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Abstract: The study aimed to define a grain-adapted quality score (GQS) to assess the fermentative
pattern of ensiled high-moisture maize grain (EMG) based on organic acids, ammonia, and ethanol
data of a lab-scale dataset. The GQS was validated by comparison with both the Flieg-Zimmer’s qual-
ity score (FQS) and a standardized quality score (SQS) by a received operating analysis. Compared
with FQS and SQS, the cut-offs of poor/good samples for the proposed GQS were 47 (accuracy of
0.94) and 71 points (accuracy of 0.88) over 100, respectively. The relationship among indices was
also tested in a farm-derived dataset by arranging a confusion matrix, which showed the higher
predictive performance considering the lower cut-off. On the lab-scale dataset, a factorial discrimi-
nant analysis (FDA) assessed the most predictive chemical post-ensiled traits able to segregate EMG
samples according to three fermentative quality classes of GQS. High-quality samples were accurately
determined as having a positive correlation with lactate, while low- and middle-quality ones were
partially overlapped and correlated with NH3-N, butyrate, and propionate. The validation of the
FDA model in the blind farm-derived dataset confirms the effectiveness of the proposed GMS to rank
between poorly- or well-preserved EMG.

Keywords: maize grains; fermentative quality index; silage; ROC analysis; factorial discriminant analysis

1. Introduction

As a high nutritional value farm-made concentrate, maize (Zea mays L.) silage of the
whole-plant or its starch-rich fractions (i.e., ear or grain) has been proposed to integrate
the total mixed ration (TMR) to support the productive performance of ruminants under
intensive rearing systems [1,2]. Regarding dairy cow feeding, ensiling high-moisture maize
grain (EMG) seemed to increase starch digestibility and the net energy for lactation in
dairy cows due to the increased surface area for bacterial enzymatic degradation and the
breakdown of the hydrophobic starch-protein matrix [3]. Ensiling is a microbiologically
driven process based on anaerobic fermentation mainly via lactic acid bacteria with a well-
established fermentative pattern, especially for the whole-plant maize silage [4,5]. Despite
the increasing inclusion of EMG in cattle feeding, evaluating the overall fermentative quality
of high-moisture ensiled maize grain is still a challenge [6,7]. The chemical composition
of EMG is related to maize variety, crop management practices, and plant maturity at
harvest that affects grains’ dry matter and starch contents [8]. In addition, a prolonged
natural drying of maize grains in the field may reduce the proportion of lactic acid bacteria
due to a stress of the epiphytic microbiota with impairment of fermentation capacity
during the ensiling process [9]. A correct ensiling procedure might be carried out with the
primary purposes of preventing dry matter and energy losses and limiting the production
of inedible and toxic compounds due to aerobic ad anaerobic microbial activity [10]. For
this purpose, low pH should be achieved through anaerobic fermentation of the water-
soluble carbohydrates via homofermentative bacteria to lactic acid and low amounts of
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other volatile acids (i.e., propionate and butyrate). Moreover, the degradation of proteins
and other N-compounds to ammonia nitrogen and alcohol production (i.e., ethanol) must
be minimized [11].

Despite being a well-known ensiling process, there is a need for a comprehensive
and rapid assessment of the fermentative quality of ensiled and preserved maize grain
silages, especially in farm-ensiling conditions where the variability of the process largely
affects the rate and extent of the main fermentation compounds production. There are
no fermentation quality indices specific to high-moisture maize grain silage so far, unlike
for whole-plant maize silage [4,12,13]. Therefore, the research suggested and validated
a grain-adapted quality score (GQS) for ensiled high-moisture maize grains (EMG). This
purpose was achieved by using the data of an experimental trial to build the GQS and
model the interactions among the main fermentative chemical traits in a multivariate
framework. Furthermore, the GQS was performed on a wide collection of farm-derived
silage samples used as an independent test set to evaluate the reliability of the supervised
pattern recognition procedure.

