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Abstract: In this study, 12 maize hybrids were planted and evaluated to determine the effect of
genotype and genotype-environment interaction (GEI) base GGE (genotype plus genotype-by-
environment) using a Graphical biplot technique in four research stations (Arak, Birjand, Shiraz
and Karaj) within two years using a Randomized Complete Blocks Design (RCBD). The combined
analysis of variance showed that the effects of the environment, genotype and genotype-environment
interaction (GEI) were significant in the one percent probability level. GGE biplot results indicated
that the first and second principal components (PC1 and PC2) explained more than 83% of the grain
performance variation. Simultaneous study of grain performance and hybrid stability using the biplot
of average environment coordinates showed that the KSC705 genotype had the highest yield and
stability. Polygon view divided the studied areas into two mega-environments (MEs) and identified
the best genotypes in each mega-environment (ME). In the first mega-environment (ME1), the Karaj
and Shiraz with KSC706 and KSC400 genotypes were detected, and were the best; and in the second
mega-environment (ME2), Arak and Birjand with KSC704 and KSC707 genotypes performed better.
The biplot graph for the correlation between the genotypes categorized the studied hybrids into four
groups positively related to each other based on the angles between vectors. The KSC704 and KSC707
genotypes were desirable in the yield in Shiraz and Karaj and KSC706 were in Arak and Birjand.
Additionally, Arak-Birjand, Karaj-Shiraz showed a positive and significant correlation. Birjand and
Karaj had most genotype interaction with each other.

Keywords: adaptability; stability; correlation coefficient; mega-environments (MEs); graphical technique

1. Introduction

Maize is globally cultivated as one of the most important cereal crops ranking third
after wheat and rice. In the 2017 cropping season, the total maize-producing area worldwide
was 187 million hectares with a total production of 106 million tons [1]. Breeding high-
performance and stable genotypes appropriate for environmental situations in different
fields is essential for high and stable corn performance. In the modern grain industry, the
combined regional trial of crop diversity is a significant and rising national and provincial
regional problem that has emerged recently. The combined restricted test of corn genotypes
is a comprehensive evaluation of a newly cultivated genotype’s performance, adaptability,
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stress resistance, quality, and representativeness according to official specifications [2].
Phenotypic attributes were supported as a preliminary evaluation of corn genetic diversity
and given practical and essential information to characterize genetic support. As the
cultivation area of maize has expanded within recent years, high performance has been
achieved in the area. It is important to investigate the reactions of hybrids in various
regions and years. The best genotypes are identified and introduced as cultivars with high
production potential [3]. To determine the reliability and consistency of genotypes and the
qualities of the G and E effect, scientists have presented various techniques, each of which
has advantages and disadvantages.

The so-called GGE biplot technique is used for showing the genotype effect (G) and
genotype-environment interaction (GEI) of data obtained from the multi-zone experi-
ments [4,5]. Dissecting genotype × environment (G × E) interaction is one of the most
critical plant- breeding issues because it is based on figures from multi-environment experi-
ments. The G × E interaction is recorded in the most significant trials and then modelled
statistically and clarified. GEI modifies the hybrids’ good seed performance in various envi-
ronments so that choosing the correct genotype is very important [6]. In meta-environments,
Modeling G × E interaction facilitates explaining the stability of breeding materials. This
has been well described in various forms, and using several stability parameters. Selection
processes in plant breeding depend critically on phenotype predictions’ quality [7]. This
technique combines the performance average and stability and converts them to a graphi-
cally assessed criterion. G × E affects the purpose of the exact contribution of improved
hybrids and the environment or the enhanced technology [8]. The GGE bi-plot method
provides a more efficient technique for analyzing the interaction of genotype and environ-
ment because it can provide biplots and information about genotypes, environments and
interactions between them, in addition to a visual description of the interactions while other
methods of analysis such as Eberhart and Russell may provide only information about
genotype evaluation [9,10]. Through the graphical display of genotype in the environment
interaction effect, this method helps the breeder to evaluate the stability of hybrids in
various environments in a simpler manner. It makes it possible to examine the relationships
between the environments and identify the target environments in breeding plans [11].
This model was applied when studying the genotype interacting with the environment in
wheat [12], barley [13,14], and maize [15–22]. In a study during two years for 10 regions
on the stability of Chinese maize hybrids grain performance, Fan et al. [18] used the GGE
biplot and other stability statistics. Finally, they introduced only a single hybrid as the most
stable genotype. The present research aimed to evaluate the GEI in the graphical method
of GGE biplot in maize genotypes, and to identify the genotypes with high-performance
and stability as well as the mega-environments (MEs).

