 64). The
Dense layer was a fully connected layer, which could map the feature classification results
(None, 1) of the upper network through nonlinear changes to the output space, and then
improve the classification accuracy of the model. The structure diagram of the disease
occurrence prediction model is shown in Figure 3.

According to the learning effect of the training set, the above model used the test set
features to predict the situation of disease occurrence (Not Occurrence: 0; Occurrence: 1),
compared the predicted label with the actual label, and calculated the evaluation indicators
of the corresponding prediction model.

2.4. Model Evaluation Indicators

The prediction model of time-series environmental factors used RMSE (Root Mean
Square Error) and MAE (Mean Absolute Error) as evaluation indicators to describe the
error between the true value and the predicted value. The disease occurrence prediction
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model used Accuracy, Precision, Recall, F1-score and ROC (Receiver Operating Characteristic)
curve, AUC (Area Under Curve) value, confusion matrix, and k value (Kappa coefficient)
as performance evaluation indicators.

The calculated equation used were the following:

RMSE =

√√√√√ n
∑

i=1
(Oi −Yi)

2

n
, (3)

MAE =

n
∑

i=1
|Oi −Yi|

n
. (4)

where Oi is the true value. Yi is the predicted value. n is the total number of samples.

Figure 3. The structure diagram of disease occurrence prediction model.

Accuracy represents the proportion of the samples that are correctly predicted in the
total sample. Precision represents the proportion of the samples that are predicted to
be correct in the sample. Recall represents the proportion of the samples that predicted
the disease in the actual disease sample F1-score is a comprehensive evaluation indicator
combined with Precision and Recall. The calculated equation used were the following:

Accuracy =
TP + TN

TP + FN + FP + TN
, (5)

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
. (8)

ROC curve is a graph obtained by using FPR (False Positive Rate) as the abscissa and
TPR (True Positive Rate) as the ordinate to show the classification effect of the model. The
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AUC value is the area under the ROC curve. The closer its value is to 1, the higher the
classification performance of the model. The calculated equation used were the following:

FPR =
FP

TN + FP
, (9)

TPR =
TP

TP + FN
. (10)

The confusion matrix is a visual evaluation indicator that displays the model classifi-
cation results through a matrix of n rows × n columns. The k value is a consistency check
method, and the calculation result is usually between 0 and 1, which is calculated through
the numerical calculation of each matrix to measure the classification prediction accuracy.
The k value consistency classification criteria are shown in Table 3. The calculated equation
used are the following:

k =
p0 − pe

1− pe
, (11)

p0 =
TP + TN

TP + FN + FP + TN
, (12)

pe =
(TN + FP) ∗ (TN + FN) + (TP + FN) ∗ (TP + FP)

(TP + FN + FP + TN)2 . (13)

Table 3. The k value consistency classification criteria.

k Value Consistency Criteria

0~0.20 slight
0.21~0.40 fair
0.41~0.60 moderate
0.61~0.80 substantial

0.81~1 almost perfect

In the above Equations (5)–(13), TP means True Positive, which refers to samples that
are actually positive and predicted to be positive. FP means False Positive, refers to samples
that are actually negative and predicted to be positive. TN means True Negative, refers to
samples that are actually negative and predicted to be negative. FN means False Negative,
refers to samples that are actually positive and predicted to be negative. P0 means the
observation consistency, Pe means the chance consistency.

3. Results
3.1. Time-Series Environmental Factors Prediction Results

According to the time-series environmental factors data acquired by the sensors, the
missing data was processed through linear interpolation, and the four model independent
variables were predicted including the temperature (Temp), relative humidity (RH), soil
temperature (ST), and solar radiation (SR) in the greenhouse. The results are shown in
Figure 4.