2. Materials and Methods
2.1. Experimental Design, Sampling Datasets, and Ensiling Procedure

A first specimen (n = 80) collection of EMG refers to an experimental trial (lab-scale or
dataset A) that was carried out during the summer seasons of 2019 in the lowland of the
middle Veneto region (N 45◦22′45”, E 11◦35′50”; Northeast Italy). To have EMG samples
representative of the variability in maize (Zea mays L.) plants cultivation, plants belonging
to five early (FAO class 200) and five late (FAO class 600–700) hybrids were sown in field
conditions characterized by medium-to-poor yield potential (around a maize silage crop
production of 55 tonnes ha−1) and medium water availability for irrigation. High-moisture
(around 65% dry matter) maize grain (EMG) samples were harvested with a plot harvesting
machine at a medium-early ripening phase (2/3 of milk stage). The maize grain samples
were immediately milled in a laboratory knife miller and blender (Grindomix GM 200,
Retsch GmbH, Verder Scientific, Haan, Germany) at 4000 rpm for 60 s. Two replicates
per sample were ensiled (on average 500 ± 50 g) in vacuum-packed bags (Orved 2633040,
Orved SpA, Musile di Piave, Italy) as reported by Andrighetto et al. [14], and then stored in
a dark room at 23 ± 2 ◦C for 60 days. The use of laboratory-scale silos was chosen to ensure
a standardized and controlled ensiling procedure. A second dataset (n = 201) refers to
samples collected in field conditions in farms where maize grain concentrates are produced
in-situ to feed lactating dairy cows (farm-derived or dataset B). These samples belong to
a two-year collection (2018–2019) of EMG, including a broad group of FAO class hybrids
grown in areas of the Veneto region (Northern Italy) with a wide agronomic potential
and irrigation water availability; moreover, they were obtained through different ensiling
management practices. The EMG samples collected from dairy farms were all ensiled in
concrete bunker silos. Overall, the own-farm high-moisture maize grain was ensiled as
ground (mesh diameter screen of 3–7 mm) grain (60–65% of dry matter) packed in silos
to achieve a bulk density of around 1000 kg of fresh matter m−3. The bunker silos were
characterized by a wide range of storage capacity (200–1000 m3), different length extension
(6–10 m × 12–35 m × 2.5–3.5 m of width, length, and mass height, respectively), as well as
the plastic cover used to minimize oxygen penetration. Therefore, the farm-derived dataset
provided a basket of samples representative of the harvesting and ensiling variability in
EMG fermentative quality and were collected on average after 162 ± 56 (median, 167; min,
56; max, 248; interquartile range, 43) days of ensiling. As described below, experimental
dataset (A) was used to determine the fermentative quality indices, and the farm-ensiling
dataset (B) was used as an external dataset to validate them.

2.2. Chemical Analysis and Description of Fermentative Quality Indices

Dry matter (DM) and ash were determined using the #934.01 and #942.05 AOAC
procedures [15]. The AOAC methods #2001.11 [16], #2003.05 [17], and #996.11 [18] were
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used for crude protein (CP), ether extract (EE), and starch, respectively. The neutral
detergent (NDF) and acid detergent (ADF) fiber fractions were determined using an Ankom
Fiber Analyzer (Ankom Technology Corporation, Fairport, NY, USA). The aNDF was
performed with sodium sulfite, heat-stable alpha-amylase, F57 bags with 25 µm pore size
and included residual ash [19,20]; non-sequential ADF was evaluated according to Vogel
et al. 1999 [21].

Lactate, acetate, propionate, butyrate, and ethanol were extracted in acid solution
(sulphuric acid 0.6 N) and analyzed using high-performance liquid chromatography
(HPLC) [22]. Briefly, the EMG samples were homogenized for 4 min in a blender (Stom-
acher BR400, Astori Tecnica, Poncarale, BS, Italy), then the mixture was roughly filtered in
a 50 mL tube, centrifuged at 4000 g for 10 min, and filtered again through a 0.45 µm filter.
A 20 µL aliquot of the solution was analyzed using an HPLC apparatus (Shimadzu 10AVP
HPLC System, Shimadzu, Tokyo, Japan) equipped with a SIL 10 auto-sampler and a RID
10A detector, and a 300 × 7.8 mm column (Aminex HPX-87H HPLC, Bio-Rad, Hercules,
CA, USA) set at 40 ◦C with H2SO4 0.0025 N as the mobile phase (0.6 mL min−1). Ammonia
nitrogen (NH3-N) was measured by the Megazyme’s ammonia assay kit (Megazyme Inter-
national, Bray, Wicklow, Ireland); pH by using a pH meter (827 pH lab; Metrohm, Herisau,
Switzerland).