2. Materials and Methods

In this study, 12 maize hybrids were planted and evaluated in four (Karaj, Birjand,
Shiraz, and Arak) research stations for two years using randomized complete block design
(RCBD) with three replications. In this experiment, the sites were at a long-distance from
one another, the environments were far apart and had different weather and soil quality.
The geographical properties of the experimental environments and the names of studied
genotypes are provided in Tables 1 and 2, respectively.

Table 1. Geographical specifications of Performed the experiment areas.

Area Longitude Latitude Elevation
AMSL (m)

Average
Rainfall (mm)

Karaj 50◦54′ E 35◦55′ N 1312 247.3
Birjand 59◦12′ E 32◦52′ N 1491 171
Shiraz 52◦36′ E 29◦32′ N 1484 324.2
Arak 49◦46′ E 34◦06′ N 1708 341.7
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Table 2. Names and code of corn varieties studied in the experiment.

Genotype No. Genotype Genotype No. Genotype

G1 KSC703 G7 KSC707
G2 KSC260 G8 DC370
G3 KSC705 G9 SC647
G4 KSC400 G10 SC302
G5 KSC706 G11 SC604
G6 KSC704 G12 SC301

The preparation include deep ploughing, disking and creating planting rows and plots.
During the agricultural season, all agricultural practices, including irrigation, weeding and
thinning, were performed regularly, different agricultural properties were registered, and
after harvesting, the grain yield was calculated. The hybrids were planted in four lines
with a length of two meters and culture lines with a distance of 75 cm from each other. The
plant density per hectare was 80,000. Planting, holding, and harvesting were generally
carried out without adding fertilizer to the soil. Sampling and taking notes were performed
from the middle two rows to eliminate marginal effects (Table 3). To conduct Bartlett’s test
and a combined analysis of variance SAS.v9.1 was used [23,24]. The GGE biplot model
does not separate the genotype effect (G) from the effect of the genotype x environment
(GE) interaction, keeping them together in two multiplicative terms, represented in the
following equation: Yij − µ− βj = g1ie1j + gi2e2j + eij, where Yij is the performance expected
of genotype i in environment j; µ is the overall constant from the observations; βj is the
main effect of environment j; g1i and e1j are the main scores for the ith genotype in the
jth environment, respectively; gi2 and e2j are the secondary scores for the ith genotype
in the jth environment, respectively; and eij is the residual not explained by either of the
effects (“noise”).

Table 3. Soil specifications of Performed the experiment areas.

Region EC(ds/m) Acidity Lime (%) Organic
Carbon (%)

Organic
Materials (%) Clay (%) Silt (%) Sand (%)

Karaj 0.20 8.2 7 32 45 32 25 22
Birjand 0.46 7.08 15 17 29 10 42 42
Shiraz 0.75 7.8 4 21 25 41 31 46.1
Arak 2.9 8 9 23 12 23 21 38

To analyze the experimental data, a GGE biplot and Genstat.v12 software were used
based on the following five patterns: 1. Coordinates of the average environment; 2. De-
termining the best cultivar in each location; 3. Rating the genotypes based on the ideal
genotypes; 4. Rating the environments based on the ideal environment; and 5. Investigating
the relationships among the genotypes.

3. Results and Discussion

A homogeneity test of variance for the experiment errors was conducted to investigate
the uniformity of error variance in various experiments. As the uniformity of experimental
errors was confirmed, a combined analysis of variance was performed for the data ob-
tained from the experiments, and the results are given in Table 4. The environmental effect,
genotype effect and genotype × environment interaction were significant (in a one percent
probability level). The significance of the environmental effect indicated that environ-
ments varied in terms of genotype performance. The significance of GEI showed that the
genotypes’ performance varies from one place to another. As a result, grain performance
stability should be examined. The hybrids with specific adaptability to each environment
and hybrids with general adaptability were investigated and identified. The significance
of the effect of GEI showed that the environments can be grouped based on the interac-
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tion [25,26]. Additionally, Luo et al. [27] reported that the factors of genotype, location,
year, and all of the interactions between them were found to be statistically significant.