The results in Figure 4 and Table 4 shows that the forecasted results of the four
environmental factors were consistent with the true value distributions, and R2 (R-Squared)
were all above 0.95. Among them, the ST variable predicted the best results, e.g., R2 = 0.9982,
RMSE = 0.08 ◦C, and MAE = 0.05 ◦C, and within acceptable error range. The results and
error level reflected that the model was reliable in predicting time-series environmental
factors in the solar greenhouse, and verifying that the model had high accuracy. The disease
occurrence prediction model could be further developed through model debugging.
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Figure 4. The solar greenhouse internal environmental factors prediction results. (a) Temp, (b) RH,
(c) ST, (d) SR.

Table 4. Error evaluation indicators of environmental factors prediction results.

Variables R2 RMSE MAE

Temp 0.9929 0.48 ◦C 0.33 ◦C
RH 0.9875 2.16% 1.39%
ST 0.9982 0.08 ◦C 0.05 ◦C
SR 0.9581 36.19 W/m2 18.21 W/m2

3.2. Model Debugging Results

After threshold conversion of relative humidity, disease occurrence data was added
and normalized the data. In order to make the model have the best performance, we selected
four good performance and commonly used optimizers for debugging the parameters,
when the learning rate was the default value of 0.001, selected the optimizer with the best
results. Then for this best performing optimizer, we set different learning rates for it to
compare which is optimal, as shown in Table 5.
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Table 5. Different optimizers and learning rates debugging results.

Optimizers Learning Rates Training Set Accuracy (%) Test Set Accuracy (%)

Nadam 0.001 95.69 89.37
Adamax 0.001 93.36 89.40
RMSprop 0.001 95.07 89.12

Adam 0.001 95.99 89.91
Adam 0.0001 89.35 85.65
Adam 0.01 90.55 85.29

It could be seen that the training set and test set accuracy of the Adam optimizer with
a learning rate of 0.001 were the highest among the four optimizers, with a training set
accuracy of 95.99% and a test set accuracy of 89.91%. According to the debugging results,
this model chose Adam (LR = 0.001) as the optimizer. During the training process, the
training set accuracy and loss value rise and fall with epochs are shown in Figure 5.

Figure 5. Variation diagram of the training set accuracy and Loss value.

Since the two represent the quality of the data learning and the error in the model
convergence process, the results showed that the training set accuracy and Loss value
change were stable and had good results. The Loss value was 0.0159, which indicated that
the model had high robustness.

3.3. Disease Occurrence Prediction Results for Different Models

By drawing the ROC curve and confusion matrix, calculating the AUC value and
Kappa coefficient, the classification situation and prediction results were evaluated, as
shown in Figure 6.

From the figure, AUC = 0.9015, indicated that the model classification effect was
better; according to the confusion matrix, the ordinate and abscissa were actual disease
not occurrence (0) and disease occurrence (1) and predicted disease not occurrence (0) and
disease occurrence (1), respectively. The total number in the four matrices was the number
of test set 3548 pieces (where TN = 1320, TP = 1872, FN = 228, FP = 128). According to
Equations (11)–(13), the k value was 0.80. The result obtained from the k value consistency
classification criteria in Table 3 was that the prediction accuracy had substantial consistency,
which showed that the accuracy of the prediction of the model was at a high level.
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Figure 6. Disease occurrence prediction model classification indicators. (a) ROC curve. (b) confu-
sion matrix.

As shown in Table 6, by comparing the evaluation indicators of the LSTM model
selected in this article with the KNN classification algorithm and the ANN algorithm model
evaluation indicators established based on Keras, the LSTM model predicted the disease
occurrence Accuracy, Precision, Recall, and F1-score of 90, 94, 89, and 91%, respectively. It
could be seen that these indicators were significantly higher than the indicators of the KNN
model and the ANN model, indicating that the LSTM method had obvious advantages
over the KNN and ANN methods. The model predicted the occurrence of disease in the
verification data better and had a high classification accuracy, indicating that the model
had high performance.

Table 6. Comparison of LSTM, KNN, and ANN model evaluation indicators.