Three fermentative quality indices were determined for all EMG samples using lac-
tate, acetate, butyrate, ethanol, ammonia concentration, and pH from the experimental
dataset A (Table 1). The relation between each variable score and its measured value
was considered positive for lactate and negative for the other variables (acetate, butyrate,
ethanol, ammonia, and pH). The first index was the well-known Flieg-Zimmer’s score
(FQS) that was calculated by adding up the single scores attributed to lactate, butyrate, and
acetate based on a 100 score range; the cut-off for the poor/good quality classes was set at
80 points [14]. As reported in Table 2, the second fermentative quality index was built
using a mathematical procedure that defined a standardized quality score (SQS) using a
five-point set (0.2, 0.4, 0.6, 0.8, and 1.0) related to ranks which were calculated as average
plus or minus 1 and 2 standard deviations (s.d.).

Table 1. Chemical traits and fermentative quality indices of ensiled high-moisture maize grain
(EMG) samples.

Constituents (g kg−1 DM) Experimental (n = 80)
Mean ± s.d. (Min–Max)

Farm-Derived (n = 201)
Mean ± s.d. (Min–Max)

DM (g kg−1) 656 ± 58 (556–784) 688 ± 43 (579–814)
Crude protein 94.7 ± 7.9 (82.2–112.8) 91.2 ± 9.8 (67.9–119.8)
Ether extract 32.7 ± 4.7 (20.9–44.8) 39.6 ± 4.3 (26.3–49.3)

Ash 14.2 ± 1.2 (11.7–17.6) 15.4 ± 1.9 (10.2–23.4)
Neutral detergent fibre (aNDF) 78.2 ± 3.3 (69.5–84.3) 80.3 ± 12.9 (51.5–100.6)

Acid detergent fibre (ADF) 26.0 ± 4.5 (11.5–34.2) 17.3 ± 6.1 (8.7–35.6)
Starch 720 ± 19.9 (659–757) 668 ± 31.4 (589–753)

Lactic acid 18.0 ± 9.2 (4.2–35.3) 18.2 ± 8.0 (3.6–39.6)
Acetic acid 3.0 ± 2.2 (0.5–9.1) 5.1 ± 3.3 (0.5–14.2)

Propionic acid 1.1 ± 0.3 (0.3–2.7) 1.0 ± 0.8 (0.2–4.8)
Butyric acid 0.44 ± 0.12 (0.16–0.89) 0.49 ± 0.32 (0.11–1.28)

Ethanol 7.3 ± 3.2 (0.7–13.1) 2.4 ± 1.5 (0.5–7.7)
NH3-N (g 100 g−1 total N) 1.8 ± 1.3 (0.3–5.3) 3.5 ± 1.6 (0.4–9.3)

pH 4.09 ± 0.27 (3.54–4.69) 4.05 ± 0.17 (3.64–4.68)

Fermentative quality score
Flieg-Zimmer’s (FQS) 83.1 ± 14.3 (30.5–100) 86.5 ± 15.7 (27.0–100)
Grain-adapted (GQS) 55.1 ± 15.3 (27.7–82.6) 52.9 ± 12.3 (20.1–80.0)
Standardized (SQS) 0.0 ± 1.0 (–2.46–1.51) 0.0 ± 1.0 (–2.81–3.72)



Agronomy 2022, 12, 429 4 of 12

Table 2. Criteria for the determination of the standardized quality score (SQS) index based on the
chemical traits of high-moisture maize grain (EMG) samples of the experimental dataset A (n = 80).

Constituents * Normalized Scores

m − 2 × s.d. m − s.d. mean (m) m + s.d. m + 2 × s.d.