Table 4. Combined analysis of variance for grain yield of 12 maize hybrids in 4 locations and 2 years.

Source of Variation DF Sum of Square Mean Square Percent of Total Variation

Environment (E) 3 98.7251194 32.9083731 <0.0001
Year (Y) 1 24.4766722 24.4766722 <0.0001
Environment × Year 3 8.1064361 2.7021454 0.0164
Genotype (G) 11 172.2179778 15.6561798 <0.0001
Error1 16 105.436131 3.195034 –
Genotype × Environment (GE) 33 145.5750139 4.4113641 <0.0001
Year × Genotype 11 59.2709611 5.3882692 <0.0001
Location × Year × Genotype 33 105.4361306 3.1950343 <0.0001
Error 176 146.396370 0.770507 –
CV (%) 18.24

To examine the variation between genotypes and environments and study the geno-
type in the environmental interaction, the GGE biplot graphical technique was used. The
sum of the first two and second main components (PC1 = 53.80 and PC2 = 29.90%) was
responsible for 83.70% of the maize grain performance variation, indicating the high rela-
tive validity of the biplot graph obtained from this study in explaining the G + GE changes.
Yan and Tinker [28] indicated that suitable maize genotypes could be selected for direct
production or breeding and can be used in mega-environments (MEs). Yan and Tinker [28]
reported that the seed yield increases in the arrow’s direction (in GGE biplot figure) and
genotypes closer to the arrow line are more stable. The different genotypes’ performance
and interaction with several environments were obtained using a GGE biplot analysis by
PC1 and PC2 factors [29]. If the biplot diagram accounts for as little as 60% of the data
variance, a GGE biplot can be used in mega-environments (MEs) [30]. If both the first
and second components cannot explain the variation, this is indicative of the complicated
nature of genotype and environment interaction (GGE) [29]. However, this does not imply
the invalidity of the biplot [29]. Taking into account the simultaneous study of genotypes
performance and stability can benefit the biplot graph of average environment coordinates.
This figure is used for investigating the performance and stability of genotypes. A biplot
figure of average environment coordinates in the biplot GGE technique is among the suit-
able methods in stability analysis [31]. The solid horizontal axis represents the average
of environments, and the origin indicates the stability. Each genotype close to this axis
will be more stable [32]. The solid vertical axis indicates the average grain performance
of genotypes; therefore, genotypes with grain performance higher than the average are
on the right side of the axis, and the ones with lower performance are on the left side.
On that basis, genotype KSC705 had the highest grain stability and performance and is
characterized as the best genotype. Furthermore, KSC703 was the most unstable genotype
due to its distance from the horizontal line, while the SC301 genotype had the lowest
grain performance and was characterized as undesired. The order of hybrids in terms of
performance in descending order is as follows:

KSC705 > KSC704 > KSC707 > KSC706 > KSC400 > SC647 > KSC703 > SC604 > DC370
> KSC260 > SC302 > SC301 (Figure 1).

A polygon figure was used to specify the top hybrids in various environments and to
recognize the mega-environments (MEs) (Figure 2). In this figure, the best hybrids with
the most significant distance to the origin were connected and form a polygon. Genotypes
located on the joint show desirable performance in that environment. Based on this figure,
KSC706, KSC705, KSC704, KSC703, SC301 and DC370 genotypes are on this polygon’s
vertices and were identified as the top genotypes. In identifying the mega-environments
(MEs), two regions of Arak and Birjand are in the exact location and KSC706 and DC370
genotypes, due to their location on the vertices, and were two highly desired cultivars for
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these two environments. Two regions of Karaj and Shiraz are in the exact location identified
as the second mega-environment (ME). Furthermore, KSC704, due to its location on the
vertex, is specified as the desired cultivar for these two locations. In the polygon view,
following KSC704, KSC707 is the proper cultivar for cultivation in Karaj and Shiraz. The
SC647 Genotype is located nearly on the biplot origin, confirming its similar reaction to
most studied environments, and it is among the weakest genotypes in most environments.
No environment in the sectors located KSC705, KSC703, KSC260, SC604, SC302, SC301 and
DC370 genotypes; i.e., these genotypes were not superior and were categorized as the poor
genotypes in environments.
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The ideal hybrid is the genotype with the best mean performance and stability in
all test environments. The ideal hybrids are presented at the center of a multilayered
concentric circle, and the genotype under evaluation is judged based on its distance from
the ideal hybrid. Genotypes near the center of the concentric circle have a good yield, and
those far from the circle’s center have lower yields [33]. According to the findings, the
method of hybrids arrangement in descending order is as follows:

KSC705 > KSC707 > KSC704 > KSC706 > KSC400 > SC647 > SC604 > DC370 > KSC260
> SC302 > SC301 (Figure 3).
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The GGE biplot can be applied to visualize the position of an ideal hybrid. In this
diagram, the desirability of a genotype depends on its distance from the assumed ideal
hybrids. In other words, the hybrids closest to the assumptive ideal hybrids are the most
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desired hybrids. Thus, the KSC705 genotype is the most desired, and SC301 is the most
undesired hybrid.

The assumptive ideal environment was drawn according to the average data for
two years of an experiment to highlight the most appropriate and most inappropriate
environment (Figure 4). Based on this diagram, each environment close to the assumptive
ideal environment is more desired than other environments. The main characteristic of
correlation among the environments is the environment vector’s length, which estimates the
standard deviation inside each environment and indicates environments’ discrimination.
A greater length indicates high standard deviation, and more discriminability. Based
on Figure 4, the Karaj and Birjand locations are closest to the ideal environment and
are the most desired, whereas Shiraz and Arak’s locations were considered the most
undesirable environments. Discriminability is a critical characteristic since environments
without discriminability cannot present relevant information on cultivars [15]. Based on the
angle between vectors, the environments of Arak—Birjand, Karaj—Shiraz are correlated
positively and significantly. However, since the angle between the two vectors of Arak
and Shiraz is 90, the correlation is zero, indicating these two locations’ dissimilarity in
terms of maize grain production. If two or more environments are correlated, experiments
can be conducted in just one environment to reduce costs and save time [34]. The cosine
of the angle between environments’ vectors indicates the type of correlation among the
environments. If the vectors’ angle is less than 90, the existing correlation among the vectors
is positive, and if it is 90, there exists a correlation among the vectors. If it equals zero,
and if it is higher than 90, the correlation is negative. Similar to the figure correlated to
the correlation among environments, the biplot diagram presenting the correlation among
the genotypes indicates the amount of correlation among the genotypes and genotypes’
grouping based on the angels of their vectors. The relative length of vectors represents the
relative proportion of variability in each variable represented on the biplot. If the angle
between vectors of two traits is <90◦, both are positively correlated, whereas if the angle
is >90◦, there is a negative correlation and both vectors show no correlation if the angle is
90◦ [35].
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Based on Figure 5, genotypes are grouped in four categories in terms of the correlation
existing among them. The first group included SC647, KSC705, KSC706 and KSC400, the
second group included DC370 and SC301, the third group included SC302, KSC260 and
SC604 and the fourth group included KSC707, KSC704 and KSC703.
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4. Conclusions

Twelve maize hybrids were planted and evaluated according to the GEI-based GGE
Graphical biplot technique in four research stations. A significant variation was observed
among the hybrids for seed performance, indicating that the biplot method facilitated
the discrimination of genotypes in different environments in this research. Both PC1 and
PC2 explained more than 83% of the grain performance variation. GGe biplot analysis
showed that:

1. A study of grain yield and stability of hybrids using the biplot of average environment
coordinates showed that the KSC705 genotype has higher stability and grain yield
than other genotypes.

2. Both SC302 and SC301 genotypes had minimum stability on grain yield in this study.
3. The KSC704 and KSC707 genotypes were desirable for yield in Shiraz and Karaj, and

KSC706 were desirable in Arak and Birjand.
4. Additionally, Arak-Birjand, Karaj-Shiraz showed a positive and significant correlation.
5. Birjand and Karaj showed the highest genotype interactions with each other.
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