Classes

Classification Results

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LSTM KNN ANN LSTM KNN ANN LSTM KNN ANN LSTM KNN ANN

0
90 87 74

85 83 65 91 85 76 88 84 70
1 94 90 82 89 88 73 91 89 77

4. Discussion

This article developed a cucumber downy mildew prediction model based on the data
of environmental factors in the solar greenhouse. However, this was obtained under two
assumptions. The first assumption was that there had been pathogens in the greenhouse.
Infection of pathogens is the root cause of cucumber downy mildew. They may be via
wind-borne sporangia from outside into the greenhouse [1,2] or maybe always left in the
greenhouse on plant residues or soil. As the model was the two-class prediction of whether
the disease occurred, this article did not trace the pathogens’ source and did not study
the different pathogenic mechanisms presented by different sporangia concentrations.
Obviously, in the process of disease investigation, the occurrence of cucumber downy
mildew confirmed this assumption. In addition, the cucumber variety we selected was
susceptible to disease in previous years, and thus meets the condition that the hosts can be
infected. That is, the existence of pathogens, the climate environment suitable [9,10,29] for
the dispersal of pathogens [1,2,30] in the greenhouse, and the sensitive host plant tissues
together led to the disease epidemic. The second assumption was to ignore the impact on
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cucumber growth caused by manual management. Because if human factors cause drastic
changes in the greenhouse climate environment, data acquisition, and environmental
factors prediction results will be unavailable and will affect disease progression [36] and
disease prediction accuracy. Of course, we will ensure that the opening and closing time of
greenhouse vents and field management operations are consistent and orderly every day,
except for sudden changes in external weather that require separate management measures.

This article started from the time of onset of the disease symptoms, divided the grow-
ing season into pre-onset and post-onset, constructed an LSTM neural network structure
based on the Keras deep learning framework, and developed a prediction model for the
temperature, relative humidity, soil temperature, and solar radiation in the solar green-
house. Based on the evaluation results of the environmental factors prediction model
(Figure 4), we can see that LSTM has achieved good results in the processing of time-series
data, this is similar to Liu’s [11] research. Therefore, through parameter adjustment, model
debugging, and adding the situation of leaf wetness and the situation of disease occurrence
data, it can be used to develop the disease occurrence prediction model. Compared with
the existing prediction models [7–10,13] for cucumber downy mildew, this model is more
advantageous in analyzing time-series data closely related to the occurrence of the disease,
with higher accuracy and wider applicability.

The LSTM was the first time to be applied in the prediction of cucumber downy
mildew in solar greenhouses, and it has some shortcomings in this study. Since each piece
of data in this experiment represents the data acquired by sensors every 15 min, the error
in the prediction (Figure 6) may be because since the features between the data within
15 min were too detailed or small, and the model was not easy learning and distinguishing
results in the inability, resulting in classification errors. However, it was precisely because
of the small data acquisition interval that the total number of classification errors was
also accumulated in units of 15 min, which greatly improved the precise range of disease
occurrence time and facilitates farmers to take management and prevention measures in
advance [1,3,29,31,36]. At the same time, model classification performance can be improved
through model regularization, parameter optimization, and learning rate adjustment [32,33].
This is also the reason for the adjustment of the parameters and the concrete manifestation
of the result obtained after the adjustment.

In future work, the pathogenic sporangia growth curve, incidence rate, disease index,
and other data can be used as the basis and distinguishing standard of disease occurrence
level [2] to explore their changes and connections. At the same time, combined with the
prediction model of environmental factors in the greenhouse [11], realize the short-term
environmental factors in the future using the data acquired from these predictions. Then,
develop a disease prediction system, through the data of future short-term environmental
factors, the disease occurrence prediction model is used to predict the future occurrence of
disease, and the two-classification problem of predicting the occurrence of the disease is
extended to a multi-classification problem of predicting the severity of disease occurrence,
to better help farmers to take prevention or control measures in advance. We can also place
the disease occurrence prediction model on the platform [37], which can automatically
call and analyze data to realize the visual path of the dynamic spread [38] of the disease
for users’ reference. At the same time, we will increase the verification experiments in
different greenhouses, different seasons and different varieties to expand the scope of
application of the model and improve the research on the prediction of cucumber diseases
in solar greenhouses.
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