Lactic acid 0.0 8.8 18.0 27.2 36.4
Scores 0.2 0.4 0.6 0.8 1.0

Acetic acid 0.0 0.8 3.0 3.2 7.4
Butyric acid 0.20 0.32 0.44 0.56 0.68

Ethanol 0.9 4.1 7.3 10.5 13.7
Ammonia
(NH3-N) 0.0 0.5 1.8 3.1 4.4

pH 3.55 3.82 4.09 4.36 4.63
Scores 1.0 0.8 0.6 0.4 0.2

* Acids and ethanol as g kg−1 of DM, ammonia as g 100 g−1 of total N.

Lactate scores were assigned a positive relationship. The scores for the other variables
were attributed a negative correlation. The sum of the six scores of the SQS index was
normalized (mean and s.d. equal to 0 and 1, respectively) and the cut-off for the poor/good
quality classes was the value 1 (mean + s.d.). The third is the proposed fermentative quality
index, defined as a grain-adapted quality score (GQS). It was determined by assigning a
maximum of 100 points based on the sum of the results of a set of six linear regression
equations for the same set of chemical variables used to determine the SQS. A score interval
was given to each variable, and a linear regression equation was run to assign the score for
each variable based on its measured value (Table 3).

Table 3. Criteria for the determination (score interval) of the grain-adapted quality score (GQS) index
based on a set of linear regression equations.

Constituents * Range of Values Linear Regression Equations Score Intervals

Lactic acid (LA) 10.3–26.1 Score = –26.1 + 2.53 × LA 0–40
Acetic acid (AA) 1.8–8.4 Score = 12.7 − 1.52 × AA 10–0
Butyric acid (BA) 0.2–0.8 Score = 26.7 − 33.3 × BA 20–0

Ethanol (ET) 0.9–4.0 Score = 12.9 − 3.23 × ET 10–0
Ammonia (NH3-N) 1.97–5.09 Score = 24.4 − 4.80 × NH3-N 15–0

pH 3.88–4.23 Score = 60.4 − 14.3 × pH 5–0

* Acids and ethanol as g kg−1 of DM, ammonia as g 100 g−1 of total N.

2.3. Statistical Analysis

Since the fermentative quality indices were normally distributed as assessed by the
Shapiro-Wilk test (PROC UNIVARIATE), a correlation analysis (Pearson coefficient, r, PROC
CORR) was carried out comparing the values of FQS, SQS, and GQS indices by using the
SAS software (9.4 release, SAS Institute Inc., Cary, NC, USA).

Based on the data of the experimental (lab-scale) dataset A, an analysis of the associa-
tion between the grain-adapted (GQS) and the FQS or SQS was performed by a receiver
operating characteristic (ROC) approach throughout the MedCalc (R) software (Version
17.6, MedCalc Software, Ostend, Belgium). Both FQS and SQS were used as gold standards
and dichotomized in two levels (poor/good quality) by using the cut-offs of 80 [14] and 1
(one standard deviation), respectively. Applying the Youden criterion, which maximizes
the sensitivity and specificity of the test, two significant cut-off values between poor and
good quality ensiled maize grain (EMG) samples were found for GQS. The area under
the curve (AUC) was used to test the accuracy of the ROC analysis, and it represents the
performance measurements in predicting the two classes (good or poor quality) since it is
plotted with the true positive rate (sensitivity) against false positive rate (specificity) [23].
The farm-related dataset B was used as an external validation set to assess the reliability of
the two GQS cut-offs obtained by the ROC analysis arranging two confusion matrices.
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The GQS values of the experimental dataset A were split into three classes by the
use of mean (55.1) ± standard deviation (15.3) as threshold: low-quality (L-class) < 39.8;
medium-quality (M-class) between 39.8 and 70.4; high-quality (H-class) > 70.4. Using
these qualitative classes within the prediction factor GQS, the chemical traits of EMG
samples of dataset A formed the matrix that was subjected to supervised multivariate
factorial discriminant analysis (FDA), which split the total variance into two main canonical
discriminant factors named F1 and F2 (XLSTAT software, release 2016, Addinsoft, New
York, USA). A scattergram of the outcomes of the FDA was plotted to classify the three
quality classes of GQS along with F1 and F2; the correlation coefficients (with absolute value
greater than 0.50) between the original chemical traits and F1 and F2 were also plotted. The
reliability of the FDA classification model was validated by using the farm-derived dataset
(dataset B). For each sample of the blind validation dataset B, the predicted probability of
being assigned to one of the three fermentative quality classes was calculated based on the
regression coefficients estimated by the FDA model developed in the training dataset A,
and a confusion matrix was built. The classification performance of the confusion matrices
was assessed by a set of descriptive statistics, including sensitivity, specificity, accuracy,
precision, and Matthews correlation coefficient (MCC) [24].

3. Results
3.1. Fermentative Quality Pattern and Indices

The EMG samples of the experimental and farm-derived datasets (A and B, respec-
tively) showed similar proximate composition and fermentative quality traits (Table 1).
However, the EMG samples obtained under field operative conditions (farm-derived
dataset) showed a higher percentage of acetate and NH3-N, while ethanol content was
lower. Both FQS and GQS had similar mean and standard deviation in the two datasets.

3.2. Validation of Grain-Adapted Quality Score (GQS)

The Pearson correlation (r) test highlighted a strong and positive relationship
(r = 0.79; p < 0.001) between GQS and FQS, and a weaker relationship between GQS and SQS
(r = 0.40; p < 0.001). Table 4 reported the outcomes of the two receiver operating characteris-
tic (ROC) analyses performed to assess the cut-off between poor and good-quality silages
of the proposed GQS compared to the FQS and SQS gold standard.

Table 4. Statistical scores of the receiver operating characteristic (ROC) analysis in discriminating (cut-
off) between poor and good-quality ensiled maize grains (EMG) were carried out on the experimental
dataset A (lab-scale).

AUC ± s.e. 1 CI0.95
2 Cut-Off Sensitivity Specificity p-Value

GQS vs. FQS 3 0.94 ± 0.02 0.89–0.97 46.6 0.87 0.88 <0.001
GQS vs. SQS 0.88 ± 0.04 0.82–0.93 70.5 0.86 0.85 <0.001

1 Area under the curve ± standard error (accuracy). 2 Confidence interval at 0.95. 3 GQS: grain-adapted quality
score; FQS: Flieg-Zimmer’s quality score; SQS: standardized quality score.

Referring to the well-known FQS for which the threshold value between poor or good
fermentative quality was set at 80 points, the cut-off for GQS was 46.6 with an accuracy
(area under the curve, AUC) of 0.94. As regards SQS, which had a threshold value of 1 (as a
result of mean plus standard deviation), the cut-off was higher (70.5) and characterized by
a lower accuracy (0.88). The reliability of the ROC algorithms in assessing the cut-offs of
the GQS was performed by arranging two confusion matrices in the external farm-derived
dataset. Considering the relationship between GQS and FQS, the coherence of poor/good
assignment was satisfactory because of the high values of the descriptive statistics such
as accuracy and MCC. A lower correlation between GQS and SQS was observed due to a
substantial misclassification, especially in the assignment of the good quality class showing
a level of sensitivity of 0.13 that reduced both accuracy and MCC values (Table 5).



Agronomy 2022, 12, 429 6 of 12

Table 5. Confusion matrix of the comparison between poor and good-quality ensiled maize grain
(EMG) samples carried out in the external blind farm-derived dataset B.

Original Farm-Derived Dataset (n = 201)

Predicted as FQS ≤ 80 (Poor Quality) FQS > 80 (Good Quality)

GQS ≤ 46.6 (poor quality) 42 23
GQS > 46.6 (good quality) 20 116

Predictive statistics
Sensitivity 0.68 0.83
Specificity 0.83 0.68
Accuracy 0.79 0.79
Precision 0.65 0.85

MCC 0.51 0.51

Predicted as SQS ≤ 1 (Poor Quality) SQS > 1 (Good Quality)

GQS ≤ 70.5 (poor quality) 62 121
GQS > 70.5 (good quality) 0 18

Predictive statistics
Sensitivity 1.00 0.13
Specificity 0.13 1.00
Accuracy 0.40 0.40
Precision 0.34 1.00
MCC 1 0.21 0.21

GQS: grain-adapted quality score; FQS: Flieg-Zimmer’s quality score; SQS: standardized quality score. 1 Matthews
correlation coefficient.

3.3. Classification Algorithm

The FDA showed a high discriminating capacity (Wilks’s λ = 0.048, approximately F
value = 16.3, df1 = 28, df2 = 128, p < 0.001) among the three GQS quality classes based on
two main discriminant factors, F1 and F2, which accounted for the 90.5 and 9.5% of the
total variability, respectively (Figure 1). Based on univariate ANOVA-features selection
(p < 0.05), DM, CP, aNDF, ADF, starch, lactate, propionate, butyrate, ammonia, and pH
were included in the chemical set giving the highest classification performance. Among
these variables, those with absolute correlation coefficient values higher than 0.50 with F1
and/or F2 were also plotted to separate the fermentative quality classes of GQS (Figure 1).

The reliability of the FDA model was assessed by an external validation on the farm-
derived dataset B. The main findings indicated an accurate classification of samples of the
H-class (accuracy = 0.86 and MCC = 0.57), while the partial overlapping of L- and M-class
observed in the FDA scatterplot was confirmed by a relative high misclassification rate
between their samples, although a moderate uncorrected prediction was also observed
between M- and H-samples (Table 6).
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Figure 1. Factorial discriminant analysis (FDA) of the ensiled high-moisture maize grain (EMG)
samples from the lab-scale dataset. (a) Scattergram of the three fermentative quality classes: ninety-
five percent confidence ellipses (CI0.95) are drawn around each centroid of groupings; fermentative
quality classes based on the grain-adapted quality score (GQS): low-quality (GQS < 39.8), red triangles
(N) and pointed line; medium-quality (39.8 ≤ GMS ≤ 70.4), blue squares (�) and dotted line; high-
quality (GMS > 70.4), green circles (•) and continuous line. (b) Correlation coefficients of the most
discriminating chemical traits; the black vectors represent the chemical traits (DM, dry matter; PA,
propionate; BA, butyrate; LA, lactate; CP, crude protein) which had correlation coefficient values
where the total factorial structure was higher than 0.50 with F1 and/or F2.

Table 6. Confusion matrix for the factorial discriminant analysis (FDA) in the external blind farm-
derived dataset for grain-adapted quality score (GQS) index classified in three quality classes (low, L
vs. medium, M vs. high, H).

Prediction Original Farm-Derived Dataset (n = 201)

Actual Class GQS <39.8 39.8 ≤ GQS ≤ 70.4 GQS > 70.4

Predicted as GQS < 39.8 (L) 22 32 0
Predicted as 39.8 ≤ GQS ≤ 70.4 (M) 4 92 3
Predicted as GQS > 70.4 (H) 1 25 22

Predictive statistics
Sensitivity 0.81 0.62 0.88
Specificity 0.82 0.87 0.85
Accuracy 0.82 0.68 0.86
Precision 0.41 0.93 0.46

Matthews correlation
coefficient 0.49 0.42 0.57

4. Discussion

The experimental trial was designed to develop and validate the grain-adapted quality
score (GQS), a synthetic indicator for evaluating the quality of ensiled high-moisture maize
grain (EMG), throughout a multivariate modeling approach. To validate the proposed GQS,
a comparison was carried out using the Flieg-Zimmer’s score (FQS), a gold standard in
assessing the quality of whole-plant maize silages [14,25]. Moreover, to test the reliability
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of the GQS, it was compared with the normalized SQS, where no pre-set different weights
were given to each chemical trait, in an attempt to summarize the whole chemical dataset
in a comprehensive standardized score [25]. A multivariate FDA modeling approach was
also performed, categorizing the GQS into three classes to identify the most informative
original chemical traits influencing the quality of the EMG samples and summarizing them
in two latent discriminant factors that allow for spatial dimension reduction [26].

As for the whole plant maize silage, the botanical and agronomic management and
the ensiling practices strongly affect the chemical and fermentative characteristics of the
EMG [27]. However, the chemical composition of EMG samples of both datasets investi-
gated in our trial is consistent with the literature [8,12], reporting average values (g kg−1)
of 695 for starch, 92 for CP, and 79 for aNDF. The proximate composition was in agreement
with data referring to high-moisture maize grain harvested as non-mature plants and thus
ensiled without any rehydration practice to promote a positive fermentation process [3].
Concerning the fermentative quality pattern, the number of organic acids (i.e., lactate and
acetate), ethanol, and ammonia-nitrogen were also in accordance with the literature [7,8],
even though lactate seemed to be lower in the present study [28].

The high content in lactate combined with the low pH and the low value in butyrate
suggests an adequate ensiling process for the samples of both datasets [28]. However, a
higher amount of ethanol and a lower production of acetate and NH3-N were observed for
the maize grain samples ensiled in experimental conditions compared with farm-derived
conditions. The high ethanol concentration might be due to a more intense heterolactic
fermentation or higher yeast counts, probably attributable to a decreased accumulation of
fermentation products with antifungal properties, such as acetic acid [28,29]. As a result of
amino acids deamination, the higher concentration of NH3-N recorded in samples collected
directly in the dairy farms might be only partially explained by the more extended ensiling
period (162 vs. 60 days). Indeed, the rate and extent of proteolysis are associated with
the physical-chemical traits of the grain (i.e., vitreousness degree, maturity stage) and its
protein fraction (i.e., zein content, protein-starch matrix) [30,31]. The higher ammonia-N
percentage observed in farm-derived EMG samples might be related to the breakdown of
the hydrophobic starch-protein matrix and a higher potential degradation of proteins; the
latter are soluble in lactic and acetic acids and then more easily degraded by proteolytic
activity of active plant enzymes or bacterial proteases [8].

The indices proposed in the current study assessing the quality of EMG were calculated
using lactate, acetate, and butyrate for FQS, with the addition of ammonia, ethanol, and
pH for SQS and GQS, similar to the reference scores proposed for the evaluation of the
fermentative quality of whole-plant maize silage [10,14]. The organic acids are homolactic,
heterolactic, and clostridia fermentation indicators, while ammonia weighs the level of
N-compounds degradation [32]. The pH and ethanol are helpful to deepen information
regarding the intensity and the causal agents of fermentation, especially in relation to the
detrimental role of yeasts and other heterofermentative microorganisms, and the acetic
acid is considered to have antimycotic activity [33]. Among the four chemical traits used
to calculate the scores, the higher weight was assigned to the high concentration of lactic
acid because it is a good index of an extent homolactic fermentation, and its concentration
and the consequent accumulation of hydrogen ions discourage the activity of undesirable
microorganisms like clostridia and enterobacteria [9,34]. Subsequently, equal importance
was given to ammonia and ethanol, which should both be low in concentration in well-
preserved silages. As stated above, ammonia tends to accumulate due to the degradation
of amino acids and peptides, both during homolactic fermentation and through proteolytic
enterobacteria and clostridia. The degradation of CP to NPN compounds (i.e., peptides and
free AA) occurs during the ensiling process by the proteolysis activity of plant enzymes.
However, due to the microbial activity during desmolysis, a further chemical reduction to
NH3 and amines can deleteriously influence the quality of N-compounds in ensiled maize
grain, leading to adverse effects such as reducing dry matter intake and the worsening of
health conditions in animals [35].
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Based on the results of the Pearson correlation test and of the effectiveness of the
ROC-classifier model, the cut-off of 46.6 points for the GQS seems to be more appropriate to
distinguish among poorly or well-preserved EMG samples. Indeed, based on the outcomes
of the blind validation on the farm-scale dataset (validation dataset B), referring to the
proposed GQS, a cut-off of around 50 points is suitable to assess between poor and good
ensiled high-moisture maize grain samples silages. As for the new comprehensive scores
proposed to revise the Flieg-Zimmer’s score in ranking the quality of whole-maize plant
silages [14,25], the outcomes of the ROC analysis and the subsequent validation confirmed
the capability of the GQS in the assessment of the silage fermentation traits of EMG. This
is due to the positive weight of high lactate concentration and the scores assigned for
a low amount of NH3-N, ethanol, and low pH values. Accounting for these additional
post-ensiled chemical traits in the computation of GQS allows for deepening the role of
heterofermentative bacteria and yeast in limiting the nutritional value and safety of EMG,
and amplifying the score difference between poorly- or well-preserved silages. Compared
with the FZS, which has a cut-off of 80 points, the greater range of points above this binary
poor/good threshold (46.6) makes GQS most suitable to assess the fermentative quality of
EMG by using more ranking classes.

To identify the more sensitive chemical traits in determining the fermentative quality
of EMG samples, a factorial discriminant analysis (FDA) model was performed on the
experimental lab-scale dataset by using three fermentative quality classes. This multivariate
data analysis technique can highlight the differences among fermentative quality classes
and identify the chemical variables indicative of their separation. The combined analysis
of (a) and (b) in Figure 1 identified those chemical traits valuable to distinguishing the
fermentative quality groups. The EMG samples from low quality-class (L-class) migrated
toward the right and the bottom side of the plot (Figure 1a), characterized by a higher
amount of NH3-N, butyrate, and also for a positive correlation with the aNDF content
(Figure 1b). Whereas the EMG samples from high quality-class (H-class) showed a wider
spatial 0.95-confidence interval (CI0.95) and migrated toward the left side of the plot mainly
according to a higher content of lactate, underling that this organic acid is the primary
specific chemical marker of an optimal ensiling process for maize grains [7,11]. The EMG
samples belonging to the medium-quality class (M-class) tended to be spatially gathered in
the center-right side of the plot and partially overlapped the L-class. The M-class seemed
less distinguishable across the selected chemical variables, even if these samples tended to
aggregate where F1 and F2 were positively correlated with DM, pH, and propionate. The
post-ensiled DM content was correlated with the DM at harvest, an indicator of the plant
maturity; early harvest was reported to be associated with higher lactic and partially with
acetic acid content in maize silage, and the DM was also a risk factor for aerobic instability
of the silage [36]. Indeed, the poorest and the highest quality EMG samples were accurately
discriminated since the former was associated with higher N-NH3 and butyrate contents,
and the latter strongly correlated with a higher lactate content. Although the external
validation showed moderate reliability of the FDA in discriminating the EMG samples
of the three fermentative quality classes, it could be stated that the FDA model built on a
controlled experimental dataset might also be used to discriminate among poorly (L- and
M-samples) vs. well (H-samples) ensiled and preserved farm-scale high-moisture maize
grain using the proposed GMS as effective screening on the basis of a threshold most likely
equal to 70 points. However, because 54% (26 out 48) of the H-samples were misclassified
mainly as M-samples, but none of the L-samples were wrongly attributed to the H-class
(Table 6), the cut-off of the lowest quality class was confirmed below 50 points as stated by
the results of the ROC analysis. A further score between medium and very well preserved
EMG samples remains a challenge that could be achieved with further experimental trials
that diversify the ensiling procedures and the storage time.
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5. Conclusions

The study provides a key insight into the definition of the grain-adapted quality score
(GQS) as a comprehensive method to assess the fermentative pattern of high-moisture en-
siled maize grain (EMG). The outcomes highlighted reliable accordance with the referenced
Flieg-Zimmer’s score but with the advantage of improving the effectiveness in ranking
maize grains based on their ensiling quality by including other organic acids, NH3-N,
ethanol, and pH in the computation of the optimal fermentative pattern. A supervised
multivariate model based on a factorial discriminating analysis (FDA) showed an accurate
and reliable predicting capacity in discriminating between poorly and well ensiled and
preserved maize grain samples, according to at least a binary criterion, mainly referring to
the amount of lactate, butyrate, and NH3-N. Despite the validation of the proposed GQS
index on a blind farm-derived dataset evidenced a moderate misclassification rate, it could
be used as a benchmark for rapid screening to support an effective decision-making strategy
by recognizing the fermentative quality of ensiled maize grain samples. The proposed
grain-adapted quality score index should be further validated within a set of controlled
silage-making procedures and tested in a feeding trial, especially for lactating dairy cows.
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